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Abstract. We study some properties, such as uniform boundedness, unitarity and
irreducibility, of a class of representations of the free product of groups. In particular
we show that the spherical functions on the free product of two groups, introduced by
Cartwright and Soardi, are coefficients of irreducible representations.

Introduction

There have been several attempts to construct representations of free product of
groups or algebras. One family of such constructions is related to the commutative
convolution algebra of radial functions on the free group ∗i∈IZ, see [FP1, FP2, T2, K,
KS1, MZ, PS], or on the free product of cyclic groups of the same order, see [IP, Wy]. On
the other hand there are developed methods to produce a representation of G = ∗i∈IGi

(or, more generally, of a unital free product A = ∗i∈IAi of ∗-algebras Ai) from those of
Gi’s (or Ai’s), see [B1, Av, Vo, VDN, BS, BLS, M2, M3, M4, M5].

Much effort has been devoted to study irreducibility of such representations. For those
related to radial functions the method is to study the projection on a cyclic vector, see
[FP1, FP2, PS, MZ, IP, Sz]. Interesting constructions of irreducible representations
of the free group are due to Kuhn, Steger [KS3, KS4] and Paschke [P1, P2]. Let us
also mention papers by M lotkowski [M2], Kuhn and Steger [KS2]. The former proves
irreducibility for a family of representations on the free product of infinite groups, the
latter proves that for a family of representations of the infinitely generated free group.

The starting point of this paper is the observation that for the free product group
G = ∗i∈IGi there is an associated unital, noncommutative (unless |I| = 1) ∗-algebra
A(τ) depending only on the parameters τi := (|Gi| − 1)−1 (cf. [M1]). If all Gi’s are
finite then A(τ) can be identified with the convolution algebra of finitely supported type
dependent functions on G. For a representation π0 of A(τ), acting on a Hilbert space,
we construct in Section 5 a representation π of G, acting on a larger Hilbert space. We
say that π is induced from π0. We prove that π inherits many properties of π0, namely:

1. If π0 is a ∗-representation then π is unitary (Theorem 5.5.iv).
2. If π0 satisfies some version of uniform boundedness then π is uniformly bounded

(Theorem 5.5.v).
3. If π0 and σ0 are representations of A(τ) which are disjoint from the regular

representation of A(τ) and if π0 and σ0 are not equivalent (resp. π0 and σ0 are disjoint)
then so are the induced representations (Theorem 5.10).

4. If a ∗-representation π0 of A(τ) is weakly contained in a ∗-representation σ0 then
the same holds for the induced unitary representations (Theorem 5.11). In particular,
if π0 is weakly contained in the regular representation of A(τ) (defined in Section 2)
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then the induced representation is weakly contained in the regular representation of G.
In Section 3 we adapt Haagerup’s [Ha] method to characterize those representations of
A(τ) which are weakly contained in the regular representation.

5. Finally we prove that if π0 is a ∗-representation of A(τ) which is irreducible then
so is π, unless π0 is contained in the regular representation of A(τ) (Theorem 6.4). We
will see in Section 2 that there are at most two irreducible subrepresentations of the
regular representations of A(τ), and they are one-dimensional.

In the nonunitary case, we have managed to prove that if π0 is a finitely dimensional
irreducible representation of A(τ), not equivalent to a ∗-representation, then π is fully
irreducible (Theorem 6.8).

In the last section we apply our results to the free product of two groups G = G+∗G−,
with |G+| = r, |G−| = s, r > s ≥ 2 (an important example is Z3 ∗ Z2

∼= PSL(2,Z)).
Cartwright and Soardi [CS] studied a family of spherical functions φλ on such group,
with λ ∈ C, λ 6= (r + s− 4)/2. Here we prove that every φλ is a coefficient of a
fully irreducible (unless λ = −2 or λ = s − 2) representation of G. Moreover, this
representation is unitary if and only if λ ∈ [−2, s− 2] ∪ [r − 2, r + s− 2].
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1. The algebra A(τ)

If X is a set then F(X) (resp. F0(X)) will stand for the class of finitely supported
complex functions on X (which satisfy

∑
x∈X f(x) = 0). For two complex functions f, g

on X we put 〈f, g〉 :=
∑

x∈X f(x)g(x) whenever the sum is well defined.
We recall some notions which were studied in [M1]. Let I be a nonempty fixed set

and let S(I) denote the set of all formal words of the form

u = i1i2 . . . im, with m ≥ 0, ik ∈ I and ik 6= ik+1 for all k < m, (1.1)

including the empty word e. The length m will be denoted by |u|. For i ∈ I we define

Si := {i1i2 . . . im ∈ S(I) : m = 0 or i1 6= i}. (1.2)

Let τ be a function I → [0,+∞). We extend τ to S(I) by putting

τ(u) := τi1τi2 . . . τim (1.3)

for u as in (1.1), in particular τ(e) = 1. Then we define τ -convolution as an associative
operation on F(S(I)), such that δe is the unit and for each u as in (1.1), with |u| ≥ 1,

δi ∗τ δu =

{
(1− τi)δu + τiδu′ if i = i1,
δiu if i 6= i1,

(1.4)

where u′ = i2 . . . im and iu = ii1 . . . im (δx denotes the characteristic function of the

point set {x}). We also define involution by f ∗(u) := f(u∗), where u∗ := im . . . i2i1 for
u as in (1.1). In this way F(S(I)) becomes a unital ∗-algebra, which we will denote
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by A(τ). Note that A(τ) can be defined as the unital free ∗-algebra on I, subject to
the relations i2 = (1− τi)i + τie and i∗ = i for i ∈ I, and is also an example of generic
algebra (see [Hu]).

Observe that the characters of A(τ), i.e. functions φ on S(I) such that 〈φ, f ∗τ g〉 =
〈φ, f〉〈φ, g〉 holds for all f, g ∈ F(S(I)), are of the form φ(u) = φ(i1) . . . φ(im) for u as in
(1.1), where φ(i) ∈ {1,−τi}. In particular, taking φ ≡ 1 we see that F0(S(I)) = kerφ
is an ideal in A(τ).

For two functions σ, τ : I → [0,+∞) we define a ∗-isomorphism Hτσ : A(σ) → A(τ)
putting

Hτσ(δi) :=
1 + σi

1 + τi
δi +

τi − σi

1 + τi
δe

for each i ∈ I. Indeed, one can check that

Hτσ(δi) ∗τ Hτσ(δi) = (1− σi)Hτσ(δi) + σiδe.

Observe also that for f, g ∈ F(S(I))

(f ∗τ g
∗)(e) = (g∗ ∗τ f)(e) =

∑
u∈S(I)

f(u)g(u)τ(u). (1.5)

Definition 1.1. A function φ : S(I) → C is said to be τ -positive definite (resp. τ -
negative definite) if 〈φ, f ∗ ∗τ f〉 ≥ 0 (resp. 〈φ, f ∗0 ∗τ f0〉 ≤ 0) holds for every f ∈ F(S(I))
(resp. for every f0 ∈ F0(S(I))). We will denote by P(τ) and N (τ) the class of τ -
positive and τ -negative definite functions on S(I) respectively, and by B(τ) the class of
linear combinations of τ -positive definite functions on S(I), i.e. the τ -Fourier-Stielties
algebra.

In particular, the characters of A(τ) are τ -positive definite.

Proposition 1.2. Suppose that for every i ∈ I we have 0 ≤ σi ≤ τi. Then

P(σ) ⊆ P(τ) and N (σ) ⊆ N (τ).

Proof. It is sufficient to show that for every f ∈ F(S(I)) we have

f ∗ ∗τ f = f ∗ ∗σ f +R,

where R is a finite sum of terms of the form f ∗0 ∗σ f0, with f0 ∈ F0(S(I)). We proceed
by induction on n, the maximal length of words in the support of f . Decompose f as

f = f(e)δe +
∑
i∈I

δi ∗ fi

(we write simply “∗” whenever “∗τ” can be replaced by “∗σ”) with suppfi ⊆ Si, see
(1.2). Then, by induction, we can write f ∗i ∗τ fi = f ∗i ∗σ fi +R(i). Now we have

f ∗ ∗τ f − f ∗ ∗σ f =
∑
i∈I

{
(δi ∗ fi)

∗ ∗τ (δi ∗ fi)− (δi ∗ fi)
∗ ∗σ (δi ∗ fi)

}
and

(δi ∗ fi)
∗∗τ (δi ∗ fi) = (1− τi)f

∗
i ∗ δi ∗ fi + τif

∗
i ∗τ fi

= f ∗i ∗σ

(
(1− τi)δi + τiδe

)
∗σ fi + τiR(i)

= (δi ∗ fi)
∗ ∗σ (δi ∗ fi) + (τi − σi)f

∗
i ∗σ (δe − δi) ∗σ fi + τiR(i).
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To conclude we note that

δe − δi =
1

1 + σi

(δe − δi) ∗σ (δe − δi). �

We will identify, by φ(u) := φ(δu), the dual space F(S(I))′ with the space of complex
functions on S(I). Denote by Tστ the dual map to Hτσ, i.e. Tστ (φ) = φ ◦Hτσ.

Proposition 1.3. Tστ maps P(τ) onto P(σ), N (τ) onto N (σ) and B(τ) onto B(σ).

Proof. For a τ -positive definite function ψ and for f ∈ F(S(I)) we have

〈Tστψ, f
∗∗σf〉 = 〈ψ,Hτσ (f ∗∗σf)〉 = 〈ψ,Hτσ(f)∗∗τHτσ(f)〉 ≥ 0. �

Proposition 1.4. Assume that {Pi}i∈I is a family of projections on a Hilbert space
H0, ζ, η ∈ H0 and let Ai = (1 + τi)Pi − τiId, Bi = (1 + σi)Pi − σiId. Define φ(u) =
[Ai1Ai2 . . . Aimζ, η] and ψ(u) = [Bi1Bi2 . . . Bimζ, η] for u = i1i2 . . . im ∈ S(I). Then
ψ = Tστφ.

Proof. Let A : A(τ) → B(H0) and B : A(σ) → B(H0) be the unique homomorphisms
which satisfy A(δi) = Ai and B(δi) = Bi. Since

Bi =
1 + σi

1 + τi
Ai +

τi − σi

1 + τi
Id,

we have B = A ◦Hτσ. Now define Φ : B(H0) → C putting Φ(T ) := [Tζ, η]. Then

ψ = Φ ◦B = Φ ◦ A ◦Hτσ = φ ◦Hτσ = Tστ (φ). �

Now we prove that τ -positive definiteness admits the standard GNS construction:

Proposition 1.5. Let φ be a complex function on S(I) and let τ be a function I →
[0,+∞). Then φ is τ -positive definite (resp. belongs to B(τ)) if and only if there exists
a Hilbert space H0, a vector ξ ∈ H0 (resp. vectors ζ, η ∈ H0) and a family {Pi}i∈I of
orthogonal projections on H0 that for every u = i1i2 . . . im ∈ S(I)

φ(u) = [Ai1Ai2 . . . Aimξ, ξ] (resp. φ(u) = [Ai1Ai2 . . . Aimζ, η]),

where Ai = (1 + τi)Pi − τiId.

Proof. First assume that τ ≡ 1. Then τ -positive definiteness coincides with the usual
one on the free product group ∗i∈IZ2 and our assertion is well known in this case. The
general case follows from Proposition 1.3 and 1.4. �

It turns out that one part of the last proposition can be generalized.

Lemma 1.6. Assume that {Ai}i∈I is a family of operators on a Hilbert space H0 such
that −τiId ≤ Ai ≤ Id for every i ∈ I. Then for ξ ∈ H0 the function

φ(i1 . . . im) := [Ai1 . . . Aimξ, ξ]

is τ -positive definite on S(I).

Proof. Define a linear function Φ : F(S(I)) → B(H0) by putting Φ(δu) := Φ(u) :=
Ai1 . . . Aim for u = i1 . . . im as in (1.1). We will prove that for every finitely supported
function η : S(I) → H0 we have

∑
u,v∈S(I)

[Φ(δv∗ ∗τ δu)η(u), η(v)] ≥

∥∥∥∥∥∥
∑

u∈S(I)

Φ(u)η(u)

∥∥∥∥∥∥
2

.
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We proceed by induction on n := max{|u| : u ∈ supp(η)}. For i ∈ I and u = i1 . . . im ∈
S(I) define

ηi(u) :=

{
η(iu) if u ∈ Si,
0 otherwise.

Then, by induction,

R(i) :=
∑

u,v∈S(I)

[Φ(δv∗ ∗τ δu)ηi(u), ηi(v)]−

∥∥∥∥∥∥
∑

u∈S(I)

Φ(u)ηi(u)

∥∥∥∥∥∥
2

≥ 0.

Note that Φ(v∗u) = Φ∗(v)Φ(u) holds if u = e or v = e or if |u|, |v| ≥ 1 and u, v start
with different letters. Therefore∑

u,v∈S(I)

[Φ(δv∗ ∗τ δu)η(u), η(v)]−
∑

u,v∈S(I)

[Φ(u)η(u),Φ(v)η(v)]

=
∑
i∈I

∑
u,v∈Si

{
[Φ(δv∗ ∗τ (δi ∗τ δi) ∗τ δu)η(iu), η(iv)]−

[
A2

i Φ(u)η(iu),Φ(v)η(iv)
]}

=
∑
i∈I

∑
u,v∈Si

{
[Φ ((1− τi)δv∗iu + τiδv∗ ∗τ δu) ηi(u), ηi(v)]−

[
A2

i Φ(u)ηi(u),Φ(v)ηi(v)
]}

=
∑
i∈I

{
τiR(i) +

[
((1− τi)Ai − A2

i + τiId)ξi, ξi
]}
≥ 0,

where ξi :=
∑

u∈S(I) Φ(u)ηi(u), because

(1− τi)Ai − A2
i + τiId = (Id− Ai)(τiId + Ai)

is a nonnegative operator. Now, for f ∈ F(S(I)) we have

〈φ, f ∗ ∗τ f〉 = [Φ(f ∗ ∗τ f)ξ, ξ] =
∑

u,v∈S(I)

[〈Φ, δv∗ ∗τ δu〉 f(u)ξ, f(v)ξ] ≥ 0. �

Taking H0 = C we obtain a family of τ -positive definite functions:

Corollary 1.7. Assume that 0 ≤ r ≤ 1. Then the function u 7→ r|u| is τ -positive
definite on S(I) for every τ : I → [0,∞). �

Now we can prove a version of the Schur theorem:

Corollary 1.8. Assume that φ1 and φ2 is τ (1)- and τ (2)-positive definite on S(I), re-

spectively, where the functions τ (1), τ (2) : I → [0,∞) are such that τ
(1)
i · τ (2)

i ≤ 1 for

every i ∈ I. Then the product φ1 · φ2 is σ-positive definite, where σi := max{τ (1)
i , τ

(2)
i }.

In particular, if τ : I → [0, 1] then P(τ) is closed under pointwise multiplication.

