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I Research with J.K.Ghosh - mBIC and asymptotic optimality of the
Benjamini-Hochberg procedure

I SLOPE (Sorted L-One Penalized Estimation)

I Adaptive Bayesian version of SLOPE

I Screening Rules for SLOPE

I SLOPE for graphical models

Modified version of BIC (1)

M. B, J.K. Ghosh, R.W. Doerge, Genetics (2004)



Statistical problem

Selecting important genetic markers based on the multiple regression
model:

Xn×p - matrix of genotypes of genetic markers,

Yn×1 - vector of trait values.

Goal: Identify the best model of the form

Y = β01 + XIβI + ε,

I - a subset of {1, . . . , p}, k = |I |, ε ∼ N(0, σ2I ).

mBIC

mBIC: Select the model minimizing

logRSS + k log(n) + 2k log
( p
C

)
,

where RSS is the residual sum of squares,

C is the prior expected value of the number of genetic effects.

mBIC results from supplementing BIC with the Binomial prior B(p,C/p)
on the number of genetic effects.

2 log p term plays a role of the Bonferroni for multiple testing (see e.g.
Bogdan, Ghosh, Żak-Szatkowska, QREI, 2008).

Benjamini-Hochberg correction is better (1)

M.B, J.K.G., S.T.Tokdar, IMS Collections, 2008

M.B, J.K.G, A.Ochman, S.T.Tokdar,QREI, 2007

Multiple testing procedures

X1, . . . ,Xp - independent, Xi ∼ N(µi , σ
2)

H0i : µi = 0

Bonferroni correction: Use significance level αp .

Reject H0i if |Xi | ≥ σΦ−1
(

1− α
2p

)
= σ
√

2 log p(1 + o(1).

Benjamini-Hochberg procedure:

(1) |X |(1) ≥ |X |(2) ≥ . . . ≥ |X |(p)

(2) Find the largest index i such that

|X |(i) ≥ σΦ−1(1− αi ), αi = α
i

2p
. (1)

Call this index iSU.

(3) Reject all H(i)’s for which i ≤ iSU.



Bonferroni correction
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Benjamini and Hochberg correction
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Benjamini-Hochberg correction is better (2)

[B, Ghosh, Tokdar, IMS Collections 2008] and [B, Ghosh, Ochman,
Tokdar QREI, 2007]: empirical comparison of BH with several Bayesian
multiple testing procedures with respect to minimizing the Bayes
classification risk.

γ0 - loss for type I error, γA - loss for type II error

µi ∼ (1− θ)δ0 + θN(0, τ 2)

Bayes oracle → Bayes classifier

M.B, A.Chakrabarti, F.Frommlet, JKG, Ann.Statist. 2011: The rule is
Asymptotically Bayes Optimal under Sparsity (ABOS) if lim R

Ropt
→ 1 (as

p →∞)
BH is ABOS if θ ∝ p−β , β ∈ (0, 1], τ ∝

√
2β log p

Bonferroni correction is ABOS if β = 1

mBIC2

mBIC2 := logRSS + k log n + 2k log(p/4)− 2 log(k!)

F.Frommlet, F.Ruhaltinger, P.Twaróg, MB (2011, CSDA)

M. Żak-Szatkowska and MB (CSDA, 2011)

P.Szulc, F. Frommlet, MB, H. Tang (Gen. Epi. 2017)

For similar criteria see also Foster and George (Biometrika 2000) and
Abramovich, Benjamini, Donoho and Johnstone (Ann. Statist. 2006).

mBIC2 is in some sense asymptotically equivalent to the Bayes rule based
on the uniform prior on {0, . . . , kmax}, where kmax

p → 0.

Problem - numerical complexity of identifying the model minimizing
mBIC2.

Different search strategies implemented in the package bigstep by
P.Szulc.



LASSO

β̂ = argminb∈p (‖y − Xb‖2
`2

+ λ ‖b‖`1 )

If X ′X = I then LASSO selects Xi if and only if

X ′i Y > λ

When βi = 0 then X ′i Y ∼ N
(
0, σ2

)
and the control of FWER is provided

by the Bonferroni correction

λ = σΦ−1

(
1− α

2p

)
≈
√

2 log p

.

