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Outline Modified version of BIC (1)

M. B, J.K. Ghosh, R.W. Doerge, Genetics (2004)

» Research with J.K.Ghosh - mBIC and asymptotic optimality of the
Benjamini-Hochberg procedure

SLOPE (Sorted L-One Penalized Estimation)
Adaptive Bayesian version of SLOPE
Screening Rules for SLOPE

SLOPE for graphical models
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Statistical problem

Selecting important genetic markers based on the multiple regression
model:

Xaxp - matrix of genotypes of genetic markers,
Yax1 - vector of trait values.

Goal: Identify the best model of the form

Y =Bl + X8 +¢,

I - asubset of {1,...,p}, k=1l|, e ~ N(0,02]).

Benjamini-Hochberg correction is better (1)

M.B, J.K.G., S.T.Tokdar, IMS Collections, 2008
M.B, J.K.G, A.Ochman, S.T.Tokdar, QREI, 2007

mBIC

mBIC: Select the model minimizing
log RSS + klog(n) + 2k log (%) ,

where RSS is the residual sum of squares,
C is the prior expected value of the number of genetic effects.

mBIC results from supplementing BIC with the Binomial prior B(p, C/p)
on the number of genetic effects.

2log p term plays a role of the Bonferroni for multiple testing (see e.g.
Bogdan, Ghosh, Zak-Szatkowska, QREI, 2008).

Multiple testing procedures

Xi,...,Xp - independent, X; ~ N(p;,0?)

Hoi - p1j =0

Bonferroni correction: Use significance level %.

Reject Hoi if | Xi| > 001 (1 - %) = oy/2log p(1 + o(1).
Benjamini-Hochberg procedure:
(1) Xl = Xl@) = - = Xl
(2) Find the largest index i such that
X[y > 00 (1 —a)), o= ai. 1)
Call this index isy.
(3) Reject all Hjy's for which i < isy.



Bonferroni correction Benjamini and Hochberg correction
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Benjamini-Hochberg correction is better (2) mBIC2
[B, Ghosh, Tokdar, IMS Collections 2008] and [B, Ghosh, Ochman, mBIC2 := log RSS + klog n + 2k log(p/4) — 2 log(k!)

Tokdar QREI, 2007]: empirical comparison of BH with several Bayesian

multiple testing procedures with respect to minimizing the Bayes
classification risk. F.Frommlet, F.Ruhaltinger, P.Twarég, MB (2011, CSDA)

Yo - loss for type | error, ya - loss for type Il error M. Zak-Szatkowska and MB (CSDA, 2011)
i ~ (1 — 0)d0 + ON(0, 72) P.Szulc, F. Frommlet, MB, H. Tang (Gen. Epi. 2017)

Bayes oracle — Bayes classifier For similar criteria see also Foster and George (Biometrika 2000) and
Abramovich, Benjamini, Donoho and Johnstone (Ann. Statist. 2006).

M.B, A.Chakrabarti, F.Frommlet, JKG, Ann.Statist. 2011: The rule is mBIC2 is in some sense asymptotically equivalent to the Bayes rule based
Asymptotically Bayes Optimal under Sparsity (ABOS) if lim % —1 (as on the uniform prior on {0, ..., kmax }, where kmf — 0.

p — ) Problem - numerical complexity of identifying the model minimizing

BH is ABOS if § o p~#, 8 € (0,1], 7 /2B log p mBIC2.

Bonferroni correction is ABOS if § =1 Different search strategies implemented in the package bigstep by

P.Szulc.



LASSO Sorted L-One Penalized Estimation

M.B., E.van den Berg, W.Su, E.J.Candeés, arxiv 2013
M.B., E.van den Berg, C.Sabatti, W.Su, E.J.Candes, AOAS 2015

B = argminses (|ly — XblI7, + A blle,)
If X’X = I then LASSO selects X; if and only if
XY >\

When f3; = 0 then X/Y ~ N (0,02) and the control of FWER is provided
by the Bonferroni correction

A=oc0! (1—%) ~ \/2logp

Sorted L-One Penalized Estimation Unit balls for different SLOPE sequences by D.Brzyski
A P ol o o .
B = argminses ||y — Xb|I7, + Y Nilblg)- ”
i=1 o .
where |b|(1) > > ‘b‘(P) are ordered magnitudes of coefficients of b N hy
and A\; > ... > A, > 0 is the sequence of tuning parameters. a[i\\ B 5 "’3;\/\ N
The above optimization problem is convex and can be efficiently solved "—o\z:‘;\\/;;‘i;’;/" " ol U\:: v/il;:X‘;/ h

even for large design matrices.

Sorted L-One Norm: J\(b) = >°F_, )\;‘b‘(i) reduces to ||b|| if

M=...=X and to |[bllec if Ay > Ao =...= A, =0. Clustering in the context of portfolio optimization - P. Kremmer, S. Lee, MB
i i and S. Paterlini " Journal of Banking and Finance”, 2019

The class of models attainable by SLOPE - U.Schneider and P.Tardivel, arxiv
2020

(2) (222) (b) (20,0) (c) (3:2.1)



FDR control with SLOPE

Theorem (B,van den Berg, Su and Candés (2013))
When X7 X = | SLOPE with

Aii= 0¢_1<1 —i- %)

controls FDR at the level q% .