Proof. For k = 1, 2, let (Hk, πk, ξk) be the GNS triple for φk, and let

Ak(i) := πk(δi) = (1 + τ
(k)
i )Pk(i)− τ

(k)
i Idk

for a selfadjoint projection Pk(i) on Hk. Defining the operator A(i) := A1(i)⊗A2(i) on
H1 ⊗H2 we have

A(i) = P1(i)⊗ P2(i)− τ
(2)
i P1(i)⊗ (Id2 − P2(i))− τ

(1)
i (Id1 − P1(i))⊗ P2(i)

+ τ
(1)
i · τ (2)

i (Id1 − P1(i))⊗ (Id2 − P2(i)),
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so that H1 ⊗H2 is decomposed into orthogonal direct sum of four subspaces and A(i)

acts on each of them by multiplying by 1, −τ (2)
i , −τ (1)

i and τ
(1)
i · τ (2)

i respectively, so
that −σiId1 ⊗ Id2 ≤ A(i) ≤ Id1 ⊗ Id2. We also have

φ1(u)φ2(u) = [A(i1) . . . A(im)ξ1 ⊗ ξ2, ξ1 ⊗ ξ2]

for u = i1 . . . im, which, by Lemma 1.6, concludes the proof. �

2. The regular representation of A(τ)

Let us fix τ : I → [0,∞) and denote Ifin := {i ∈ I : τi > 0} (this notation will be
justified in Section 6). Let Ffin(S(I)) denote the class of those f ∈ F(S(I) for which
suppf ⊆ S(Ifin). We will work on the Hilbert space `2(τ) of complex functions f on
S(I), with support in S(Ifin), satisfying

‖f‖2
2 :=

∑
u∈S(I)

|f(u)|2τ(u) <∞,

where τ(u) was defined in (1.3), with the scalar product

[f, g] :=
∑

u∈S(I)

f(u)g(u)τ(u).

According to (1.5), we have

[f, g] = (f ∗τ g
∗)(e) = (g∗ ∗τ f)(e)

for all f, g ∈ Ffin(S(I)) and in view of Lemma 2.2 it remains true for all f, g ∈ `2(τ).
There are two natural ∗-representations of A(τ) acting on `2(τ), namely the left and

the right regular one:

λ0(a)f := (a ∗τ f) · χ, ρ0(b)f := (f ∗τ b
∗) · χ

for a, b ∈ A(τ), f ∈ `2(τ), where χ stands for the characteristic function of the set
S(Ifin). In particular, λ0(δi) = ρ0(δi) = 0 whenever i ∈ I \ Ifin.

We will study two corresponding ∗-subalgebras of B(`2(τ)), namely

L := λ0(A(τ)) and R := ρ0(A(τ)),

and the von Neumann algebras which are their commutants:

S := R′ = {A ∈ B(`2(τ)) : AB = BA for every B ∈ R},

T := L′ = {B ∈ B(`2(τ)) : AB = BA for every A ∈ L}.
The aim of this section is to show that every minimal L-invariant closed subspace of

`2(τ) is one-dimensional.

Lemma 2.1. If f, g ∈ `2(τ) then the function f ∗τ g is well defined. Moreover, for every
u ∈ S(I) there is a constant C(u) such that

|(f ∗τ g)(u)| ≤ C(u)‖f‖2 · ‖g‖2

for every f, g ∈ `2(τ).
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Proof. For u ∈ S(I) \ S(Ifin) we can put C(u) = 0. Fix u = i1 . . . im ∈ S(Ifin). Then

(f ∗τ g)(u) =
m∑

k=0

∑
j1...jn∈S(Ifin)

jn 6=ik,ik+1

f(i1 . . . ikjn . . . j1)g(j1 . . . jnik+1 . . . im)τ(j1 . . . jn)

+
m∑

k=1

∑
j1...jn∈S(Ifin)

jn 6=ik

f(i1 . . . ikjn . . . j1)g(j1 . . . jnikik+1 . . . im)τ(j1 . . . jn)(1− τik).

Therefore, putting c1(u) = max
{
|1− τik |τ

−1/2
ik

: k = 1, . . . ,m
}

, we get

|(f ∗τ g)(u)| ≤ 1√
τ(u)

m∑
k=0

∑
j1...jn∈S(Ifin)

jn 6=ik,ik+1

∣∣∣f(i1 . . . ikjn . . . j1)
√
τ(i1 . . . ikjn . . . j1)

×g(j1 . . . jnik+1 . . . im)
√
τ(j1 . . . jnik+1 . . . im)

∣∣∣
+

1√
τ(u)

m∑
k=1

∑
j1...jn∈S(Ifin)

jn 6=ik

|1− τik |√
τik

∣∣∣f(i1 . . . ikjn . . . j1)
√
τ(i1 . . . ikjn . . . j1)

×g(j1 . . . jnikik+1 . . . im)
√
τ(j1 . . . jnikik+1 . . . im)

∣∣∣
≤ 1√

τ(u)
‖f‖2 · ‖g‖2 +

c1(u)√
τ(u)

‖f‖2 · ‖g‖2,

which concludes the proof. �

Knowing that the map f 7→ f̃ =
∑

u∈S(I) f(u)µu (formula (4.2)) of A(τ) onto Ft(G)

preserves the `2-norm: ‖f̃‖`2(τ) = ‖f‖`2(G), we note that if τi ∈ {1, 1/2, 1/3, . . . } for
every i ∈ Ifin then one can take C(u) = τ−1(u) for u ∈ S(Ifin).

We will use the following facts:

Lemma 2.2.
1. If f, fn, g, gn ∈ `2(τ) and if ‖fn − f‖2 → 0, ‖gn − g‖2 → 0 then (fn ∗τ gn)(u) →

(f ∗τ g)(u) for every u ∈ S(I).
2. If f, g, h ∈ `2(τ) and if one of them has finite support then

(f ∗τ g) ∗τ h = f ∗τ (g ∗τ h),

in particular

[f ∗τ g, h
∗] = [f, h∗ ∗τ g

∗] = [g, f ∗ ∗τ h
∗].

Proof. For (1) we observe that

|fn ∗τ gn(u)− f ∗τ g(u)| ≤
∣∣(fn ∗τ (gn − g)

)
(u)

∣∣ +
∣∣((fn − f) ∗τ g

)
(u)

∣∣
≤ C(u)‖fn‖2 · ‖gn − g‖2 + C(u)‖fn − f‖2 · ‖g‖2.

To prove (2) assume that h ∈ Ffin(S(I)) and take sequences fn, gn ∈ Ffin(S(I))∩`2(τ)
such that ‖fn − f‖2 → 0, ‖gn − g‖2 → 0. Then for fixed u ∈ S(I) we have(

(fn ∗τ gn) ∗τ h
)
(u) =

(
fn ∗τ (gn ∗τ h)

)
(u).
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Since (fn ∗τ gn)(v) → (f ∗τ g)(v) for every v ∈ S(I) and h has finite support we have(
(fn ∗τ gn) ∗τ h

)
(u) →

(
(f ∗τ g) ∗τ h

)
(u).

We also have ‖gn ∗τ h− g ∗τ h‖2 → 0 so that part (1) implies that(
fn ∗τ (gn ∗τ h)

)
(u) →

(
f ∗τ (g ∗τ h)

)
(u).

The other cases can be proved similarly. �

Lemma 2.3. For a ∈ `2(τ) define operators λ0(a) and ρ0(a), with domains D(λ0(a))
and D(ρ0(a)), as the closure of the maps

Ffin(S(I)) 3 f 7→ a ∗τ f and Ffin(S(I)) 3 f 7→ f ∗τ a
∗

respectively. Then λ0(a
∗) ⊆ λ0(a)∗ and ρ0(a

∗) ⊆ ρ0(a)∗. Moreover, if g ∈ D(λ0(a)∗)
(resp. g1 ∈ D(ρ0(a)∗)) then λ0(a)∗g = a∗ ∗τ g (resp. ρ0(a)∗g1 = g1 ∗τ a).

Proof. First we note that in view of Lemma 2.1 the maps Ffin(S(I)) 3 f 7→ a ∗τ f and
Ffin(S(I)) 3 f 7→ f ∗τ a

∗ are closable.
Assume that (g, h) ∈ λ0(a

∗). Then there is a sequence gn ∈ Ffin(S(I)) such that
gn → g and a∗ ∗τ gn → h in `2(τ). Then, by Lemma 2.2, for f ∈ Ffin(S(I)) we have

[λ0(a)f, g] = lim
n→∞

[a ∗τ f, gn] = lim
n→∞

[f, a∗ ∗τ gn] = [f, h],

which means that (g, h) ∈ λ0(a)∗.
Now, if g ∈ D(λ0(a)∗) and λ0(a)∗g = h then, by definition of adjoint and by

Lemma 2.2,

[δu, h] = [λ0(a)δu, g] = [a ∗τ δu, g] = [δu, a
∗ ∗τ g],

which means that h = a∗ ∗τ g. �

Proposition 2.4.
1. If A ∈ S then there exists a function a ∈ `2(τ) such that A(f) = a∗τf for f ∈ `2(τ).

Similarly, if B ∈ T then there exists a function b ∈ `2(τ) such that B(f) = f ∗τ b
∗ for

f ∈ `2(τ).
2. S is the weak closure of L and T is the weak closure of R.
3. The map A 7→ Tr(A) := [Aδe, δe] is a faithful tracial state on S (and on T ).

Proof. 1) Fix A ∈ S and put a := A(δe). If f ∈ Ffin(S(I)) then by the definition of S
A(f) = A(δe ∗τ f) = A(ρ0(f

∗)(δe)) = ρ0(f
∗)(A(δe)) = (ρ0(f

∗))(a) = a ∗τ f.

In order to prove this equality for all f ∈ `2(τ) we define functionals φu(f) := (Af)(u),

u ∈ S(Ifin). Since τ(u)|f(u)|2 ≤ ‖f‖2
2 we have ‖φu‖ ≤ ‖A‖/

√
τ(u). Hence if fn ∈

Ffin(S(I)) and ‖fn − f‖2 → 0 then

(Af)(u) = lim(Afn)(u) = lim(a ∗τ fn)(u),

so a ∗τ f is a well defined function equal to Af .
2) Note that S is weakly closed and L ⊆ S, hence the weak closure of L is contained

in S. On the other hand, if A ∈ S, B ∈ T then AB = BA in view of the previous point
and Lemma 2.2. Therefore S ⊆ T ′ = L′′, which is equal to the weak closure of L by
the von Neumann theorem.

3) Take A,B ∈ S and put a = A(δe), b = B(δe) ∈ `2(τ). Then

Tr(AB) = [ABδe, δe] = [a∗τ (b∗τ δe), δe] = (a∗τ b)(e) = (b∗τa)(e) = [BAδe, δe] = Tr(BA).
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If 0 ≤ A ∈ S then A = C∗C for some C ∈ S, hence putting c = C(δe) we have

Tr(A) = [C∗Cδe, δe] = (c∗ ∗τ c)(e) = ‖c‖2
2,

which concludes the proof. �

From now on we fix a minimal nontrivial closed L-invariant subspace V ⊆ `2(τ) and
a minimal biinvariant (i.e. both L- and R-invariant) closed subspace W containing V .

Lemma 2.5. The subspace W can be decomposed into the orthogonal sum W =
⊕

α Vα,
with V as one of the summands and where each Vα is closed, L-invariant and the
restriction of λ0 to Vα is equivalent to the restriction of λ0 to V .

Proof. Let W0 be a maximal orthogonal sum of the form
⊕

α Vα, such that V is one of
the summands, Vα ⊆ W is λ0-invariant and the restriction of λ0 to Vα is equivalent to
the restriction of λ0 to V . Denote by P the orthogonal projection of `2(τ) onto W⊥

0 .
Since this subspace is L-invariant we have AP = PA for every A ∈ L.

Assume that W0 is not R invariant, i.e. there is b ∈ A(τ) and an index β such that
Vβ ∗τ b * W0. Define an operator B : Vβ → W⊥

0 by B(f) := P (f ∗τ b). Note that f ∗τ b,
and hence B(f), belongs to W and that AB(f) = BA(f) for f ∈ Vβ, A ∈ L. Indeed, if
A = λ0(a) then

AB(f) = AP (f ∗τ b) = PA(f ∗τ b) = P (a ∗τ f ∗τ b) = BA(f).

We claim that B is a multiple of an isometry Vβ → V ′ := B(Vβ). To see this take the

polar decomposition B = UD. By definition D =
√
B∗B. For a ∈ A(τ) and ξ ∈ Vβ

λ0(a)B∗Bξ = B∗λ0(a)Bξ = B∗Bλ0(a)ξ,

so by the Schur lemma B∗B, and hence D, is a nonzero scalar multiple of the identity.
Now U , defined by UDξ := Bξ for ξ ∈ Vβ, is obviously a unitary operator Vβ → V ′,
satisfying Uλ0(a)ξ = λ0(a)Uξ for a ∈ A(τ), ξ ∈ Vβ. Therefore V ′ can be added to the
sum ⊕αVα, which is a contradiction. �

Lemma 2.6. The subspace V has finite dimension.

Proof. Let LW = {A|W : A ∈ L}, SW = {A|W : A ∈ S}, LV = {A|V : A ∈ L} and
SV = {A|V : A ∈ S}. By the previous lemma LW

∼= LV , SW
∼= SV as ∗-algebras (cf.

A20 in the Appendix of [Di]) and by the Schur lemma combined with the von Neumann
theorem we have SV = B(V ).

For X ∈ SW we define an operator X̃ on `2(τ) by X̃ := XQ, where Q denotes the
orthogonal projection of `2(τ) onto W . Note that BX̃ = X̃B for any B ∈ R. Indeed, if
X = λ0(x)|W , B = ρ0(b), with x, b ∈ A(τ), then for f = f1 + f2 ∈ `2(τ), with f1 = Qf ,
we have

BX̃f = BXf1 = B(x ∗τ f1) = x ∗τ f1 ∗τ b
∗

and
X̃Bf = XQBf = XQBf = XBf1 = X(f1 ∗τ b

∗) = x ∗τ f1 ∗τ b
∗

because W is bi-invariant. Moreover X 7→ X̃ is a ∗-homomorphism of SW into S.
Therefore we can define a tracial state on SW

∼= B(V ) by T̃r(X) := Tr(X̃) (Tr was
defined in Proposition 2.4). But if dimV is infinite then there is no tracial state on B(V )
because we can take an orthogonal decomposition V = V1 ⊕ V2 and partial isometries
C1, C2 of V onto V1, V2 respectively such that C1C

∗
1 +C2C

∗
2 = Id and C∗

1C1+C∗
2C2 = 2Id,

which excludes existence of a tracial state on B(V ) for infinite dimensional V . �
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Lemma 2.7. For a function a ∈ `2(τ) the following conditions are equivalent:

1. λ0(a) is a bounded operator,
2. λ0(a

∗) is a bounded operator,
3. ρ0(a) is a bounded operator,
4. ρ0(a

∗) is a bounded operator,
5. a = A(δe) for some A ∈ S,
6. a∗ = B(δe) for some B ∈ T .

Proof. In view of Lemma 2.3 we have (1) ⇔ (2) and (3) ⇔ (4) and by the first part
of Proposition 2.4 we have (1) ⇔ (5) and (3) ⇔ (6). To conclude, we note that
‖a ∗τ f‖2 = ‖f ∗ ∗τ a

∗‖2 for f ∈ `2(τ), which means that (1) ⇔ (3). �

Definition 2.8. A function a ∈ `2(τ) is said to be moderated if satisfies conditions of
the previous lemma. Note that moderated functions constitute a ∗-algebra and if a, b
are moderated then λ0(a ∗τ b) = λ0(a)λ0(b) and λ0(a)∗ = λ0(a

∗).

Lemma 2.9. Every function f ∈ V is moderated.

Proof. Let P denotes the orthogonal projection of `2(τ) onto V . Since P ∈ L′ = T we
have P (g) = g ∗τ k for some moderated function k such that k = k ∗τ k = k∗. Hence if
g is a moderated function then so is P (g) = g ∗τ k. Moderated functions form a dense
linear subspace M of `2(τ), hence M∩ V = P (M) is a dense subspace of V . But V
has finite dimension, which implies that M∩ V = V . �

Lemma 2.10. Suppose that f, g ∈ V and set φ(u) = [λ0(δu)f, g]. Then there is f0 ∈
`2(τ) such that φ(u) = f0(u)τ(u) for every u ∈ S(I).