Sorted L-One Penalized Estimation
M.B., E.van den Berg, W.Su, E.J.Candès, arxiv 2013
M.B., E.van den Berg, C.Sabatti, W.Su, E.J.Candès, AOAS 2015

Sorted L-One Penalized Estimation

β̂ = argminb∈p ‖y − Xb‖2
`2

+

p∑
i=1

λi |b|(i).

where
∣∣b∣∣

(1)
≥ . . . ≥

∣∣b∣∣
(p)

are ordered magnitudes of coefficients of b

and λ1 ≥ . . . ≥ λp ≥ 0 is the sequence of tuning parameters.

The above optimization problem is convex and can be efficiently solved
even for large design matrices.

Sorted L-One Norm: Jλ(b) =
∑p

i=1 λi
∣∣b∣∣

(i)
reduces to ||b||1 if

λ1 = . . . = λp and to ||b||∞ if λ1 > λ2 = . . . = λp = 0.

Unit balls for different SLOPE sequences by D.Brzyski

(a) (2,2,2) (b) (2,0,0) (c) (3,2,1)

Clustering in the context of portfolio optimization - P. Kremmer, S. Lee, MB
and S. Paterlini ”Journal of Banking and Finance”, 2019

The class of models attainable by SLOPE - U.Schneider and P.Tardivel, arxiv
2020



FDR control with SLOPE

Theorem (B,van den Berg, Su and Candès (2013))
When XTX = I SLOPE with

λi := σΦ−1
(

1− i · q
2p

)
controls FDR at the level q p0

p .

Orthogonal design, n = p = 5000
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Asymptotic minimaxity of SLOPE

Let k = ||β||0 and consider the setup where k/p → 0 and k log p
n → 0.

X is standardized so that each column has a unit L2 norm.

Su and Candès (Annals of Statistics, 2016),

Bellec, Lecué, Tsybakov (2018, AOS):

SLOPE with the BH related sequence of tuning parameters attains
minimax rate for the estimation error ||β̂ − β||2.

SLOPE rate of the estimation error - k log(p/k)

LASSO rate of the estimation error - k log p

Extension to logistic regression by Abramovich and Grinshtein (2018,
IEEE Trans. Inf. Theory)

Predictive properties of SLOPE, Independent predictors

Heat map of MSE (X β̂)

λi = cΦ

(
1− iq

2p

)
, n = p = 1000, k = 20

for i ∈ S , βi =

√
2 log

p

k



Independent predictors

n = p = 1000, k = 100

Correlated predictors

n = p = 1000, k = 20, ρ(Xi ,Xj) = 0.5 for i 6= j

Correlated predictors

n = p = 1000, k = 100

Group SLOPE, (D.Brzyski, A.Gossmann, W.Su and MB,
JASA, 2019)



Selection of the group of predictors

Identification of groups of predictors:

[[β]]I :=
(
‖XI1βI1‖2, . . . , ‖XImβIm‖2

)T
.

βgS := argminb
{1

2

∥∥y − Xb
∥∥2

2
+ σJλ

(
W [[b]]I

)}
,

where W is a diagonal matrix with Wi,i := wi , for i = 1, . . . ,m.

Selection of

λmax
i := max

j=1,...,m

{
1

wj
F−1
χlj

(
1− q · i

m

)}
allows to control group FDR and obtain a minimax rate of estimation of
[[β]]I if variables in different groups are orthogonal to each other.

Heuristic adjustment for the situation when variables in different groups
are independent.

Applications for GWAS

n = 5402, p = 26233 - roughly independent SNPs

Scenario 1: Y = Xβ + z - additive model

Xij =

 −1 for aa
0 for aA
1 for AA

, (2)

Scenario 2: modeling dominance

Zij =

{
−1 for aa,AA

1 for aA
, (3)

y = [X ,Z ][β′X , β
′
Z ]′ + ε .

Simulation results
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Robust regression with SLOPE

A.Virouleau, A.Guilloux, S.Gaiffas, MB (arxiv, 2017)



Mean-shift model for robust regression

Candes and Randall (2006), Gannaz (2006) and McCann and Welsch
(CSDA, 2007) ,

y = Xβ + Iµ+ ε (4)

µ ∈ Rn is the sparse vector of outliers’ effects and ε ∼ N(0, σ2I )

She and Owen (IPOD, JASA, 2012) and Nguyen and Tran (E-lasso, IEEE
Trans. Inf. Th., 2013) use L1 penalty for µ and β

Virouleau, Guilloux, Gaiffas, B (2017) use SLOPE penalties:

min
β∈p,µ∈n

{
‖y − Xβ − µ‖2

2 + 2ρ1Jλ̃(β) + 2ρ2Jλ(µ)

}

λi (β) = σ

√
log
(2p

i

)
, λi (µ) = σ

√
log
(2n

i

)

Estimation properties

Assumptions - restricted eigenvalue condition on X

Satisfied with large probability e.g. if the rows of X are iid gaussian with
a positive definite covariance matrix and the numbers of nonzero
elements in β and µ are sufficiently small

Rates of convergence for

‖β̂ − β‖2
2 + ‖µ̂− µ‖2

2

s = #{i : µi 6= 0} - number of outliers,

NO/SL1 (p ∨ s log(n/s))/n
L1/L1 (k log p ∨ s log n)/n

L1/SL1 (k log p ∨ s log(n/s))/n
SL1/SL1 (k log

(
p/k) ∨ s log

(
n/s))/n

Low dimensional set-up; large outliers
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TPR for outliers detection
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Low dimensional set-up; small outliers
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High dimensional set-up; small outliers
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Gaussian design (1), n = p = 5000
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Problems with FDR control

Similar problems occur for LASSO.

Intuitive explanation:

β̂i = ηλ(βi + X ′i z + vi )

vi = Xi ,
∑
j 6=i

Xj(βj − β̂j)

ηλ(t) = sign(t)(|t| − λ)+, applied componentwise

The magnitude of vi depends on λ (level of shrinkage), the level of
sparsity and magnitude of true signals.

LASSO can identify the true model only if a very stringent
irrepresentability condition is satisfied.

Precise FDR-Power Tradeoff under asymptotic assumptions of AMP
theory is provided in (Su, B, Candès, AOS 2017).

Identifiability condition

Definition (Identifiability)
Let X be a n × p matrix. The vector β ∈ Rp is said to be identifiable
with respect to the l1 norm if the following implication holds

Xγ = Xβ and γ 6= β ⇒ ‖γ‖1 > ‖β‖1. (5)

Theorem (Tardivel, Bogdan, 2019)
For any λ > 0 LASSO can separate well the causal and null features if
and only if vector β is identifiable with respect to l1 norm and mini∈I |βi |
is sufficiently large.

Solutions:

I threshold LASSO estimates (see e.g. LCD knockoffs)

I use adaptive LASSO
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Figure: n = 100, p = 300, in the right panel ρ(Xi ,Xj) = 0.9, vertical lines
correspond to n/(2 log p) and the transition curve of Donoho and Tanner
(2009).
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Figure: n = 100, p = 300, in the right panel ρ(Xi ,Xj) = 0.9 and all signs of
nonzero elements of β are the same.

Adaptive LASSO

Adaptive LASSO [Zou, JASA 2006], [Candès, Wakin and Boyd, J.
Fourier Anal. Appl. 2008]

βaL = argminb

{
1

2

∥∥y − Xb
∥∥2

2
+ λ

p∑
i=1

wi |b|i

}
, (6)

where wi = 1
f (|β̂i |)

, β̂i is some consistent estimator of βi and f is an

increasing function.

Spike and Slab LASSO

V.Rockova, E. George, JASA 2018

LASSO has a Bayesian interpretation as a posterior mode under the
Laplace prior

π(β) = C (λ)
n∏

i=1

e−|βi |λ

Spike and Slab LASSO uses a spike and slab Laplace prior:

γ = (γ1, . . . , γp)

γi = 1 if βi is ”large” and γi = 0 if βi is ”small”

π(β|λ, γ) ∝ c
∑p

i=1 1(γi=1)
p∏

i=1

e−wi |βi |λ0 ,

where wi = 1 if γi = 0 and wi = c ∈ (0, 1) if γi = 1.



Spike and Slab LASSO (2)

The maximum aposteriori rule is given by reweighted LASSO

β̂(γ) = argminb∈Rp
1

2
||y − Xb||22 + λ0

p∑
i=1

wi |bi |

wi = cγi + (1− γi )

Prior for γ: γ1, . . . , γp are iid such that

P(γi = 1) = θ = 1− P(γi = 0)

In consecutive iterations γi is replaced with

πt
i = P(γi = 1|βt , c) =

cθe−c|β
t
i |λ0

cθe−c|β
t
i |λ0 + (1− θ)e−|β

t
i |λ0

and then a new estimate β̂t+1 is calculated by solving reweighted LASSO
with the vector γ replaced with the vector πt .