Proof. By Lemma 2.2 we have

φ(u) = [λ0(δu)f, g] =
(
δu ∗τ (f ∗τ g

∗)
)
(e) = (f ∗τ g

∗)(u∗) · τ(u).

By the previous lemma f and g are moderated, hence so is f ∗τ g
∗, therefore f ∗τ g

∗ ∈
`2(τ). �

Now we are able to prove the main result of this section.

Theorem 2.11. If V is an L-invariant minimal nontrivial subspace of `2(τ) then
dimV = 1.

Proof. We know already from Lemma 2.6 that dimV <∞. It is sufficient to prove that
all the operators λ0(δi)|V , i ∈ I, commute.

Assume that |Ifin| ≥ 2 and fix I0 ⊆ Ifin with |I0| = 2, say I0 = {1, 2}. Denote by A0

the unital ∗-subalgebra of A(τ) generated by {δ1, δ2}. Set also L0 := {λ0(a) : a ∈ A0}.
Now decompose V into an orthogonal direct sum of minimal L0-invariant subspaces:

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs.

The ∗-algebra A0 is isomorphic to the convolution ∗-algebra of finitely supported func-
tions on the dihedral group Z2 ∗ Z2. This group can be represented as the semidirect
product Z2 n Z, which implies that dimVr ≤ 2 for r ≤ s (see Lemma 7.1). We only
need to show that all Vr have dimension one.

Suppose that dimVr = 2 for some r ≤ s and denote Ai := λ0(δi)|Vr , i = 1, 2. Then
we have Ai = (1 + τi)Pi − τiId, where Pi is an orthogonal projection on Vr. Due to
minimality of Vr both projections have one-dimensional images. Therefore detAi = −τi
and det(A1A2) = τ1τ2. Hence the operator A1A2 has an eigenvalue γ0 satisfying |γ0| ≥
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√
τ1τ2. Now take the corresponding unit eigenvector ξ0 ∈ Vr and consider the function

φ on S(I) given by: φ(u) = [λ0(δu)ξ0, ξ0]. Then for u = 1212 . . . 12, with |u| = 2m, we
have

φ(u) =
∣∣[(A1A2)

mξ0, ξ0]
∣∣ =

∣∣γm
0

∣∣ ≥ (
√
τ1τ2)

m
,

which implies that the function S(I0) 3 u 7→ φ(u)/τ(u) does not belong to `2(S(I0), τ).
This contradicts the last lemma and therefore proves that dimVr = 1 for every r ≤ s.
Therefore the operators λ0(δ1)|V and λ0(δ2)|V do commute. �

Let us now describe one dimensional λ0-invariant subspaces of `2(τ) and the corre-
sponding τ -positive definite functions.

For i ∈ I we have the partition S(I) = Si∪̇iSi, where Si was defined in (1.2), and the
orthogonal decomposition `2(τ) = Mi ⊕Ni, where

Mi = {f1 ∈ `2(τ) : f1(u) = τif1(iu) for every u ∈ Si},
Ni = {f2 ∈ `2(τ) : f2(u) + f2(iu) = 0 for every u ∈ Si}.

Indeed, for f1 ∈Mi, f2 ∈ Ni we have

[f1, f2] =
∑

u∈S(I)

f1(u)f2(u)τ(u) =
∑
u∈Si

(
f1(u)f2(u)τ(u) + f1(iu)f2(iu)τ(iu)

)
= 0.

On the other hand, every f ∈ `2(τ) can be decomposed as f = f1 +f2, f1 ∈Mi, f2 ∈ Ni

where for u ∈ Si

f1(u) =
τi

1 + τi

(
f(u) + f(iu)

)
,

f1(iu) =
1

1 + τi

(
f(u) + f(iu)

)
,

f2(u) =
1

1 + τi

(
f(u)− τif(iu)

)
,

f2(iu) =
1

1 + τi

(
τif(iu)− f(u)

)
.

Consider the operator Ai := λ0(δi) on `2(τ). For f =
∑

u∈S(I) f(u)δu we have

δi ∗τ f =
∑
u∈Si

(f(u)δiu + (1− τi)f(iu)δiu + τif(iu)δu) .

Therefore, if f ∈Mi then Aif = f while for f ∈ Ni we have Aif = −τif .
If a function f : S(I) → C, supported on S(Ifin), is an eigenfunction for every Ai,

i ∈ I, then, up to a constant, f(i1i2 . . . in) = f(i1)f(i2) . . . f(in), where f(i) ∈ {τ−1
i ,−1}

for i ∈ Ifin. In view of Lemma 1.5 in [FS] such a function belongs to `2(τ) if and only if∑
i∈I1

1

1 + τi
+

∑
i∈I2

τi
1 + τi

< 1,

where I1 := {i ∈ Ifin|f(i) = τ−1
i }, I2 := {i ∈ Ifin|f(i) = −1}. If this holds then the

corresponding τ -positive definite function

φ(i1i2 . . . im) = [Ai1Ai2 . . . Aimf, f ]

is, up to a constant, the character of A(τ) given by

φ(i1i2 . . . im) = φ(i1)φ(i2) . . . φ(im),
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where

φ(i) =

{
1 if f(i) = τ−1

i ,
−τi if f(i) = −1.

For example, the trivial representation of A(τ), corresponding to the character φ ≡ 1,
is contained in the regular representation if and only if

∑
i∈I 1/(1 + τi) < 1.

Now we make the following elementary observation:

Lemma 2.12. Suppose that for every i ∈ I we have 0 ≤ α0
i ≤ α1

i ≤ 1, α0
i + α1

i = 1 and
that

∑
i∈I α

εi
i < 1 for some ε : I → {0, 1}. Then either εi = 0 for all i ∈ I or there is

j ∈ I such that α0
j > α0

i for every i ∈ I \ {j}, εj = 1 and εi = 0 for all i 6= j. �

Putting α0
i := min{1/(1 + τi), τi/(1 + τi)} we obtain

Corollary 2.13. The space `2(τ) contains at most two one-dimensional L-invariant
subspaces. �

The next result will be needed later on.

Theorem 2.14. Assume that a ∈ `2(τ) is such that the function u 7→ a(u)τ(u) is τ -
positive definite. Then there is c = c∗ ∈ `2(τ) such that a = c ∗τ c and c · τ is τ -positive
definite. Moreover, the GNS representation related to a · τ is contained in λ0.

The proof, similarly as for groups (see [Di]), is based on the following lemmas.

Lemma 2.15. Assume that a is a moderated function. Then the operator λ0(a) is
nonnegative if and only if the function u 7→ a(u)τ(u) is τ -positive definite.

Proof. For f ∈ Ffin(S(I)) we have

[λ0(a)f, f ] = (a ∗τ (f ∗τ f
∗))(e) =

∑
u∈S(I)

a(u)(f ∗τ f
∗)(u)τ(u) = 〈a · τ, f ∗τ f

∗〉. �

Lemma 2.16. Assume that a, b are moderated functions such that a ∗τ b = b ∗τ a and
0 ≤ λ0(a) ≤ λ0(b). Then

‖b− a‖2
2 ≤ ‖b‖2

2 − ‖a‖2
2.

Proof. Put c = b− a. Since the operator λ0(a ∗τ c) = λ0(a)λ0(c) is nonnegative we have
[a, c] = (a ∗τ c)(e) ≥ 0, so [a, a] ≤ [a, a] + [a, c] = [a, b] which gives

‖b− a‖2
2 = ‖b‖2

2 + ‖a‖2
2 − 2[a, b] ≤ ‖b‖2

2 − ‖a‖2
2. �

Lemma 2.17. Assume that a1, a2, . . . are pairwise commuting moderated functions such
that

0 ≤ λ0(a1) ≤ λ0(a2) ≤ . . .

and sup ‖an‖2 <∞. Then there is a ∈ `2(τ) such that ‖a− an‖2 → 0.

Proof. In view of the previous lemma the sequence ‖an‖2 is increasing and an is a Cauchy
sequence in `2(τ). �

Proof of Theorem 2.14. If a is moderated then the proof goes as in Theorem 13.8.6 in
[Di]. For the general case let T denote the Friedrichs extension of the nonnegative
operator ρ0(a) = ρ0(a

∗). Since the operators

Ui := λ0

(
2

1 + τi
δi −

1− τi
1 + τi

δe

)
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are unitary we note that (cf. Lemma 13.8.3 in [Di]):
i. UiT = TUi for i ∈ I and therefore λ0(δu)T = Tλ0(δu) for u ∈ S(I),
ii. Th = h ∗τ a for every h in the domain of T .

(The second statement holds by Lemma 2.3 as T ⊆ λ0(a)∗.) Take the spectral resolution
T =

∫∞
0
ζdEζ of T . Then the projections Eζ commute with all λ0(δu), u ∈ S(I). Put

aζ := Eζa ∈ `2(τ). For g ∈ A(τ), u ∈ S(I) we have[
g ∗τ a

∗
ζ , δu

]
= [g, δu ∗τ aζ ] = [g, δu ∗τ Eζa]

= [g, Eζ(δu ∗τ a)] = [Eζg, δu ∗τ a] = [Eζg ∗τ a
∗, δu] .

This means that

g ∗τ a
∗
ζ = (Eζg) ∗τ a

∗ = (Eζg) ∗τ a = TEζg,

which implies that a∗ζ is moderated, a∗ζ = aζ and a · τ is τ -positive definite. The rest of
the proof goes as for 13.8.6 in [Di].

For the second part we write

[λ0(δu)c, c] = ((δu ∗τ c) ∗τ c)(e) = (δu ∗τ (c ∗τ c))(e) = (δu ∗τ a)(e) = a(u) · τ(u). �

We conclude this section with two propositions which will not be used in the sequel.

Proposition 2.18. Assume that a, b, c ∈ `2(τ).
1. If a is moderated and b ∗τ c ∈ `2(τ) then a ∗τ (b ∗τ c) = (a ∗τ b) ∗τ c.
2. If b is moderated then a ∗τ (b ∗τ c) = (a ∗τ b) ∗τ c.
3. If c is moderated and a ∗τ b ∈ `2(τ) then a ∗τ (b ∗τ c) = (a ∗τ b) ∗τ c.

Proof. Assume that a is moderated and b ∗τ c ∈ `2(τ). Then there is a sequence am ∈
Ffin(S(I)) such that ‖λ0(am)‖ ≤ ‖λ0(a)‖ and λ0(am) → λ0(a) in the weak operator
topology. In view of the Mazur–Orlicz theorem we can assume that λ0(am) converges
to λ0(a) in the strong operator topology. Therefore

‖am ∗τ (b ∗τ c)− a ∗τ (b ∗τ c)‖2 → 0,

which implies the pointwise convergence. We have also ‖am ∗τ b− a ∗τ b‖2 → 0, which,
by Lemma 2.2.1, implies ((am ∗τ b)∗τ c)(u) → ((a∗τ b)∗τ c)(u) for every u ∈ S(I). Since,
by Lemma 2.2.2, (am ∗τ b) ∗τ c = am ∗τ (b ∗τ c), we get the first statement. The third
one can be proved in a similar way.

Now assume that b is moderated. Similarly as before we can take a sequence bn ∈
Ffin(S(I)) such that λ0(bn) → λ0(b) in the strong operator topology. Appealing to
the Mazur–Orlicz theorem again we can also assume that ρ0(bn) → ρ0(b) in the strong
operator topology. Therefore ‖a ∗τ bn − a ∗τ b‖2 → 0 and ‖bn ∗τ c− b ∗τ c‖2 → 0. Now
we can conclude by applying Lemma 2.2. �

Proposition 2.19. Assume that a, c ∈ `2(τ).
If a is moderated then λ0(a)ρ0(c) ⊆ ρ0(c)λ0(a) and λ0(a)ρ0(c)

∗ ⊆ ρ0(c)
∗λ0(a).

If c is moderated then ρ0(c)λ0(a) ⊆ λ0(a)ρ0(c) and ρ0(c)λ0(a)∗ ⊆ λ0(a)∗ρ0(c).

Proof. Suppose that a is moderated and b ∈ D(ρ0(c)). Then ρ0(c)b = b∗τc
∗, λ0(a)ρ0(c)b =

a∗τ (b∗τ c
∗) (Lemma 2.3) and, by definition of ρ0(c), there is a sequence bn ∈ Ffin(S(I))

such that ‖bn − b‖2 → 0 and ‖bn ∗τ c− b ∗τ c‖2 → 0. Take a sequence am ∈ Ffin(S(I))
as in the proof of Proposition 2.18. Then

am ∗τ bn → am ∗τ b,



14 WALDEMAR HEBISCH AND WOJCIECH M LOTKOWSKI

as n→∞, in `2(τ) for every m and

(am ∗τ bn) ∗τ c = am ∗τ (bn ∗τ c) → am ∗τ (b ∗τ c) = (am ∗τ b) ∗τ c

in `2(τ), which means that am∗τ b ∈ D(ρ0(c)) and ρ0(c)(am∗τ b) = (am∗τ b)∗τ c for every
m. Since λ0(am) → λ0(a) in the strong operator topology we have ‖am∗τ b−a∗τ b‖2 → 0
and, by Proposition 2.18,

(am ∗τ b) ∗τ c = am ∗τ (b ∗τ c) → a ∗τ (b ∗τ c) = (a ∗τ b) ∗τ c

in `2(τ). Therefore a ∗τ b ∈ D(ρ0(c)) and

ρ0(c)λ0(a)b = (a ∗τ b) ∗τ c = a ∗τ (b ∗τ c) = λ0(a)ρ0(c)b.

For the second inclusion we note that λ0(a), as an element of the von Neumann
algebra S, the weak closure of λ0(A(τ)), can be expressed as λ0(a) =

∑4
k=1 αkUk,

where Uk are unitary elements of S. Then Uk = λ0(uk) for moderated uk ∈ `2(τ)
and hence Ukρ0(c) ⊆ ρ0(c)Uk. Assume that f ∈ D(ρ0(c)Uk), which means that g :=
Ukf ∈ D(ρ0(c)). Since U−1

k = λ0(u
∗
k) we also have U−1

k ρ0(c) ⊆ ρ0(c)U
−1
k , which implies

U−1
k g = f ∈ D(ρ0(c)). Therefore Ukρ0(c)

∗ = ρ0(c)
∗Uk. Multiplying both sides by αk and

taking the sum
∑4

k=1 remains unchanged the domain on the left side, but can enlarge
that on the right side. �

3. Representations weakly contained in the regular one

Let π, σ be ∗-representations of a ∗-algebra A. Then π is said to be wekly contained
in σ if ‖π(a)‖ ≤ ‖σ(a)‖ holds for every a ∈ A. This is equivalent to say that ker(σ) ⊆
ker(π), where ker(π) denotes the kernel of the extension of π to the enveloping C∗-
algebra of A.

Following ideas of Haagerup [Ha] we are now going to describe those ∗-representations
of A(τ) which are weakly contained in the regular representation λ0.

Theorem 3.1. Let (π0,H0) be a ∗-representation of A(τ).
1. If, for every ξ ∈ H0 and 0 < r < 1, the function

S(I) 3 u 7→ [π0(δu)ξ, ξ] · r|u|

can be expressed as f0 · τ for some f0 ∈ `2(τ) then π0 is weakly contained in λ0.
2. Assume that there are constants 0 < c1 ≤ c2 such that c1 ≤ τi ≤ c2 for every

i ∈ Ifin. If π0 is weakly contained in the regular representation of A(τ) then for every
ζ, η ∈ H0 and 0 < r < 1 the function

S(I) 3 u 7→ [π0(δu)ζ, η] · r|u|

can be expressed as f0 · τ for some f0 ∈ `2(τ).