Borrowing information

When updating i th variable θ is replaced by E (θ|β−i )

λ1 = cλ0 - fixed at some small value

SSL package creates the path of SSL solutions for the sequence of 100 λ0

values

Adaptive SLOPE with missing values (1)

W. Jiang, MB, J.Josse, B.Miasojedow, V.Rockova, TraumaBase Group,
arxiv 2019

Motivation: Paris Hospital

I Traumabase R© data:
20000 major trauma patients × 250 measurements..

Accident type Age Sex Blood Lactate Temperature Platelet
pressure (G/L)

Falling 50 M 140 NA 35.6 150
Fire 28 F NA 4.8 36.7 250
Knife 30 M 120 1.2 NA 270
Traffic accident 23 M 110 3.6 35.8 170
Knife 33 M 106 NA 36.3 230
Traffic accident 58 F 150 NA 38.2 400

I Objective:
Develop models to help emergency doctors make decisions.

Measurements
Predict−→ Platelet ⇒ X

Regression−→ y

I Challenge :

How to select relevant measurements with missing values?



Adaptive Bayesian SLOPE

We propose an adaptive version of Bayesian SLOPE (ABSLOPE). After
standardizing X so each column has a unit L2 norm, the prior for β is

p(β | γ, c, σ2;λ) ∝ c
∑p

j=1 I(γj=1)
∏
j

exp

{
−wj |βj |

1

σ
λr(Wβ,j)

}
,

Interpretation of the model:

I βj is large enough ⇒ true signal; 0 ⇒ noise.

I γj ∈ {0, 1} signal indicator. γj |θ ∼ Bernoulli(θ) and θ the sparsity.

I 1/c ∈ [1,∞): proportional to the average signal magnitude.

I W = diag(w1,w2, · · · ,wp) and its diagonal element:

wj = cγj + (1− γj) =

{
c, γj = 1

1, γj = 0
.

Adaptive Bayesian SLOPE
Advantage of introducing W :

I when γj = 0, wj = 1, i.e., the null variables are treated with the regular
SLOPE penalty

I when γj = 1, wj = c < 1, i.e, smaller penalty λr(Wβ,j) for true predictors
than the regular SLOPE one

(a) Null β (b) Non-null β

Figure: comparison of SLOPE prior and ABSLOPE prior

Major difference between SSL and ABSLOPE

ABSLOPE spike prior is ”fixed” and frequentist motivated, with the aim
of FDR control

Slab component is ”estimated” via the estimation of the average signal
magnitude

Model selection with missing values

Decomposition: X = (Xobs,Xmis)

Pattern: matrix M with Mij =

{
1, if Xij is observed

0, otherwise

Assumption 1: Missing at random (MAR)

p(M | Xobs,Xmis) = p(M | Xobs) ⇒ ignorable missing patterns
e.g. People at older age didn’t tell his income at larger probability.

Assumption 2: Distribution of covariates
Xi ∼i.i.d.Np(µ,Σ), i = 1, · · · , n.
Problem: With NA, only a few methods are available to select a model, and their
performances are limited. For example,

I (Claeskens and Consentino, 2008) adapts AIC to missing values ⇒ Impossible to
deal with high dimensional analysis.

I (Loh and Wainwright, 2012) LASSO with NA
⇒ Non-convex optimization; requires to know bound of ‖β‖1

⇒ difficult in practice

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2008.01003.x
https://projecteuclid.org/euclid.aos/1346850068


ABSLOPE with missingness: Summary

y

Xobs Xmisμ, Σ

θ γ

c
β

σ2

X

`comp = log p(y ,X , γ, c; β, θ, σ2)

= log
{
p(X ; µ,Σ) p(y | X ; β, σ2) p(β; γ, c) p(γ; θ) p(c)

}
Objective: Maximize `obs =

∫∫∫
`comp dXmis dc dθ dγ.

EM algorithm

I E step: evaluate

Qt = E(`comp) wrt p(Xmis, γ, c , θ | y ,Xobs, β
t , σt , µt ,Σt).

I M step: update
βt , σt , µt ,Σt = arg maxQt

Problem: The function Q is not tractable. ⇒
1. Monte Carlo EM ? (Wei and Tanner 1990) Monte Carlo EM ?

Expensive to generate a large number of samples.

2. Stochastic Approximation EM (book, Lavielle 2014)
I One sample in each iteration;

Adapted SAEM algorithm

I E step:
Qt = E(`comp) wrt p(Xmis, γ, c , θ | y ,Xobs, β

t , σt , µt ,Σt).
I Simulation: draw one sample (X t

mis, γ
t , c t , θt) from

p(Xmis, γ, c, θ | y ,Xobs, β
t−1, σt−1, µt−1,Σt−1);

[Gibbs sampling]
I Stochastic approximation: update function Q with

Qt = Qt−1 + ηt
(
`comp(X t

mis, γ
t , c t , θt)− Qt−1

)
.

I M step: βt+1, σt+1, µt+1,Σt+1 = arg maxQt+1.
[When ηt = 1: Reweighted SLOPE, Shrinkage of covariance]

Details of initialization, generating samples and optimization are in the draft (arXiv:1909.06631)

SLOBE

Instead of using Gibbs sampling γ and c are replaced with the
approximation to their conditional expectations given data, β and σ

https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10474930
https://hal.archives-ouvertes.fr/hal-01122873
https://arxiv.org/abs/1909.06631


R package: ABSLOPE

Install package:

library(devtools)

install_github("wjiang94/ABSLOPE")

Main algorithm:

lambda = create_lambda_bhq(ncol(X),fdr=0.10)

list.res = ABSLOPE(X, y, lambda)

Simulation study (200 rep. ⇒ average)
n = p = 100, no correlation and 10% missingness
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(a) Power
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(b) FDR (c) Prediction error

n = p = 100, with 10% missingness and strong signal
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(d) Power
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(e) FDR
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(f) Prediction error

Method comparison

I ABSLOPE and SLOBE

I ncLASSO: non convex LASSO (Loh and Wainwright, 2012)

I MeanImp + SLOPE: Mean imputation followed by SLOPE with known σ

I MeanImp + LASSO: Mean imputation followed by LASSO, with λ tuned
by cross validation

I MeanImp + adaLASSO: Mean imputation followed by adaptive LASSO
(Zou, 2006)

In the SLOPE type methods, λ = BH sequence which controls the FDR at
level 0.1

Method comparison (200 rep. ⇒ average)
500×500 dataset, 10% missingness, Sigmai,j = 0.5|i−j|
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Figure: Comparison of power (a), FDR (b), bias of β (c) and prediction error
(d) with varying sparsity and signal strength, with 10% missingness over 200
simulations in the case with correlation.
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Method comparison (200 rep. ⇒ average)
500×500 dataset, 10% missingness, with correlation
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(a) Bias of β
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(b) Prediction error

Figure: Comparison of power (a), FDR (b), bias of β (c) and prediction error
(d) with varying sparsity and signal strength, with 10% missingness over 200
simulations in the case with correlation.

n = p = 500, Σij = 0.5|i−j |, FDR and Power
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Variables in the TraumaBase data set (APHP)

Goal - quick prediction of the level of platelets

I Age: Age

I SI: Shock index indicates level of occult shock based on heart rate (FC)
and systolic blood pressure (PAS). SI = FC

PAS
. Evaluated on arrival of

hospital.

I PAM: Mean arterial pressure is an average blood pressure in an individual
during a single cardiac cycle, based on systolic blood pressure (PAS) and
diastolic blood pressure (PAD). PAM = 2PAD+PAS

3
. Evaluated on arrival of

hospital.

I delta Hemocue: The difference between the hemoglobin on arrival at
hospital and that in the ambulance.

I Temps.lieux.hop: Time spent in hospital i.e., medicalization time, in
minutes.

I Lactates: The conjugate base of lactic acid.

I Temperature: Patient’s body temperature.

Variables

I FC: heart rate measured on arrival of hospital.

I Remplissage: A volume expander is a type of intravenous therapy that has
the function of providing volume for the circulatory system.

I CGR.dechoc: A binary index which indicates whether the transfusion of
Red Blood Cells Concentrates is performed.

I SI.SMUR: Shock index measured on ambulance.

I PAM.SMUR: Mean arterial pressure measured in the ambulance.

I FC.max: Maximum value of measured heart rate in the ambulance.

I PAS.min: Minimum value of measured systolic blood pressure in the
ambulance.