Set Em := {u ∈ S(I) : |u| = m} and let χm denote the characteristic function of Em.
First we prove two lemmas.

Lemma 3.2. Let f and g be two functions in Ffin(S(I)) with support in Ek and El

respectively. Then

‖(f ∗τ g) · χm‖2 ≤ ‖f‖2 · ‖g‖2

if |k − l| ≤ m ≤ k + l and k + l −m is even. Also,

‖(f ∗τ g) · χm‖2 ≤
√
C‖f‖2 · ‖g‖2
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if |k − l| ≤ m ≤ k + l and k + l −m is odd, where C := sup
{
|1− τi|2 · τ−1

i : i ∈ Ifin
}
.

We have ‖(f ∗τ g) · χm‖2 = 0 for all other values of m.

Note that the constant C is finite if and only if inf{τi : i ∈ Ifin} > 0 and sup{τi : i ∈
Ifin} <∞.

Proof. Writing uv ∈ S(I) we will mean that the concatenation of u and v is in S(I).
1) If m = k + l then

‖(f ∗τ g) · χm‖2
2 =

∑
|u1|=k, |u2|=l

u1u2∈S(I)

|f(u1)|2 · |g(u2)|2τ(u1)τ(u2)

≤
∑

|u1|=k, |u2|=l

|f(u1)|2τ(u1)|g(u2)|2τ(u2) = ‖f‖2
2 · ‖g‖2

2.

2) Now assume that m = k + l − 2p and define two auxiliary functions:

f ′(w) :=

 ∑
|v|=p,

wv∈S(I)

|f(wv)|2τ(v)


1/2

if |w| = k − p, and f ′(w) := 0 otherwise,

g′(w) :=

 ∑
|z|=p,

zw∈S(I)

|g(zw)|2τ(z)


1/2

if |w| = l − p, and g′(w) := 0 otherwise. Then we have

‖f ′‖2
2 =

∑
|w|=k−p

 ∑
|v|=p,

wv∈S(I)

|f(wv)|2τ(v)

 τ(w) =
∑
|z|=k

|f(z)|2τ(z) = ‖f‖2
2

and similarly ‖g′‖2 = ‖g‖2.
Now fix u = i1 . . . im and put u1 := i1 . . . ik−p, u2 := ik−p+1 . . . im. Using Cauchy

inequality we get

|(f ∗τ g)(u)| ≤
∑
|v|=p,

u1v∈S(I),
v∗u2∈S(I)

|f(u1v)g(v∗u2)τ(v)| ≤ f ′(u1)g
′(u2) = (f ′ ∗τ g

′)(u).

Therefore, applying the previous point to f ′ and g′,

‖(f ∗τ g) · χm‖2 ≤ ‖(f ′ ∗τ g
′) · χm‖2 ≤ ‖f ′‖2 · ‖g′‖2 = ‖f‖2 · ‖g‖2.
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3) Assume that m = k + l − 1. If |u| = m then we can write u = u1iu2, with
|u1| = k − 1, |u2| = l − 1 and we have (f ∗τ g)(u) = f(u1i)g(iu2)(1− τi). Therefore

‖(f ∗τ g) · χm‖2
2 =

∑
i1...im∈S(I)

|f(i1 . . . ik)|2|g(ik . . . im)|2(1− τik)2τ(i1 . . . im)

=
∑

i1...im∈S(I)

|f(i1 . . . ik)|2τ(i1 . . . ik)|g(ik . . . im)|2τ(ik . . . im)
(1− τik)2

τik

≤ C‖f‖2
2 · ‖g‖2

2.

4) Finally let m = k + l + 1− 2p, p ≥ 1. Define

f ′(w) :=

 ∑
|v|=p

wv∈S(I)

|f(wv)|2τ(v)


1/2

if |w| = k + 1− p and f ′(w) = 0 otherwise, and similarly

g′(w) :=

 ∑
|z|=p

zw∈S(I)

|g(zw)|2τ(z)


1/2

if |w| = l + 1− p and g′(w) = 0 otherwise. Then we have

‖f ′‖2
2 =

∑
|w|=k+1−p

 ∑
|v|=p

wv∈S(I)

|f(wv)|2τ(v)

 τ(w) = ‖f‖2
2

and similarly ‖g′‖2 = ‖g‖2.
Now fix u = u1iu2 ∈ S(I), with |u1| = k − p, |u2| = l − p. Then

|(f ∗τ g)(u)| ≤
∑
|v|=p

u1iv∈S(I)
v∗iu2∈S(I)

|f(u1iv)g(v∗iu2)τ(v)(1− τi)|

≤

 ∑
|v|=p

u1iv∈S(I)

|f(u1iv)|2τ(v)


1/2  ∑

|v|=p
v∗iu2∈S(I)

|g(v∗iu2)|2τ(v)


1/2

|1− τi|

= |f ′(u1i)g
′(iu2)(1− τi)| = |(f ′ ∗τ g

′)(u)|.
Now from the previous point we get

‖(f ∗τ g) · χm‖2 ≤ ‖(f ′ ∗τ g
′) · χm‖2 ≤

√
C‖f‖2 · ‖g‖2. �

Lemma 3.3. Let f be a function supported on Ek. Then

‖λ0(f)‖2 ≤
√
C + 1 (2k + 1)‖f‖2,

where, as before, C = sup
{
|1− τi|2 · τ−1

i : i ∈ Ifin
}
.
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Proof. Fix g ∈ `2(τ) and put gl := g ·χl. Then, using the previous lemma and Cauchy’s
inequality, we have

‖(f ∗τ g) · χm‖2 ≤
∞∑
l=0

‖(f ∗τ gl) · χm‖2

≤ ‖f‖2

min{m,k}∑
r=0

‖gm+k−2r‖2 +
√
C

min{m,k}∑
r=1

‖gm+k+1−2r‖2


≤ ‖f‖2

2min{m,k}∑
r=0

‖gm+k−r‖2
2

1/2 min{m,k}∑
r=0

1 +

min{m,k}∑
r=1

C

1/2

≤
(
(k + 1)(C + 1)

)1/2‖f‖2

2min{m,k}∑
r=0

‖gm+k−r‖2
2

1/2

.

Therefore

‖f ∗τ g‖2
2 ≤

∞∑
m=0

‖(f ∗τ g) · χm‖2
2

≤ (C + 1)(k + 1)‖f‖2
2

∞∑
m=0

2min{m,k}∑
r=0

‖gm+k−r‖2
2


≤ (C + 1)(k + 1)‖f‖2

2 · (2k + 1)
∞∑

s=0

‖gs‖2
2

= (C + 1)(k + 1)(2k + 1)‖f‖2
2 · ‖g‖2

2,

and this concludes the proof. �

Proof of Theorem 3.1. Suppose that for every ξ ∈ H0 and 0 < r < 1 there is fr ∈ `2(τ)
such that

φr(u) := [π0(δu)ξ, ξ] · r|u| = fr(u) · τ(u)

then, by Corollary 1.7 and 1.8, φr is a τ -positive definite function (as pointwise product
of a τ - and a 0-positive definite function) and, by Theorem 2.14, is a coefficient of the
regular representation λ0. Therefore, letting r → 1, we see that the function u 7→
[π0(δu)ξ, ξ] is a pointwise limit of coefficients of λ0 which proves that π0 is weakly
contained in λ0.

Now assume that (π0,H0) is weakly contained in λ0. Then in particular π0(δi) = 0
whenever i ∈ I \ Ifin, so we can assume that I = Ifin. Fix ζ, η ∈ H0 and put g(u) :=
[π0(δu)ζ, η]. For a function f ∈ `2(τ) supported on Ek we have

[π0(f)ζ, η] =
∑
|u|=k

f(u)g(u) =
∑
|u|=k

f(u)
g(u)

τ(u)
τ(u),

and, by Lemma 3.2,∣∣[π0(f)ζ, η]
∣∣ ≤ ‖λ0(f)‖ ‖ζ‖ ‖η‖ ≤

√
C + 1 (2k + 1)‖f‖2 ‖ζ‖ ‖η‖.
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This means that ∑
|u|=k

∣∣∣∣g(u)

τ(u)

∣∣∣∣2 τ(u) ≤ (C + 1)(2k + 1)2‖ζ‖2 ‖η‖2.

Hence, for every 0 < r < 1 we have∑
u∈S(I)

∣∣∣∣g(u)

τ(u)

∣∣∣∣2 r2|u|τ(u) <∞. �

4. Type-dependent functions on the free product group

Let {Gi}i∈I be a family of discrete nontrivial groups and let G = ∗i∈IGi be their free
product (see [Se]). Every element x of G can be uniquely represented as a reduced word:

x = g1g2 . . . gm, m ≥ 0, gk ∈ Gik \ {e} and ik 6= ik+1 for k < m. (4.1)

For such an element we define its length |x| := m and type as the formal word t(x) :=
i1i2 . . . im ∈ S(I). We are particularly interested in type-dependent functions on G, i.e.
those which are compositions of the form φ ◦ t.

If all Gi’s are finite then the family Ft(G) of finitely supported type dependent func-
tions is isomorphic to A(τ), with τi = (|Gi| − 1)−1. Indeed, for u ∈ S(I) put

µu(x) :=

{
τ(u) if t(x) = u,
0 otherwise.

(4.2)

Then the map f 7→
∑

u∈S(I) f(u)µu is an isomorphism of A(τ) onto Ft(G), which can

be extended to an isometric embedding of `2(τ) into `2(G).
Now we present an alternative proof of Theorem 3.2 in [M1], which characterizes the

class of positive definite type-dependent functions.

Theorem 4.1. Let {Gi}i∈I be a family of groups, G = ∗i∈IGi, and let φ be a complex
function on S(I). The type-dependent function φ ◦ t is positive definite on G (resp.
lies in the Fourier-Stielties algebra B(G)) if and only if φ is τ -positive definite on S(I)
(resp. φ lies in B(τ)), where τi = (|Gi| − 1)−1.

If all Gi’s are finite then the part concerning the Fourier-Stielties algebra could be
derived from Theorem 3.2 and Corollary 3.3 in [M1].

Proof. During the proof we will regard S(I) as a unital ∗-subgroup generated by ele-
ments i ∈ I which satisfy ii = i∗ = i.

Suppose that φ ◦ t ∈ B(G), then φ ◦ t can be represented as φ(t(x)) = [π(x)ζ, η] for a
unitary representation (π,H) of G and vectors ζ, η ∈ H (with ζ = η when φ◦t is positive
definite). We may assume that the vectors ζ and η are both cyclic (cf. Proposition 1 in
[Sz]). If Gi is finite then we put

Pi =
1

|Gi|
∑
g∈Gi

π(g) and Ai =
1

|Gi| − 1

∑
g∈Gi\{e}

π(g).

Then we have PiPi = P ∗
i = Pi and Ai = (1 + τi)Pi − τiId.
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Now, suppose that Gi is infinite and let {gn,i}∞n=1 be a fixed sequence of distinct
elements of Gi \ {e}. For any natural number N we define an operator TN,i on H by

TN,i =
1

N

N∑
n=1

π(gn,i).

For fixed x, y ∈ G we have t(y−1gn,ix) = t(y)∗it(x) (product in the semigroup S(I)) for
all but at most two n’s. Therefore

[TN,iπ(x)ζ, π(y)η] =
1

N

N∑
n=1

[π(y−1gn,ix)ζ, η]

=
1

N

N∑
n=1

φ(t(y−1gn,ix)) → φ(t(y)∗it(x))

as N →∞. Since the vectors ζ, η are both cyclic and TN,i’s are all contractions, there
exists a weak limit Ai of the sequence TN,i satisfying

[Aiπ(x)ζ, π(y)η] = φ(t(y)∗it(x)), x, y ∈ G.

Note that A∗i = Ai. Indeed

lim
N→∞

[T ∗N,iπ(x)ζ, π(y)η] = lim
N→∞

1

N

N∑
n=1

φ(t(y−1g−1
n,ix)) = φ(t(y)∗it(x)).

Next we show that AiAi = Ai. Consider the operator AiTN,i. For any x, y ∈ G

[AiTN,iπ(x)ζ, π(y)η] =
1

N

N∑
n=1

[Aiπ(gn,ix)ζ, π(y)η]

=
1

N

N∑
n=1

φ(t(y)∗it(gn,ix)) = φ(t(y)∗it(x))

(because it(gx) = it(x) if g ∈ Gi) hence AiTN,i = Ai, which implies AiAi = Ai. In this
way we have defined the operator Ai for every i ∈ I.

Now let u = i1i2 . . . im be a fixed element in S(I). For any g2 ∈ Gi2 \ {e}, . . . , gm ∈
Gim \ {e} we have

φ(u) =

 1

|Gi1| − 1

∑
g∈Gi1

\{e}

π(g)π(g2g3 . . . gm)ζ, η


= [Ai1π(g2g3 . . . gm)ζ, η] = [π(g2g3 . . . gm)ζ, Ai1η]

if Gi1 is finite and

φ(u) = [TN,i1π(g2g3 . . . gm)ζ, η]

= [Ai1π(g2g3 . . . gm)ζ, η] = [π(g2g3 . . . gm)ζ, Ai1η] ,

for arbitrary N , if Gi1 is infinite. Continuing in this fashion we finally obtain

φ(u) = [ζ, Aim . . . Ai2Ai1η] = [Ai1Ai2 . . . Aimζ, η]

and, in view of Proposition 1.5, one part of the theorem is proved.
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Now assume that φ is of the form

φ(i1i2 . . . im) = [Ai1Ai2 . . . Aimζ, η] ,

where Ai = (1 + τi)Pi − τiId, {Pi}i∈I is a family of orthogonal projections on a Hilbert
space H0 and ζ, η ∈ H0.

Fix i ∈ I. We show that the operator-valued function

Ui(g) =

{
Id if g = e,
Ai otherwise

is positive definite on the group Gi. Let f : Gi → H0 be a finitely supported function.
We can decompose f as f = f1+f2 in such a way that f1 : Gi → ImPi, f2 : Gi → KerPi.
Then by the definition of τi we have∑

g,h∈Gi

[
Ui(h

−1g)f(g), f(h)
]

=
∑

g,h∈Gi

[f1(g), f1(h)] +
∑
g∈Gi

[f2(g), f2(g)]− τi
∑
g 6=h

[f2(g), f2(h)]

=

∥∥∥∥∥∑
g∈Gi

f1(g)

∥∥∥∥∥
2

+


∑
g∈Gi

‖f2(g)‖2 if Gi is infinite,

(τi/2)
∑

g 6=h ‖f2(g)− f2(h)‖2 otherwise.

Hence Ui is positive definite on Gi. Now let us consider the function U : G→ B(H0):

U(x) = Ai1Ai2 . . . Aim if t(x) = i1i2 . . . im.

By Theorem 7.1 in [B2] (which will be reproved in the next section) U is positive definite
on G = ∗i∈IGi, which implies that there exists a unitary representation π : G→ B(H)
such that H0 ⊆ H and for any x ∈ G we have U(x) = P0π(x)|H0 , where P0 denotes the
orthogonal projection of H onto H0. This implies that φ(t(x)) = [U(x)ζ, η] = [π(x)ζ, η],
which concludes the proof. �

5. The induced representation of the free product group

Let H0 be a fixed Hilbert space, G = ∗i∈IGi be the free product of groups and assume
that for every i ∈ I we are given a representation πi : Gi → B(H0 ⊕ Hi) (we do not
require that πi are unitary). We are going to construct a representation π of G, acting
on a Hilbert space H which contains all spaces Hi, i ∈ I ∪{0}, such that for every i ∈ I
and g ∈ Gi the restriction of π(g) to H0 ⊕Hi coincides with πi(g).