I PAD.min: Minimum value of measured diastolic blood pressure in the
ambulance.



Percentage of missing values
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Figure: Percentage of missing values in each pre-selected variable from
TraumaBase.

Results

TraumaBase: Measurements
Predict−→ Platelet

Cross-validation: random splits to training and test sets × 10
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I Comparable to random forest

I Interpretable model selection and estimation results

Selected variables

Figure: Number of times that each variable is
selected over 10 replications. Bold numbers indicate
which variables are included in the model selected by
ABSLOPE.

Variable ABSLOPE SLOPE LASSO adaLASSO BIC
Age 10 10 4 10 10
SI 10 2 0 0 9
MBP 1 10 1 10 1
Delta.hemo 10 10 8 10 10
Time.amb 2 6 0 4 0
Lactate 10 10 10 10 10
Temp 2 10 0 0 0
HR 10 10 1 10 10
VE 10 10 2 10 10
RBC 10 10 10 10 10
SI.amb 0 0 0 0 0
MBP.amb 0 0 0 0 0
HR.max 3 9 0 1 0
SBP.min 5 10 10 10 8
DBP.min 2 10 2 1 0
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Selected variables

Method Variables selected
ABSLOPE Age ∗ MBP.amb, Delta.hemo ∗ Lactate

Lactate ∗ RBC, HR ∗ SBP.min

RBC, SBP.min
Age ∗ Lactate, Age ∗ VE

LASSO Delta.hemo ∗ Lactate, Delta.hemo ∗ VE
Lactate ∗ VE, Lactate ∗ RBC

Age ∗ Time.amb, Age ∗ HR
Age ∗ MBP.amb, Age ∗ SBP.min

adaLASSO MBP ∗ HR, Delta.hemo ∗ VE
Lactate ∗ VE,HR ∗ HR.max
HR ∗ SBP.min, VE ∗ RBC

Conclusion & Future research

Conclusion:

I ABSLOPE reduces the estimation bias of large regression coefficients.

I This allows for

1. Improved estimation and prediction properties
2. FDR control under much wider range of scenarios than for regular

SLOPE

I Modeling in a Bayesian framework allows for the estimation of the
structure of predictors such as the signal sparsity and the signal strength;

Future research:

I Deal with other missing mechanisms

I Application for other statistical models (e.g. GLM or Gaussian Graphical
Models)

I Theoretical analysis of statistical properties (asymptotic FDR control,
minimaxity)

I Speeding the SLOPE algorithm

Strong screening rule for SLOPE

J. Larsson, MB, J. Wallin (2020)

Predictor screening rules

Goal
Constructing the SLOPE solution path corresponding to the sequence λj ,
j ∈ {1, . . . ,m} such that for all i ∈ {1, . . . , p}, λji > λj+1

i

Basic idea
Use the solution at the step j to construct a relatively cheap test to
determine which predictors will be inactive before fitting the model for
the step j + 1.

Safe and Heuristic Rules
safe rules certifies that discarded predictors are not in model

heuristic rules may incorrectly discard some predictors, which means
problem must sometimes be solved several times (in
practice never more than twice)



Motivation for lasso strong rule

Assume we are solving the lasso, i.e. minimizing

g(β) + h(β), h(β) := λ

p∑
i=1

|βi |.

KKT stationarity condition is

0 ∈ ∇g(β̂) + ∂h(β̂),

where ∂h(β̂) is the subdifferential for the `1 norm with elements given by

∂h(β̂)i =

{
sign(β̂i )λ β̂i 6= 0

[−λ, λ] β̂i = 0,

which means that |∇g(β̂)i | < λ =⇒ β̂i = 0.

Gradient estimate

Assume that we are fitting a regularization path and have β̂(λ(k−1))—the
solution for λ(k−1)—and want to discard predictors corresponding to the
problem for λ(k).

Basic idea: replace ∇g(β̂) with an estimate and apply the KKT
stationarity criterion, discarding predictors that are estimated to be zero.

What estimate should we use?