Construction of such kind were studied by Avitzour [Av], Voiculescu [Vo, VDN], an-
other one was due to Bożejko [B1]. Then Bożejko, Leinert and Speicher [BS, BLS]
generalized the previous ones by introducing conditionally free product of representa-
tions. In all these constructions the common subspace H0 was one-dimensional. Further
generalizations can be found in [M3, M4, M5].

First we define for each w ∈ G a Hilbert space Hw by putting

He = H0 ⊕
(
⊕
i∈I
Hi

)
and, for w 6= e,

Hw = ⊕
j∈I\{i(w)}

Hj,
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where for an element x 6= e as in (4.1) we put i(x) := im, the type of the last letter of
x. Now we define

H = ⊕
w∈G

Hw =
{
f : G→ He

∣∣∣ f(w) ∈ Hw for w ∈ G and
∑
w∈G

‖f(w)‖2 <∞
}
.

For every w ∈ G and ξ ∈ Hw we denote by
(
w, ξ

)
the function in H which has the value

ξ at w and 0 elsewhere (i.e. (w, ξ) := δw ⊗ ξ). Then δw ⊗ Hw can be identified with
the space of all functions in H vanishing outside {w}. We shall also identify H0 and
Hi with the appropriate subspaces of δe ⊗He. If i ∈ I ∪ {0} then Qi will stand for the
orthogonal projection of He onto Hi.

Fix i ∈ I. First we define π only on Gi putting π(e) = Id and for g ∈ Gi \ {e}

(π(g)f)(w) =

 f(g−1) + πi(g)(Q0 +Qi)f(e) if w = e,
(Id−Q0 −Qi)f(e) if w = g,
f(g−1w) otherwise,

(5.1.a)

or, in terms of the vectors
(
w, ξ

)
,

π(g)
(
w, ξ

)
=

{ (
e, πi(g)(Q0 +Qi)ξ

)
+

(
g, (Id−Q0 −Qi)ξ

)
if w = e,(

gw, ξ
)

otherwise.
(5.1.b)

Then π is a representation of Gi which coincides with πi on H0⊕Hi and is a multiple of
the left regular representation on the orthogonal complement of H0⊕Hi. In particular,
if πi is unitary then so is π.

Having defined π(g) for all g ∈ Gi and i ∈ I we extend this to a representation all of
G by putting

π(x) = π(g1)π(g2) . . . π(gm) (5.1.c)

for x as in (4.1). Thus we obtained a representation (π,H) of G = ∗i∈IGi which we
denote by ∗i∈Iπi. Note that if all πi’s are unitary then so is π.

Lemma 5.1. Suppose that x 6= e is as in (4.1) and ξ ∈ He. Then

π(x)
(
e, ξ

)
=

(
e, πi1(g1)Q0πi2(g2)Q0 . . . Q0πim−1(gm−1)Q0πim(gm)(Q0 +Qim)ξ

)
+

m−1∑
k=1

(
g1g2 . . . gk, Qik+1

πik+1
(gk+1)Q0πik+2

(gk+2)Q0 . . . Q0πim(gm)(Q0 +Qim)ξ
)

+
(
g1g2 . . . gm, (Id−Q0 −Qim)ξ

)
.

Proof. We apply induction on the length of x. If |x| = 1 then the formula is a con-
sequence of the definition. Assume that it holds for x as in (4.1) and take a word of
the form g0x, where g0 ∈ Gi0 \ {e}, i0 6= i1. Using the fact that if η ∈ H0 ⊕ Hi1 then
(Q0 +Qi0)η = Q0η and (Id−Q0 −Qi0)η = Qi1η one can easily prove that the formula
holds for g0x. �

Let us denote by P0 the orthogonal projection of H onto H0.

Theorem 5.2. Suppose that π = ∗i∈Iπi is the representation of G = ∗i∈IGi defined
above. Then:

(i) If all πi’s are unitary then so is π.
(ii) If ξ0 ∈ H0 then, for x as in (4.1),

P0π(x)ξ0 = Q0πi1(g1)Q0πi2(g2) . . . Q0πim(gm)ξ0 .



22 WALDEMAR HEBISCH AND WOJCIECH M LOTKOWSKI

(iii) Assume that there are constants a1, a2, . . . such that

‖πj1(h1)Q0πj2(h2) . . . Q0πjn(hn)‖ ≤ an

(the operator norm of a map H0 ⊕Hjn → H0 ⊕Hj1) holds for every j1j2 . . . jn ∈ S(I)
and every h1 ∈ Gj1 \ {e}, . . . , hn ∈ Gjn \ {e}. Then for every x ∈ G

‖π(x)‖ ≤ 1 + a1 + · · ·+ am,

where m = |x|. In particular, if
∑
an <∞ then π is uniformly bounded.

(iv) Assume that for each i ∈ I the set {πi(g)ξ : g ∈ Gi, ξ ∈ H0} is linearly dense in
H0 ⊕Hi. Then the family {π(x)(e, ξ) : x ∈ G, ξ ∈ H0} is linearly dense in H.

Proof. We have already noticed that unitarity of πi’s implies that of π and part (ii) is
a consequence of the last lemma. Now we will prove (iii).

Fix x = g1g2 . . . gm 6= e as in (4.1). For 1 ≤ r ≤ m define wr = (gr+1gr+2 . . . gm)−1.
By the previous lemma we have

π(x)
(
wr, ξ

)
= π(g1g2 . . . gr)

(
e, ξ

)
=

(
e, πi1(g1)Q0πi2(g2)Q0 . . . Q0πir−1(gr−1)Q0πir(gr)(Q0 +Qir)ξ

)
+

r−1∑
k=1

(
g1g2 . . . gk, Qik+1

πik+1
(gk+1)Q0πik+2

Q0 . . . Q0πir(gr)(Q0 +Qir)ξ
)

+
(
g1g2 . . . gr, (Id−Q0 −Qir)ξ

)
.

On the other hand if w is none of wr, 1 ≤ r ≤ m, then π(x)
(
w, ξ

)
=

(
xw, ξ

)
.

Consider the following operators on H:

T0

(
w, ξ

)
=

{ (
xwr, (Id−Q0 −Qir)ξ

)
if w = wr, 1 ≤ r ≤ m,(

xw, ξ
)

otherwise,

and for 1 ≤ s ≤ m we define Ts putting

Ts(ws, ξ) =
(
e, πi1(g1)Q0πi2(g2)Q0 . . . Q0πis(gs)(Q0 +Qis)ξ

)
,

Ts(wr, ξ) =
(
g1 . . . gr−s, Qir−s+1πir−s+1(gr−s+1)Q0 . . . Q0πir(gr)(Q0 +Qir)ξ

)
if s < r ≤ m, and Ts(w, ξ) = 0 if w is not one of wr for s ≤ r ≤ m. Then, putting
a0 = 1, we have ‖Ts‖ ≤ as and π(x) = T0 + T1 + · · ·+ Tm, which proves (iii).

To prove (iv) denote by M the closure of the linear hull of the set {π(x)(e, ξ) : x ∈
G, ξ ∈ H0}. Then M is G-invariant and H0 ⊆ M . By the assumption, δe ⊗ Hi ⊆ M
for every i ∈ I. Therefore δx ⊗Hi = π(x) (δe ⊗Hi) ⊆ M for every x ∈ G and i 6= i(x),
if x 6= e. But the family of such subspaces is linearly dense in H, which concludes the
proof. �

As a corollary we will reprove Bożejko’s result (Theorem 7.1 in [B2]).

Corollary 5.3. Let H0 be a Hilbert space and assume that for each i ∈ I we have an
operator-valued positive definite function Ui : Gi → B(H0) satisfying Ui(e) = Id. Define
U : G→ B(H0) putting

U(x) = Ui1(g1)Ui2(g2) . . . Uim(gm)

for x = g1g2 . . . gm as in (4.1). Then U is a positive definite function on G.
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Proof. By [NF], Theorem 7.1 for each i ∈ I there is a Hilbert space Hi and a unitary
representation πi : Gi → B(H0⊕Hi) such that if ξ ∈ H0, g ∈ Gi then Ui(g)ξ = Q0πi(g)ξ,
where Q0 denotes the orthogonal projection of H0⊕Hi onto H0. Take the representation
π = ∗i∈Iπi of G constructed as above. Then π is unitary and if ξ ∈ H0, x ∈ G then
P0π(x)ξ = U(x)ξ which implies positive definiteness of U . �

Now assume that {Pi}i∈I is a family of (not necessarily orthogonal) projections on
a Hilbert space H0. With every i ∈ I we associate a space Hi and a representation
πi : Gi → B(H0 ⊕Hi) in the following way.

First assume that Gi is infinite. Then we set

Hi := {f : Gi \ {e} → KerPi|
∑

g∈Gi\{e}

‖f(g)‖2 <∞},

so that

H0 ⊕Hi =
{
f : Gi → H0

∣∣∣ f(g) ∈ KerPi for g 6= e and
∑
g∈Gi

‖f(g)‖2 <∞
}
.

Now we define πi(e) = Id, and for g ∈ Gi \ {e}

(πi(g)f)(h) =

 Pif(e) + f(g−1) if h = e,
(Id− Pi)f(e) if h = g,
f(g−1h) otherwise.

(5.2.a)

Note that πi acts trivially on ImPi and as a multiple of the regular representation λi of
Gi on KerPi ⊕Hi.

The case when Gi is finite is a little bit more involved. Put

Hi = {f : Gi \ {e} → KerPi|
∑

g∈Gi\{e}

f(g) = 0}

so that

H0 ⊕Hi = {f : Gi → H0| if g 6= e then f(g) ∈ KerPi and
∑

g∈Gi\{e} f(g) = 0}.

Now we note that KerPi ⊕Hi can be identified with

H′
i := {F : Gi → KerPi|

∑
g∈Gi

F (g) = 0}

by an isometry Ti : H′
i → KerPi ⊕Hi:

TiF (h) =

{ √
1 + τi · F (e) if h = e,

F (h) + τi · F (e) otherwise,

where τi = (|Gi| − 1)−1. Observe that T−1
i (KerPi) consists of functions of the form

e 7→ ξ, g 7→ −τi · ξ for g 6= e, with ξ ∈ KerPi. The natural representation π′i of Gi acting
on H′

i is a multiple of the semiregular representation:

(π′i(g)F ) (h) := F (g−1h).

Now we define a representation πi : Gi → B(H0 ⊕Hi) putting

(πi(g)f) := P̃if +
(
Tiπ

′
i(g)T−1

i

)
(Id− P̃i)f,
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where P̃i is a projection on H0 ⊕Hi given by

P̃if(h) =

{
Pif(e) if h = e,
0 otherwise.

As a result, for g ∈ Gi \ {e} we obtain the following formula

(πi(g)f) (h) =

 Pif(e) +
√

1 + τi · f(g−1)− τi · (Id− Pi)f(e) if h = e,
τi · f(g−1) + (1− τi)

√
1 + τi · (Id− Pi)f(e) if h = g,

f(g−1h) + τi · f(g−1)− τi
√

1 + τi · (Id− Pi)f(e) otherwise.
(5.2.b)

Now we are going to define the main object of this paper.

Definition 5.4. Assume that {Gi}i∈I is a family of discrete groups and put τi :=
(|Gi| − 1)−1. Let π0 : A(τ) → B(H0) be a representation of A(τ) (not necessarily a
∗-representation) so that π0(δi) = (1 + τi)Pi − τiId for a (not necessarily orthogonal)
projection Pi on H0. For every i ∈ I define a representation πi of Gi by (5.2) and then
define a representation π of G := ∗i∈IGi using formulas (5.1). Then we will say that π
is induced from the representation π0 of A(τ).

Now we observe that π inherits some properties of π0.

Theorem 5.5. Assume that G = ∗i∈IGi, τi = (|Gi| − 1)−1, π0 : A(τ) → B(H0) is a
representation and let π : G→ B(H) be the induced representation of G.

i. For every x ∈ G we have P0π(x)|H0 = π0(δt(x)).
ii. If H0 can be decomposed into direct sum H′

0+H′′
0 of A(τ)-invariant closed subspaces

then H can be decomposed into direct sum H′ + H′′ of G-invariant closed subspaces,
and the corresponding representations π′, π′′ of G are induced from the corresponding
representations π′0, π

′′
0 of A(τ). If the former sum is orthogonal then so is the latter.

iii. If π0 is the left regular representation of A(τ) then π is the left regular represen-
tation of G.

iv. If π0 is a ∗-representation then π is a unitary representation of G.
v. If there are constants dm such that ‖π0(δu)‖ ≤ d|u| for every u ∈ S(I) and if∑∞
m=0 dm <∞ then π is uniformly bounded.
vi. The set {π(x)(e, ξ) : x ∈ G, ξ ∈ H0} is linearly dense in H.

Proof. (i) By formula (5.2) and Theorem 5.2.ii we have P0π(x)|H0 = Bi1 . . . Bim , where
Bi = (1 + τi)Pi − τiId, so P0π(x)|H0 = π0(δt(x)).

(ii) Let P be the projection of H0 onto H′
0 with kerP = H′′

0. Replacing kerPi by
PkerPi and (Id − P )kerPi in the definition of Hi we decompose Hi into direct sum
H′

i +H′′
i of Gi-invariant subspaces, which leads to the decomposition of all of H into a

direct sum H′ +H′′ of G-invariant subspaces.
To prove (iii) we note that the vector δe is cyclic for λ0 and [λ0(a)δe, δe] = a(e) for

a ∈ A(τ). In view of the previous point we have

[π(x)δe, δe] = [P0π(x)δe, δe] =
[
π0(δt(x))δe, δe

]
=

{
1 if x = e,
0 otherwise,

for x ∈ G, and, since the vectors π(x)ξ, x ∈ G, ξ ∈ H0, are linearly dense in H, the
vector δe is cyclic for π. It means that π is the left regular representation of G.

If π0 is a ∗-representation then all the projections Pi are orthogonal and then every
representation πi of Gi is unitary, which implies unitarity of π.
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Assume that ‖π0(δu)‖ ≤ d|u| for every u ∈ S(I). Then the norms ‖Pi‖ are uniformly
bounded, which implies that there is a constant C such that ‖πi(g)‖ ≤ C for every i ∈ I
and g ∈ Gi. Then for y = h1 . . . hn, with t(y) = j1 . . . jn, we have

‖πj1(h1)Q0 . . . Q0πjn(hn)‖

= ‖πj1(h1)Bj2Bj3 . . . Bjn−1πjn(hn)‖ ≤ C2‖Bj2 . . . Bjn−1‖ ≤ C2dn−2,

and in view of Theorem 5.2 iii we see that π is uniformly bounded.
For (vi) it suffices, by Theorem 5.2.iv, to prove that for every i ∈ I the set {πi(g)ξ :

g ∈ Gi, ξ ∈ H0} is linearly dense in H0 ⊕ Hi. If Gi is infinite then it is clear that the
linear span of vectors of the form δg ⊗ ξ = πi(g)ξ, where g ∈ Gi \ {e}, ξ ∈ KerPi, is
dense in Hi.

Now, if Gi is finite then it is sufficient to check, that

{π′i(g)F : g ∈ Gi, F ∈ T−1
i (KerPi)} = H′

i.

Fix F ∈ H′
i. For g ∈ Gi we define Fg ∈ T−1

i (KerPi) by putting

Fg(h) :=

{ 1
1+τi

F (g) if h = e,
−τi

1+τi
F (g) if h 6= e.

Then one can check that
∑

g∈Gi
π′i(g)Fg = f , which concludes the proof. �

For further investigations we will need two lemmas.

Lemma 5.6. Given a ∗-representation ρ of a ∗-algebra A acting on a Hilbert space H
and a family {ρα}, α ∈ A, of subrepresentations of ρ, each ρα acting on Hα ⊆ H, such
that the set

⋃
α∈AHα is linearly dense in H, then ρ is equivalent to a subrepresentation

of the direct sum ⊕α∈Aρα.

Proof. We may assume that the index set A is an ordinal. Put

Vα = lin {Hβ : β < α}.
Fix α and let Wα be the orthogonal complement of Vα in Vα+1. Consider P : Hα 7→ Wα

being the orthogonal projection. Take the polar decomposition P = US, where S is
positive definite and U is a partial isometry. By definition of Vα+1 the image of Hα is
dense in Wα so U−1 is an isometric embedding of Wα inHα. Moreover, by the uniqueness
of polar decomposition U−1 intertwines the action of A on Wα with the action of A on
Hα. Let ρ̃α be the restriction of ρ to Wα. By definition

⊕α∈AWα = lin {Hβ : β ∈ A} = H
so ⊕α∈Aρ̃α = ρ. Since each ρ̃α is equivalent to a subrepresentation of ρα the claim
follows. �

Having constructed the induced representation π we can in turn define a representa-
tion of A(τ) acting on H. Namely we put

π̃0(δi) =


τi ·

∑
g∈Gi\{e} π(g) if Gi is finite,

lim 1
n

∑n
k=1 π(gk,i) otherwise,

(5.3)

where gk,i is an arbitrary sequence of distinct elements of Gi and the limit is in the
strong operator topology. Note that π̃0 restricted to H0 is just π0 and that if Gi is
infinite then π̃0(δi) = π0(δi)P0, where P0 is the orthogonal projection of H onto H0.
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Lemma 5.7. The restriction of π̃0 to H⊥
0 is contained in a multiple of the left regular

representation.

Proof. For i ∈ I, ξ ∈ Hi we have π(µi)
(
e, ξ

)
= −τi

(
e, ξ

)
and for a vector

(
w, ξ

)
in

(H0 ⊕Hi)
⊥ we have π(µi)

(
w, ξ

)
= τi

∑
g∈Gi\{e}

(
gw, ξ

)
. Therefore for every w ∈ G and(

w, ξ
)
∈ H⊥

0 the τ -positive definite function

u 7→
[
π(µu)

(
w, ξ

)
,
(
w, ξ

)]
on S(I) has a finite support and hence belongs to `2(τ). �

Here we give one application of the induced representation. Recall that for a ∗-algebra
A the enveloping C∗-algebra C∗(A) is defined as the completion of A with respect to
the norm

‖a‖ := sup{‖π(a)‖ : π is a ∗-representation of A}.
If Γ is a discrete group then C∗(F(Γ)) is called the full C∗-algebra of Γ and denoted

C∗(Γ). Define also the reduced C∗-algebra of Γ (resp. of the algebra A(τ)), denoted
C∗

r (Γ) (or C∗
r (A(τ))), as the closure of F(Γ) (resp. of F(S(I))) in the operator norm

‖λ(f)‖ (resp. ‖λ0(a)‖).

Proposition 5.8. Suppose that all the groups Gi are finite, τi = (|Gi| − 1)−1 and
G = ∗i∈IGi. Then the map

A(τ) 3 a 7→
∑

u∈S(I)

a(u)µu ∈ F(G)

extends to an isometric embedding of C∗(A(τ)) into C∗(G) and to an isometric embed-
ding of C∗

r (A(τ)) into C∗
r (G).

Proof. Put j(a) :=
∑

u∈S(I) a(u)µu. If π is a unitary representation of G then π ◦ j is a

∗-representation of A(τ), which implies that ‖j(a)‖ ≤ ‖a‖ for a ∈ A(τ). On the other
hand, if π0 is a ∗-representation of A(τ) then taking the induced representation π of G
we have ‖π0(a)‖ ≤ ‖π(j(a))‖, which yields ‖a‖ ≤ ‖j(a)‖.

The second statement holds because the map a 7→ λ(j(a)) is a multiple of the left
regular representation of A(τ). �

Recall that if π : A → B(H) and σ : A → B(K) are representations of an algebra
A then T : H → K is said to be an intertwining operator if Tπ(a) = σ(a)T holds for
every a ∈ A. Representations π and σ are called equivalent if there is an intertwining
isomorphism T : H → K. Representations π and σ are said to be disjoint if 0 is the
only operator intertwining them.

Lemma 5.9. Let A0 be a subalgebra of an algebra A and let ρ : A → B(H), σ : A →
B(K) be representations. Denote by ρ0 and σ0 their restrictions to A0. We assume that
H = H0⊕H1, K = K0⊕K1 are decompositions into direct sums of A0-invariant closed
subspaces.

1. If ρ0|H0 is disjoint from σ0|K1, ρ0|H1 is disjoint from σ0|K0 and T : H → K
intertwines ρ and σ then TH0 ⊆ K0 and TH1 ⊆ K1.

2. If ρ(A)H0 is dense in H and T1, T2 : H → K are intertwining operators for ρ and
σ such that T1|H0 = T2|H0 then T1 = T2.
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Proof. For η = η0 + η1 ∈ K, with ηj ∈ Kj, we put Qjη := ηj. We need to prove that
both the operators B := Q1T |H0 and C := Q0T |H1 are zero. But B (resp C) intertwines
ρ0|H0 and σ0|H1 (resp. ρ0|H1 and ρ0|K0), which implies that B = 0 and C = 0 and proves
the first assertion.

For the second one we note that for a ∈ A and ξ ∈ H0 we have

T1ρ(a)ξ = σ(a)T1ξ = σ(a)T2ξ = T2ρ(a)ξ

which implies that T1 = T2. �

Theorem 5.10. Suppose that π0 and σ0 are two representations of A(τ) which are
disjoint from the regular representation of A(τ) and let π and σ be the induced repre-
sentations of G.

1. If π0 and σ0 are not equivalent then so are π and σ.
2. If π0 and σ0 are disjoint then so are π and σ.

Proof. If T : H → K is an intertwining operator between π and σ then, by the previous
lemma, T (H0) ⊆ K0, and hence T |H0 intertwines π0 and σ0. Therefore if π0 and σ0 are
not equivalent then T |H0 , and hence T cannot be an isomorphism. Moreover, if π0 and
σ0 are disjoint then T |H0 = 0 and for ξ ∈ H0, x ∈ G we have Tπ(x)ξ = σ(x)Tξ = 0,
which implies that T = 0. �

Recall that a representation π of a ∗-algebra A is said to be weakly contained in a
representation σ of A if ‖π(a)‖ ≤ ‖σ(a)‖ for every a ∈ A. This is equivalent to saying
that ker(σ) ⊆ ker(π), where ker(π) and ker(σ) denote the kernel of the extension of π
and σ to the enveloping C∗-algebra.

Proposition 5.11. Suppose that π0 and σ0 are ∗-representations of A(τ) and let π and
σ be the induced representations of G = ∗i∈IGi.

i. If π0 is weakly contained in σ0 then π is weakly contained in σ.
ii. If π is weakly contained in σ then π0 is weakly contained in σ0 ⊕ λ0.
In particular, π is weakly contained in the regular representation of G if and only if

π0 is weakly contained in the regular representation λ0 of A(τ).

Proof. Suppose that π0 is weakly contained in σ0 and decompose π0 into a direct sum
⊕α∈Aπ

α
0 of cyclic representations. For each α ∈ A we fix a unit cyclic vector ξα for πα

0

and let φα be the corresponding state on A(τ), i.e. φα(a) = 〈πα
0 (a)ξα, ξα〉 for a ∈ A(τ).

Then π = ⊕α∈Aπ
α, where πα is induced from πα

0 , and ξα is a cyclic vector also for πα. We
need to show that every πα is weakly contained in σ. Then the corresponding positive
definite function on G is x 7→ φα(δt(x)). Since each πα

0 is weakly contained in σ0 there is
a sequence ζα

n of vectors in the space of σ0 such that limn→∞〈σ0(a)ζα
n , ζ

α
n 〉 = φα(a) for

every a ∈ A(τ). Then for every x ∈ G we have

lim
n→∞

〈σ(x)ζα
n , ζ

α
n 〉 = lim

n→∞
〈σ0(δt(x))ζ

α
n , ζ

α
n 〉 = φα(δt(x)),

which means that πα is weakly contained in σ.
If π is weakly contained in σ then ker(σ) ⊆ ker(π) (the kernels are meant with

respect to the full C∗-algebra of G) and hence ker(σ|C∗(A(τ))) ⊆ ker(π|C∗(A(τ))). But
the restriction of π (resp. σ) to C∗(A(τ)) is a direct sum of π0 (resp. σ0) and a
subrepresentation of a multiple of λ0 (Lemma 5.7). Therefore we have ker(σ0)∩ker(λ0) ⊆
ker(π0) ∩ ker(λ0) ⊆ ker(π0), which proves the second statement. �
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6. Irreducibility of the induced representation

Throughout this section we fix a family {Gi}i∈I of groups and a representation π0 of
A(τ), acting on a Hilbert space H0, where τi := (|Gi| − 1)−1, and therefore a family
{Pi}i∈I of projections on H0, such that π0(δi) = (1 + τi)Pi− τiId. We are going to study
irreducibility of the induced representation π of the group G = ∗i∈IGi.

Proposition 6.1. Assume that the representation π0 (and hence the family of projec-
tions {Pi}i∈I) is topologically irreducible (i.e. there is no nontrivial invariant closed
subspace) and that there exists i0 ∈ I such that Gi0 is infinite and Pi0 6= 0. Then π is
topologically irreducible.

Proof. Define operators Ti on H by

Ti =

{ 1
|Gi|

∑
g∈Gi

π(g) if Gi is finite,

limN→∞
1
N

∑N
n=1 π(gn,i) otherwise,

where, as before, {gn,i} is a sequence of distinct elements in Gi and the convergence is
in the strong sense (cf. Theorem 2.2 in [M2]). Then Ti is a projection, Ti|H0 = Pi and
Ti|H⊥

0
is an orthogonal projection. Moreover, if Gi is infinite then Ti|H⊥

0
= 0.

Assume that M is an invariant closed subspace of H. Then TiM ⊆M for every i ∈ I.
If Ti0M 6= 0 then the space M0 := M ∩ H0 6= 0 is invariant for all Ti, and hence for all
Pi. This implies M0 = H0 and consequently M = H.

Now assume that Ti0M = 0. This gives Ti0TiM = 0, which means that T ∗i T
∗
i0
H =

P ∗
i P

∗
i0
H0 is orthogonal to M for every i ∈ I. Since the family {Pi}i∈I (and hence

{P ∗
i }i∈I) is irreducible in H0 and Pi0 6= 0 we have H0 ⊥M , which implies M = {0}. �

From now on we will be assuming that π0 is a ∗-representation of A(τ), hence all Pi’s
are selfadjoint and therefore the induced representation π of G is unitary.

Lemma 6.2. Let A1 be a ∗-subalgebra of a ∗-algebra A2 and let ρ : A2 → B(H) be
a ∗-representation with a cyclic vector ξ0. Assume that H1 ⊆ H is an A1-invariant,
closed subspace of H, with ξ0 ∈ H1, such that the representation ρ|A1 is irreducible on
H1 and occurs in H only once. Then ρ is an irreducible representation of A2.

Proof. Let M be an A2-invariant closed subspace of H and let P be the orthogonal
projection onto M . Then Pρ(a) = ρ(a)P for every a ∈ A2. Indeed, for ζ, η ∈ H we
have

〈Pρ(a)ζ, η〉 = 〈ρ(a)ζ, Pη〉 = 〈ζ, ρ(a∗)Pη〉
= 〈Pζ, ρ(a∗)Pη〉 = 〈ρ(a)Pζ, Pη〉 = 〈ρ(a)Pζ, η〉.

If PH1 = {0} then, in particular, Pξ0 = 0 and hence M = {0}. Assume that
M1 := PH1 6= {0}. Then one can observe that ρ|A1 acts irreducibly on M1 (for if
M0 is an A1-invariant subspace of M1 then so is P−1(M0) ∩ H1) and that P1 := P |H1

is an isomorphism H1 → M1 (for KerP1 is an A1-invariant subspace of H1). By our
assumption this implies H1 = M1 ⊆M and consequently M = H as ξ0 lies in H1. �

Denote Ifin := {i ∈ I : Gi is finite}, Gfin := ∗i∈IfinGi and let (Hfin = ⊕w∈GfinHfin
w , π

fin)
be the induced representation of Gfin related to the family {Pi}i∈Ifin . There is a natural
embedding of Hfin into H. Namely, if we put H1 := ⊕i∈I\IfinHi then Hw = Hfin

w ⊕H1 for

every w ∈ Gfin. The orthogonal complement of Hfin in H is `2(Gfin,H1)⊕
⊕

w∈G\Gfin Hw
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and π|Gfin acts on this subspace as a multiple of the regular representation, while π|Gfin

on Hfin is just πfin.

Lemma 6.3. Assume that |Ifin| ≥ 2, Pi = 0 for every i ∈ I \ Ifin and that the represen-
tation πfin of Gfin is irreducible. Then π is irreducible too.

Proof. First of all we note that, by Theorem 5.5.ii, π0 is irreducible. If |Ifin| ≥ 2 then
Gfin is infinite so no irreducible representation of Gfin can be contained in the orthogonal
complement of Hfin in H. Note also that every nonzero vector ξ0 ∈ H0 is cyclic for π.
Indeed, by irreducibility of πfin, the closure M of lin{π(x)ξ0 : x ∈ G} contains Hfin. In
particular H0 ⊆ M , which, by Theorem 5.5.vi, implies M = H. Applying the previous
lemma to A1 := F(Gfin) and A2 := F(G) we see that π is irreducible. �

For i ∈ I ∪ {0} we define a function φi on S(I) by

φ0(i1i2 . . . im) := (−τi1)(−τi2) . . . (−τim) (6.1.a)

and for i ∈ I
φi(i1i2 . . . im) := ai1ai2 . . . aim , (6.1.b)

where ai := 1 and aj := −τj for j ∈ I \ {i}. We are now ready to present the main
theorem of this paper:

Theorem 6.4. Suppose that we are given a free product group G := ∗i∈IGi and an
irreducible ∗-representation π0 : A(τ) → B(H0) of the algebra A(τ), where τi := (|Gi| −
1)−1. Then the induced unitary representation π of G is irreducible unless π0 is contained
in the regular representation λ0 of A(τ), that is unless either

1) H0 = C and π0(δi) = −τi for every i ∈ I and∑
i∈I

1

|Gi|
< 1,

2) or H0 = C and there is i0 ∈ I such that π0(δi0) = 1, π0(δi) = −τi for all i ∈ I \{i0}
and ∑

i∈I\{i0}

1

|Gi|
<

1

|Gi0|
.

Proof. If π0 is irreducible and contained in λ0 then dimπ0 = 1 (Theorem 2.11) and either
π0(δi) = −τi for every i ∈ I and

∑
i∈I

τi

1+τi
< 1 or there is i0 ∈ I such that π0(δi0) = 1,

π0(δi) = −τi for i ∈ I \ {e} and 1
1+τi0

+
∑

i∈I\{i0}
τi

1+τi
< 1. The corresponding character

(φ0 in the first case and φi0 in the second) of S(τ) can be written as φ = f0 · τ and
f0 ∈ `2(τ), which means that the composition φ ◦ t belongs to `2(G) and hence π is not
irreducible.