The unit slope bound

A simple (and usually conservative) estimate turns out to be
λ(k−1) − λ(k), i.e. assume that the gradient is piece-wise linear function
with slope bounded by 1.
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The strong rule for the lasso

Discard the jth predictor if∣∣∣∇g (β̂(λ(k−1))
)∣∣∣︸ ︷︷ ︸

previous gradient

+λ(k−1) − λ(k)︸ ︷︷ ︸
unit slope bound︸ ︷︷ ︸

gradient prediction for k

< λ(k)

⇐⇒∣∣∣∇g (β̂(λ(k−1))
)∣∣∣ < 2λ(k) − λ(k−1)

Empirical results show that the strong rule leads to remarkable
performance improvements in p � n regime (and no penalty
otherwise) (tibshirani2012).



Strong rule for lasso in action
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Strong rule for SLOPE

Exactly the same idea as for lasso strong rule.

The subdifferential for SLOPE is is the set of all g ∈ Rp such that

gAi =

s ∈ RcardAi
∣∣

cumsum(|s|↓ − λR(s)Ai

) � 0 if βAi = 0,

cumsum(|s|↓ − λR(s)Ai
) � 0

∧
∑

j∈Ai

(
|sj | − λR(s)j

)
= 0 otherwise.


Ai defines a cluster containing indices of coefficients equal in absolute
value.

R(x) is an operator that returns the ranks of elements in |x |.

|x |↓ returns the absolute values of x sorted in non-increasing order.

Strong rule algorithm for SLOPE

Input: c ∈ Rp, λ ∈ Rp, where λ1 ≥ · · · ≥ λp ≥ 0.
0: S,B ← ∅
0: for i ← 1, . . . , p do
0: B ← B ∪ {i}
0: if

∑
j∈B
(
cj − λj

)
≥ 0 then

0: S ← S ∪ B
0: B ← ∅
0: end if
0: end for
0: Return S =0

Set
c := |∇g(β̂) + λ(k−1) − λ(k)|↓ λ := λ(k),

and run the algorithm above; the result is the predicted support for
β̂(λ(k)) (subject to a permutation).

Efficiency for simulated data
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Figure: Gaussian design, X ∈ R200×5000, predictors pairwise correlated with
correlation ρ. There were no violations of the strong rule here.



Efficiency for real data
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Figure: Efficiency for real data sets. The dimensions of the predictor matrices
are 100× 9920 (arcene), 800× 88119 (dorothea), 6000× 4955 (gisette), and
38× 7129 (golub).

Violations

Violations may occur if the unit slope bound fails, which can occur if
ordering permutation of absolute gradient changes, or any predictor
becomes active between λ(k−1) and λ(k).

Thankfully, such violations turn out to be rare.
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Figure: Violations for sorted `1 regularized least squares regression with
predictors pairwise correlated with ρ = 0.5. X ∈ R100×p.

Performance
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Figure: Performance benchmarks for various generalized linear models with
X ∈ R200×20000. Predictors are autocorrelated through an AR(1) process with
correlation ρ.

Algorithms

The original strong rule paper (tibshirani2012) presents two strategies
for using the screening rule. For SLOPE, we have two slightly modified
versions of these algorithms

strong set algorithm
initialize E with strong rule set

1. fit SLOPE to predictors in E
2. check KKT criteria against EC ; if there are any failures, add

predictors that fail the check to E and go back to 1

previous set algorithm
initialize E with ever-active predictors

1. fit SLOPE to predictors in E
2. check KKT criteria against predictors in strong set

I if there are any failures, include these predictors in E and go back to
1

I if there are no failures, check KKT criteria against remaining
predictors; if there are any failures, add these to E and go back to 1



Comparing algorithms

Strong set strategy marginally
better for low–medium
correlation

Previous set strategy starts to
become useful for high
correlation

ρ

tim
e 

(s
)

5

10

15

20

0.0 0.2 0.4 0.6 0.8

st
ro

ng
pr

ev
iou

s
Figure: Performance of strong and
previous set strategies for OLS
problems with varying correlation
between predictors.

Limitations

I the unit slope bound is generally very conservative

I does not use second-order structure in any way

I current methods for solving SLOPE (FISTA, ADMM) do not make
as good use of screening rules as coordinate descent does (for the
lasso)

The SLOPE package for R

Strong screening rule for SLOPE has been implemented in the R package
SLOPE (https://CRAN.R-project.org/package=SLOPE).

Features include

I OLS, logistic, Poisson, and multinomial models

I support for sparse and dense predictors

I cross-validation

I efficient codebase in C++

Proximal Newton solver for SLOPE will be
implemented this summer with the Google
Summer of Code program.

https://CRAN.R-project.org/package=SLOPE
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