Now assume that π0 is irreducible and not contained in λ0. If there is i ∈ I \ Ifin such
that π0(δi) 6= 0 then π is irreducible in view of Proposition 6.1. If, on the other hand,
π0(δi) = 0 for every i ∈ I \ Ifin then our assumptions on π0 imply that |Ifin| ≥ 2. Now
we observe that any nonzero vector ξ ∈ H0 is cyclic for πfin. Indeed, by irreducibility
of π0 the closure of {π0(a)ξ : a ∈ A(τ)} = {π0(a)ξ : a ∈ A(τ |Ifin)} is H0. Hence, by
Theorem 5.5.vi, ξ is cyclic for πfin. Applying Lemma 6.2 to A1 := Ft(G

fin) ∼= A(τ |Ifin)
and A2 := F(Gfin) we see, in view of Lemma 5.7, that πfin is irreducible. Now we
conclude the proof by using Lemma 6.3. �
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Corollary 6.5. Let P1(G) (resp. P1
t (G)) denote the convex set of all (type-dependent)

positive definite functions φ on G = ∗i∈IGi with φ(e) = 1 and let exP1(G) (resp.
exP1

t (G)) denote the set of its extreme points.
1. If ∑

i∈I

1

|Gi|
≥ 1

then exP1
t (G) ⊆ exP1(G).

2. If ∑
i∈I

1

|Gi|
< 1 but

∑
i∈I\{j}

1

|Gi|
≥ 1

|Gj|

for every j ∈ I then exP1
t (G) \ exP1(G) = {φ0 ◦ t}.

3. Finally, if there is i0 ∈ I such that∑
i∈I\{i0}

1

|Gi|
<

1

|Gi0|

then exP1
t (G) \ exP1(G) = {φ0 ◦ t, φi0 ◦ t}.

In another words, if a type-dependent function φ ◦ t belongs to exP1
t (G) then φ ◦ t ∈

exP1(G) holds if and only if φ ◦ t /∈ `2(G). �

The exceptional representations from points (1) and (2) of Theorem 6.4 have been
studied in [K], and the positive definite function φ0 ◦ t, in the case when the groups
Gi are unipotent, appears in Lemma 1 in [T1]. The case when all Gi’s are infinite was
studied in [M2].

6.1. Nonunitary representations.
For nonunitary representations various definitions of irreducibility are not equivalent.

Definition 6.6. Let ρ be a representation of a complex algebra A acting on a Hilbert
space K. Then ρ is said to be

1. algebraically irreducible if there is no nontrivial invariant subspace of K,
2. topologically irreducible if there is no nontrivial closed invariant subspace of K,
3. fully irreducible if the closure of ρ(A) in the strong operator topology coincides

with B(K).

In view of the Burnside’s theorem these notions coincide if dimK is finite. In general,
full irreducibility implies topological irreducibility.

Lemma 6.7. Let ρ0 : A → B(K0) be a finite dimensional irreducible representation of
a ∗-algebra A which is not equivalent to a ∗-representation and let ρ1 : A → B(K1) be a
∗-representation of A. Then there is a sequence an ∈ A satisfying ‖ρ0(an)− IdK0‖ → 0
and ‖ρ1(an)‖ → 0.

Proof. Assume that there is a constant L such that

‖ρ0(a)‖ ≤ L‖ρ1(a)‖ for every a ∈ A. (∗)
Then we take B to be the norm closure of ρ1(A). It is a C∗-algebra and by (∗) we can
extend ρ0 to a representation of B. However every algebraically irreducible represen-
tation of a C∗-algebra is equivalent to a ∗-representation (see Corollary 2.9.6 in [Di]).
Therefore (∗) can not be true. Hence there is a sequence cn ∈ A satisfying ‖ρ0(cn)‖ = 1
and ‖ρ1(cn)‖ → 0. As dimK0 is finite we may in addition assume that ‖ρ0(cn)−C‖ → 0
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for some C ∈ B(K0) with ‖C‖ = 1. Since ρ2 is fully irreducible, there exist bk, dk ∈ A,
k ≤M , such that

M∑
k=1

ρ0(bk)Cρ0(dk) = IdK0 .

Now we can conclude the proof by putting an :=
∑M

k=1 bkcndk. �

Now we are ready to prove

Theorem 6.8. Assume that we are given an irreducible representation (π0,H0) of A(τ),
with dimH0 < ∞, which is not equivalent to a ∗-representation. Then the induced
representation π of the free product group G = ∗i∈IGi is fully irreducible.

First we prove a weaker statement.

Lemma 6.9. Under the assumptions of Theorem 6.8, π is topologically irreducible.

Proof. Consider the representation (π̃0,H) of A(τ) defined by formula (5.3) and its
restrictions ρ0 and ρ1 to H0 and H⊥

0 respectively, so that ρ0 = π0 and ρ1 is a multiple
of λ0 (Lemma 5.7). In view of Lemma 6.7 the orthogonal projection P0 of H to H0

belongs to the norm closure of π̃0(A(τ)).
Let M be a G-invariant subspace of H and denote M0 := P0M ⊆M .
If M0 6= {0} then M0 it is a nontrivial closed subspace of H0 which is A(τ)-invariant.

Hence M0 = H0, which means that H0 ⊆ M . For fixed i ∈ I we have π(g)H0 ⊆ M for
each g ∈ Gi, which leads δe ⊗Hi ⊆M . Consequently, δe ⊗He ⊆M and for any w ∈ G
we have δw ⊗Hw = π(w) (δe ⊗Hw). Therefore M = H.

Now assume that P0M = {0}, i.e. M ⊥ H0. For fixed i ∈ I and for every g ∈ Gi we
have π(g)M ⊆M ⊥ H0, so that M ⊥ δe⊗Hi, and hence M ⊥ δe⊗He. Now for w ∈ G
we have π(w−1)M ⊆ M ⊥ δe ⊗ He, which yields M ⊥ δw ⊗ Hw and we conclude that
M = {0}. �

Proof of theorem 6.8. Let B denote the closure of lin{π(x) : x ∈ G} in the strong
operator topology of B(H). Then P0 ∈ B by the first lemma and, consequently, BP0 ∈ B
for every B ∈ B(H0). In particular, ζ0 ⊗ η0 ∈ B for fixed ζ0, η0 ∈ H0 \ {0}. Now take
any ζ, η ∈ H. Due to the topological irreducibility of the family B (and hence of
B∗ := {B∗ : B ∈ B}) there are Sn, Tn ∈ B such that Snζ0 → ζ and T ∗nη0 → η, which
implies

Sn(ζ0 ⊗ η0)Tn = (Snζ0)⊗ (T ∗nη0) → ζ ⊗ η

in the strong topology. Therefore B contains all operators of finite rank, so B = B(H).
�

7. Free product of two groups

This section is devoted to the case when |I| = 2, say I = {+,−}. Here we will write
S(+,−) and A(τ+, τ−) instead of S(I) and A(τ). A word of the form u = + − · · ·±
(resp. u = −+ · · · ±), with |u| = m, will be denoted +m (resp. −m) and here we will
denote by 0 the empty word.

Cartwright and Soardi [CS] (see also [ML, T2]) introduced a family of spherical func-
tions φλ (λ is a complex parameter) on the free product of two groups: Zr ∗ Zs, where
r > s ≥ 2. It was shown in [M1] that such a function is positive definite if and only if
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λ ∈ [−2, s− 2] ∪ [r− 2, r + s− 2]. Here our aim is to study in detail the corresponding
family of representations.

First we are interested in finding all irreducible representations of A(τ+, τ−), therefore
in finding all (equivalence classes of) irreducible pairs (P+, P−) of projections on a
Hilbert space H0. Two such pairs: (P+, P−) on H0 and (Q+, Q−) on K0 are said to
be equivalent if there is an invertible operator T : H0 → K0 such that TP+ = Q+T
and TP− = Q−T . Putting Z := 2P+ − Id and T := (2P+ − Id)(2P− − Id) we have
Z2 = Id and ZTZ = T−1 so our question is equivalent to finding all (equivalence classes
of) irreducible representations of the semidirect product Z2 n Z. Unitary irreducible
representations of Z2 n Z are known to be at most two-dimensional. We note that the
same holds without unitarity if we assume that dimH0 is finite, as we now see.

Lemma 7.1. Let (P+, P−) be an irreducible pair of projections in a finitely dimensional
Hilbert space H0. Then dimH0 ≤ 2. Moreover, two irreducible pairs (P+, P−) and
(Q+, Q−) of projections on a two-dimensional Hilbert space H0 are equivalent if and
only if tr(P+P−) = tr(Q+Q−).

Proof. Put Z := 2P+− Id and T := (2P+− Id)(2P−− Id). Since dimH0 is finite, T has
an eigenvector η1 6= 0 so that Tη1 = λη1, with λ 6= 0. Put η2 := Zη1. Then Zη2 = η1

and
Tη2 = TZη1 = ZT−1η1 = λ−1Zη1 = λ−1η2,

which implies that the vectors η1, η2 span an invariant subspace, hence dimH0 ≤ 2. If
λ = ±1 then T (η1 + η2) = ±(η1 + η2) and Z(η1 + η2) = η1 + η2 so dimH0 = 1.

Now assume that λ 6= ±1. Then the vectors η1, η2 are linearly independent and
trT = λ+λ−1. If operators W,S onH0 satisfy W 2 = Id, WSW = S−1 and trS = λ+λ−1

then, as before, S has eigenvalues γ and γ−1 which satisfy γ + γ−1 = λ + λ−1. This
implies γ = λ or γ = λ−1, so there are ξ1, ξ2 6= 0 such that Sξ1 = λξ1, Sξ2 = λ−1ξ2.
Thus the map given by ξ1 7→ η1, ξ2 7→ η2 defines an equivalence between pairs Z, T and
W,S. �

Therefore the family of all irreducible pairs P+, P− of projections on two-dimensional
Hilbert space is parametrised by w := tr(P+P−), w ∈ C \ {0, 1}. Note that for unit
vectors η± ∈ H0 and for P± := η± ⊗ η± we have tr(P+P−) = |〈η+, η−〉|2 so the points
from the interval (0, 1) correspond to pairs of orthogonal projections. We also include
the parameters w = 0 and w = 1 when η+ ⊥ η− or η+ = η− respectively.

Now fix τ+, τ− ≥ 0 and set B± := (1 + τ±)P± − τ±Id for a pair (P+, P−) with
tr(P+P−) = w. We denote by π0

w the representation ofA(τ+, τ−) for which π0
w(δ±) = B±.

For w ∈ {0, 1} these representations can be decomposed into one-dimensional ones:
π0

0 = π0
01 ⊕ π0

10 and π0
1 = π0

00 ⊕ π0
11, where π0

ε+ε−(δ±) = (1 + τ±)ε± − τ±. Therefore the

family {π0
w}, with w ∈ (C \ {0, 1}) ∪ {0, 1}2, exhausts all finite-dimensional irreducible

representations of A(τ+, τ−). The coefficient of π0
ε+ε− is the character:

φ̃ε+ε−(i1i2 . . . im) = ai1ai2 . . . aim ,

where ai = −τi if εi = 0 and ai = 1 if εi = 1. Applying results from Section 2, concerning
the left regular representation λ0 of A(τ), and Theorem 3.1, we have

Proposition 7.2.
1. π0

00 is contained in λ0 iff τ+τ− < 1,
2. π0

01 is contained in λ0 iff τ+ < τ−,
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3. π0
10 is contained in λ0 iff τ+ > τ−,

4. π0
11 is contained in λ0 iff τ+τ− > 1.

Equivalently, π0
ε+ε− is contained in λ0 iff (ε+ + ε− − 1)(1− τ+τ−) < (ε+ − ε−)(τ+ − τ−).

Moreover, π0
ε+ε− is weakly contained in λ0 iff the same conditions hold, with “<” replaced

by “≤”. �

For two-dimensional representations we need to study the eigenvalues of B+B−. We
will base on the following elementary fact.

Lemma 7.3. Assume that z = u + vi ∈ C and a ≥ 0. Then both the inequalities∣∣z ±√z2 − a
∣∣ ≤ 1 hold if and only if either a = 1, v = 0 and −1 ≤ u ≤ 1 or 0 ≤ a < 1

and 4u2(1 + a)−2 + 4v2(1− a)−2 ≤ 1. Strict inequalities
∣∣z ±√z2 − a

∣∣ < 1 hold if and
only if 0 ≤ a < 1 and 4u2(1 + a)−2 + 4v2(1− a)−2 < 1.

The equality
∣∣z +

√
z2 − a

∣∣ =
∣∣z −√z2 − a

∣∣ holds if and only if z is real and z2 ≤ a. �

Proposition 7.4. The representation π0
w is uniformly bounded (i.e. the norms ‖π0

w(δu)‖,
u ∈ S(I), are uniformly bounded) if and only if either τ+τ− = 1 and

(
1−τ+
1+τ+

)2

≤ w ≤ 1

or τ+τ− < 1 and w = x+ yi satisfies

((1 + τ+)(1 + τ−)x− τ+ − τ−)2

(1 + τ+τ−)2 +
(1 + τ+)2(1 + τ−)2y2

(1− τ+τ−)2 ≤ 1. (7.1)

For 0 < w < 1 the ∗-representation π0
w is weakly contained in λ0 if and only if

w ∈

[ (√
τ+ −

√
τ−

)2

(1 + τ+)(1 + τ−)
,

(√
τ+ +

√
τ−

)2

(1 + τ+)(1 + τ−)

]
.

Proof. We have det(B±) = −τ± so that det(B+B−) = τ+τ−. We also have

tr(B+B−) = (1 + τ+)(1 + τ−)w − (τ+ + τ−).

It remains to apply Lemma 7.3 to the eigenvalues

η± =
tr(B+B−)

2
±

√(
tr(B+B−)

2

)2

− det(B+B−)

of B+B− and to use Theorem 3.1. �

Let us denote by E(τ+, τ−) the closed subset of the complex plane described by (7.1).
Its boundary is an ellipse with the following basic points (x, 0):

centre: x = τ++τ−
(1+τ+)(1+τ−)

,

vertices: x = − (1−τ+)(1−τ−)
(1+τ+)(1+τ−)

and x = 1,

foci: x =
(√τ+±

√
τ−)

2

(1+τ+)(1+τ−)
.

(7.2)

Let G be the free product of two groups, G = G+ ∗G−, and put τ± := (|G±| − 1)−1.
For the representation π0

w of A(τ+, τ−), with w ∈ C\{0, 1} or w ∈ {0, 1}2, let πw denote
the induced representation of G. Then applying Theorem 5.5, 5.10, 6.4 and 6.8 we get
immediately
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Theorem 7.5. 1. Assume that w ∈ C \ {0, 1}. Then
i. πw is fully irreducible.
ii. If w1 6= w2 then πw1 and πw2 are inequivalent.
iii. If w ∈ IntE(τ+, τ−) then πw is uniformly bounded.
iv. πw is unitary if and only if w ∈ (0, 1).

2. For w ∈ {0, 1}2 the representation πw is unitary and
i. π11 is irreducible.
ii. π01 is irreducible if and only if |G+| ≤ |G−|.
iii. π10 is irreducible if and only if |G+| ≥ |G−|.
iv. π00 is irreducible if and only if |G+| = |G−| = 2. �

From now on we fix τ+, τ− ≥ 0 and β+, β− > 0. Assume that β−(1+τ−) ≤ β+(1+τ+).
Set µ := β+δ+ + β−δ− and denote by A(τ, µ) the commutative unital ∗-subalgebra of
A(τ) generated by µ. Let C∗(τ, µ) and C∗

r (τ, µ) be the closure of A(τ, µ) in C∗(A(τ))
and C∗

r (A(τ)) (see remarks preceding Proposition 5.8) respectively.

Proposition 7.6. Denote by sp(µ) and spr(µ) the spectrum of µ in C∗(τ, µ) and
C∗

r (τ, µ) or, equivalently, in C∗(A(τ)) and C∗
r (A(τ)), respectively. Then

sp(µ) = [−β+τ+ − β−τ−,−β+τ+ + β−] ∪ [−β−τ− + β+, β+ + β−],

spr(µ) = [x0 − x+, x0 − x−] ∪ [x0 + x−, x0 + x+] ∪Υ,

where x0 := (β+(1− τ+) + β−(1− τ−))/2,

x± :=

√(
β+(1 + τ+)− β−(1 + τ−)

2

)2

+ β+β− (
√
τ+ ±

√
τ−)2

and Υ consists of those points (at most two)

β+(1 + τ+)ε+ + β−(1 + τ−)ε− − (β+τ+ + β−τ−),

with ε± ∈ {0, 1}, for which (ε+ + ε− − 1)(1− τ+τ−) ≤ (ε+ − ε−)(τ+ − τ−).

Proof. Recall that the spectrum of an element a0 in a commutative Banach algebra A is
the set of all values φ(a0), where φ runs over all multiplicative functionals of A. If φ is a
multiplicative functional on C∗(τ, µ) then, regarded as a 1-dimensional representation,
it can be extended to an irreducible ∗-representation of C∗(A(τ)) (see 2.10.2 in [Di])
and hence of A(τ). Therefore we can say that there is w ∈ [0, 1] and a unit eigenvector
ξ for π0

w(µ) such that φ(a) = 〈πw(a)ξ, ξ〉 for a ∈ A(τ, µ). Put α± := (1 + τ±)β± and
B := α+P+ + α−P−. We have P± = η± ⊗ η±, w = |〈η+, η−〉|2 and

Bη+ = α+η+ + α−〈η+, η−〉η−,
Bη− = α+〈η−, η+〉η+ + α−η−,

so that the eigenvalues of B are

t±(w) =
α+ + α− ±

√
(α+ − α−)2 + 4wα+α−

2
.

If w runs over [0, 1] then t±(w) runs over [0, α−] ∪ [α+, α+ + α−]. Knowing that

π0
w(µ) = B − (τ+β+ + τ−β−)Id

we obtain the first statement.
For spr(µ) we have to take into account those π0

w which are contained or weakly
contained in the regular representation of A(τ). �
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Now we will study some coefficients of the representations π0
w and πw. For a complex

function φ on S(I) and for f ∈ F(S(I)) we define their dual right τ -convolution φ �τ f
putting (φ �τ f)(u) = 〈φ, δu ∗τ f

∨〉, where f∨(u) := f(u∗).

Definition 7.7. Let τ+, τ− ≥ 0, β+, β− > 0, λ ∈ C. A complex function φ on S(+,−)
is said to be (τ+, τ−, β+, β−;λ)-spherical if

1) φ(e) = 1;
2) φ(u∗) = φ(u) for u ∈ S(+,−);
3) φ �τ µ = λφ, where τ = (τ+, τ−), µ = β+δ+ + β−δ−.

It was shown in [M1], Proposition 4.2, that for λ 6= x0 := (β+(1− τ+) +β−(1− τ−))/2
such a function φ does exist and is unique. If β+(1 + τ+) = β−(1 + τ−) and λ = x0 then
such a function exists but is not unique.

Fix τ+, τ− ≥ 0, β+, β− > 0 and let φλ denote the (τ+, τ−, β+, β−;λ)-spherical function.
If β+(1+ τ+) = β−(1+ τ−) then we define φx0 as the pointwise limit of φλ when λ→ x0.
Then, as it was explained in the proof of [M1], Theorem 4.5, the function φ = Tστφλ

(the map Tστ was defined in Section 1), for σ± = 0, is the (0, 0, α+, α−; γ)-spherical
function ψγ, where

α+ = (1 + τ+)β+, α− = (1 + τ−)β−, γ = λ+ τ+β+ + τ−β−. (7.3)

Now we are going to obtain spherical functions as coefficients of representations of
A(τ+, τ−). Take H0 := C2, with an orthonormal basis ζ0, ζ1. For complex numbers θ, ω
define vectors

ζ+(θ) := cos θ · ζ0 + sin θ · ζ1, ζ−(θ) := cos θ · ζ0 − sin θ · ζ1,

ξ(ω) := cosω · ζ0 + sinω · ζ1.
If θ, ω are real then the angle between ζ+(θ) and ζ−(θ) is 2θ and between ζ±(θ) and
ξ(ω) is θ ± ω.

Now we define one-dimensional projections

P+ := ζ+(θ)⊗ ζ+(θ), P− := ζ−(θ)⊗ ζ−(θ).

Then
[
ζ+(θ), ζ−(θ)

]
=

[
ζ−(θ), ζ+(θ)

]
= cos(2θ) and for any u = i1i2 . . . in ∈ S(I) \ {e}

[Pi1Pi2 . . . Pinξ(ω), ξ(ω)] = cos zi1 cosn−1(2θ) cos zin

where z± = θ ± ω.
Now we choose the numbers θ, ω in a special way. Assume that

cos2(θ + ω) =
γ(α− − γ)

α+(α+ + α− − 2γ)
, cos2(θ − ω) =

γ(α+ − γ)

α−(α+ + α− − 2γ)
. (7.4)

Then we have

α+ cos2(θ + ω) + α− cos2(θ − ω) = γ, (7.5)

sin2(θ+ω) =
(α+ − γ)(α+ + α− − γ)

α+(α+ + α− − 2γ)
, sin2(θ−ω) =

(α− − γ)(α+ + α− − γ)

α−(α+ + α− − 2γ)
(7.6)

and

α2
+ sin2(θ + ω) cos2(θ + ω) = α2

− sin2(θ − ω) cos2(θ − ω).

We assume in addition that

α+ sin(θ + ω) cos(θ + ω) = α− sin(θ − ω) cos(θ − ω). (7.7)
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Then

cos2(2θ) =
(α+ − γ)(α− − γ)

α+α−
. (7.8)

and

cos2(2ω) =
(α+ + α−)2(α+ − γ)(α− − γ)

α+α−(α+ + α− − 2γ)2
. (7.9)

Assuming that α− ≤ α+, we note that θ is real if and only if γ ∈ [0, α−]∪ [α+, α+ +α−]
and ω is real if and only if either α+ = α− (and then cos2(2ω) = 1) or γ ∈ [0, α−] ∪
[α+, α+ + α−]. One can also check that for α+ 6= α− the cases γ = 0, α−, α+, α+ + α−
correspond to π0

00, π
0
01, π

0
10 and π0

11 respectively.
The case α+ = α− := α is slightly different. Here we have: cos2(θ ± ω) = γ/(2α),

cos2(2θ) = (α− γ)2/α2 and cos2(2ω) = 1. If γ = α then ζ+(θ) and ζ−(θ) are mutually
orthogonal and we may assume that the angle between ζ±(θ) and ξ(ω) is π/4.

Lemma 7.8. Under the above choice of parameters, define a function ψ on S(+,−) by
putting

ψ(u) := [Pi1Pi2 . . . Pimξ(ω), ξ(ω)] ,

for u = i1 . . . im ∈ S(+,−). Then ψ is the (0, 0, α+, α−; γ)-spherical function ψγ on
S(+,−). Consequently, the function

φ(u) := [Bi1Bi2 . . . Bimξ(ω), ξ(ω)] ,

B± = (1 + τ±)P± − τ±Id, is the (τ+, τ−, β+, β−;λ)-spherical function φλ on S(+,−).

Proof. Assume that the last letter of u = εn is “−”. Then, putting ν = α+δ+ + α−δ−,
we obtain

(ψ �0 ν) (u) = 〈ψ, δu ∗0 ν〉 =
〈
ψ, α+δε(n+1) + α−δεn

〉
= α+ψ(ε(n+ 1)) + α−ψ(εn)

= cos zε cosn−1(2θ) [α+ cos(2θ) cos(θ + ω) + α− cos(θ − ω)] .

Now we apply (7.7) and (7.5):

α+ cos(2θ) cos(θ + ω) + α− cos(θ − ω)

= α+ cos2(θ + ω) cos(θ − ω)− α+ sin(θ + ω) cos(θ + ω) sin(θ − ω) + α− cos(θ − ω)

= α+ cos2(θ + ω) cos(θ − ω)− α− sin2(θ − ω) cos(θ − ω) + α− cos(θ − ω)

=
[
α+ cos2(θ + ω) + α− cos2(θ − ω)

]
cos(θ − ω)

= γ cos(θ − ω).

so (ψ �0 ν) (u) = γψ(u).
Analogous proof works for the other nonzero elements of S(+,−) and for u = 0 we

use (7.5):

(ψ �0 ν)(0) = α+ψ(+) + α−ψ(−) = α+ cos2(θ + ω) + α− cos2(θ − ω) = γ = γψ(0). �

If β−(1 + τ−) 6= β+(1 + τ+) then for λ = β+τ+ − β−τ−, −β+τ+ + β−, −β−τ− + β+ or

β++β− the function φλ equals φ̃00, φ̃01, φ̃10 or φ̃11 respectively. If β−(1+τ−) = β+(1+τ+)

and λ = −β+τ+ + β− = −β−τ− + β+, then we have φλ = 1
2
(φ̃01 + φ̃10).

Denote x0 := (β+(1− τ+) + β−(1− τ−))/2,

c± :=

(
β+(1 + τ+)± β−(1 + τ−)

2

)2

and b := c− + β+β−(τ+ + τ−).
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Proposition 7.9. Let φλ be the (τ+, τ−, β+, β−;λ)-spherical function and assume that
β−(1 + τ−) ≤ β+(1 + τ+). Then

i. φλ is (τ+, τ−)-positive definite if and only if λ is real and c− ≤ (λ− x0)
2 ≤ c+ or,

equivalently,

λ ∈ [−β+τ+ − β−τ−,−β+τ+ + β−] ∪ [−β−τ− + β+, β+ + β−] . (7.10)

ii. φλ is bounded if and only if either τ+τ− = 1 and

c− − β+β−(1− τ+)(1− τ−) ≤ (λ− x0)
2 ≤ c+ (7.11.a)

or τ+τ− < 1 and (λ− x0)
2 = x+ yi satisfies(
x− b

β+β−(1 + τ+τ−)

)2

+

(
y

β+β−(1− τ+τ−)

)2

≤ 1. (7.11.b)

Proof. The condition (7.10) is equivalent to γ ∈ [0, α−] ∪ [α+, α+ + α−] (see (7.3)).
Then θ and ω are real and consequently φλ is positive definite. On the other hand if
a function φ is (τ+, τ−)-positive definite, with φ(0) = 1, then −τ+ ≤ φ(+) ≤ 1 and
−τ− ≤ φ(−) ≤ 1, which implies (7.10) (see [M1]).

We know that π0
w is uniformly bounded if and only if w ∈ E(τ+, τ−). Now we note

that

w = (α+−γ)(α−−γ)
α+α−

= 1
α+α−

[(
γ − α++α−

2

)2 −
(

α+−α−
2

)2
]

= 1
β+β−(1+τ+)(1+τ−)

[
(λ− x0)

2 −
(

β+(1+τ+)−β−(1+τ−)
2

)2
]
,

(7.12)

which concludes the proof. �

Note that if λ1, λ2 ∈ C correspond to w1, w2 respectively then w1 = w2 if and only if
either λ1 = λ2 or λ1 + λ2 = 2x0.

We denote by E(τ+, τ−, β+, β−) the closed subset of the complex plane described by
(7.11) in the last proposition. Its boundary is an ellipse with the following basic points
(x, 0):

centre: x =
(

β+(1+τ+)−β−(1+τ−)
2

)2

+ β+β−(τ+ + τ−), (7.13.a)

foci: x =
(

β+(1+τ+)−β−(1+τ−)
2

)2

+ β+β−(
√
τ+ ±

√
τ−)2, (7.13.b)

left vertex: x =
(

β+(1+τ+)−β−(1+τ−)
2

)2

− β+β−(1− τ+)(1− τ−), (7.13.c)

right vertex: x =
(

β+(1+τ+)+β−(1+τ−)
2

)2

. (7.13.d)

Let F (τ+, τ−, β+, β−) denote the set of such λ ∈ C that (λ−x0)
2 ∈ E(τ+, τ−, β+, β−).

We can see that F (τ+, τ−, β+, β−) is connected if c− ≤ β+β−(1 − τ+)(1 − τ−), and
otherwise F (τ+, τ−, β+, β−) has two components. Note also that if τ+, τ− < 1 and
β+(1 + τ+) 6= β−(1 + τ−) then there are bounded real spherical functions φλ which are
not (τ+, τ−)-positive definite.

Let us take again the free product group G = G+ ∗G−, and put τ± := (|G±| − 1)−1.
If G+ and G− are finite then the condition

φ �τ (β+δ+ + β−δ−) = λ · φ
is equivalent to

(φ ◦ t) ∗ (β+µ+ + β−µ−) = λ · (φ ◦ t),
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(see Proposition 3.1 in [M1]) where

µ±(x) :=

{
τ± if x ∈ G± \ {e},
0 otherwise.

Let us now specify our results to the particular case which was investigated by
Cartwright and Soardi [CS]. Here we have |G+| = r, |G−| = s, ∞ > r > s ≥ 2,
τ+ = 1/(r−1), τ− = 1/(s−1), β+ = r−1, β− = s−1, so that φλ ◦ t is an eigenfunction
for the convolution with χ1, the characteristic function of elements of length 1 in G.
Proposition 5.6 and 7.5 yield (cf. Theorem 1 in [CS] and Theorem II in [T2]):

Proposition 7.10. Denote by sp(χ1) and spr(χ1) the spectrum of χ1 in C∗(G) and
C∗

r (G) respectively. Then

sp(χ1) = [−2, s− 2] ∪ [r − 2, r + s− 2]

and
spr(χ) = [x0 − x+, x0 − x−] ∪ [x0 + x−, x0 + x+] ∪ {−2, s− 2}

where x0 := (r + s− 4)/2 and

x± :=

√(
r − s

2

)2

+
(√

r − 1±
√
s− 1

)2
. �

Our final proposition is a consequence of Theorem 7.5 (cf. Proposition 8 in [CS]).

Proposition 7.11. Let λ 6= x0 := (r + s − 4)/2 and assume that λ /∈ {−2, s − 2, r −
2, r + s− 2}. Then the spherical function φλ ◦ t on G = G+ ∗G− is a coefficient of the
representation πw, where w = (λ+ 2− r)(λ+ 2− s)/(rs). Moreover

i. πw is fully irreducible.
ii. If (λ− x0)

2 = x+ yi and(
x− b

a+ 1

)2

+

(
y

a− 1

)2

< 1,

where a := (r − 1)(s− 1) and b :=
(

r−s
2

)2
+ r + s− 2, then πw is uniformly bounded.

iii. πw is unitary if and only if

λ ∈ (−2, s− 2) ∪ (r − 2, r + s− 2)

and then φλ ◦ t is positive definite.
The positive definite spherical functions φ−2 ◦ t, φs−2 ◦ t, φr−2 ◦ t and φr+s−2 ◦ t

are coefficients of the unitary representations π00, π01, π10 and π11, respectively. The
representations π10 and π11 are irreducible, while π00 and π01 are contained in the regular
representation of G, and thus they are not irreducible. �

Comparing formulas (7.10) and (7.13.c) one can see that if s > 2 then there are
bounded real spherical functions φλ ◦ t which are not positive definite.
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