Asymptotic minimaxity of SLOPE

Let k = ||B]|o and consider the setup where k/p — 0 and &ngp — 0.

X is standardized so that each column has a unit L, norm.

Su and Candes (Annals of Statistics, 2016),
Bellec, Lecué, Tsybakov (2018, AOS):

SLOPE with the BH related sequence of tuning parameters attains

minimax rate for the estimation error ||3 — 3||2.

SLOPE rate of the estimation error - k log(p/k)
LASSO rate of the estimation error - k log p

Extension to logistic regression by Abramovich and Grinshtein (2018,

IEEE Trans. Inf. Theory)

Orthogonal design, n = p = 5000
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Predictive properties of SLOPE, Independent predictors

Heat map of MSE(X})
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Independent predictors Correlated predictors

n=p=1000, k = 100 n=p=1000, k = 20, p(X;, Xj) = 0.5 for i # j
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Correlated predictors Group SLOPE, (D.Brzyski, A.Gossmann, W.Su and MB,
JASA, 2019)

n = p = 1000, k = 100
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Selection of the group of predictors Applications for GWAS

Identification of groups of predictors:
n = 5402, p = 26233 - roughly independent SNPs

T . ..
8 = (||X/1ﬂ/1||2, sy HXImﬁlmHz) . Scenario 1: Y = X + z - additive model
1 ) —1 for aa
(85 := argmin, {EHy — XbH2 +0J,\(W[[b]],)}, Xij = 0 for aA ,
. ) o . 1 for AA
where W is a diagonal matrix with W;; := w;, for i =1,..., m.
Selection of Scenario 2: modeling dominance
max . 1 -1 9 i
Aj ,:j=T?§m {WFX’J (1 - 7) } 7 —1 for aa, AA
! v 1 for aA ’

allows to control group FDR and obtain a minimax rate of estimation of
[[8]]s if variables in different groups are orthogonal to each other. y =[X,Z][B%,B7] +¢€ .

Heuristic adjustment for the situation when variables in different groups
are independent.

Simulation results Robust regression with SLOPE
y y A.Virouleau, A.Guilloux, S.Gaiffas, MB (arxiv, 2017)
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g - 4
4 gSLOPE _
x o « SLOPE_X g
2 21 = SLOPE_XZ £
B °
= 2z
£ 8| g
g s i
8 |
o T T T T T
0 20 40 60 80
Number of relevant groups Number of relevant groups
- FDR, dominance Power, dominance
= I
IS

0.10

Estimated FDR
0.05
L
Estimated Power

T T T T T
0 20 40 60 80

Number of relevant groups Number of relevant groups



Mean-shift model for robust regression Estimation properties

Candes and Randall (2006), Gannaz (2006) and McCann and Welsch

(CSDA, 2007) , Assumptions - restricted eigenvalue condition on X

Satisfied with large probability e.g. if the rows of X are iid gaussian with
y=XB+lu+e (4) a positive definite covariance matrix and the numbers of nonzero
elements in 8 and p are sufficiently small

- o N 2
i € R™ is the sparse vector of outliers’ effects and ¢ ~ N(0,0°/) Rates of convergence for

She and Owen (IPOD, JASA, 2012) and Nguyen and Tran (E-lasso, IEEE

3 2 1 2
Trans. Inf. Th., 2013) use L; penalty for y and 3 15 = BlIz + 142 = nll2

Virouleau, Guilloux, Gaiffas, B (2017) use SLOPE penalties: s— #{i pi £ 0} - number of outliers
min, {ly = X6~ I3 + 200 5(6) + 20200}
perne NO/SL1 (pVslog(n/s))/n
L1/L1 (klogpV slogn)/n

L1/SL1 (klog pV slog(n/s))/n

NB) = o /Iog (2717>7 M) = o /log (?) SL1/SL1 (klog (p/k) V slog (n/s))/n

Low dimensional set-up; large outliers Low dimensional set-up; small outliers
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High dimensional set-up; small outliers

FDR for outliers detection B Power for outliers detection

f‘:t
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Problems with FDR control

Similar problems occur for LASSO.

Intuitive explanation:
Bi=m(Bi+ Xz +v)
vi=Xi, > X8 - B)
J#i
na(t) = sign(t)(|t] — A)+, applied componentwise
The magnitude of v; depends on A (level of shrinkage), the level of

sparsity and magnitude of true signals.
LASSO can identify the true model only if a very stringent
irrepresentability condition is satisfied.

Precise FDR-Power Tradeoff under asymptotic assumptions of AMP
theory is provided in (Su, B, Candes, AOS 2017).

Gaussian design (1), n = p = 5000
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Identifiability condition

Definition (Identifiability)
Let X be a n x p matrix. The vector 5 € RP is said to be identifiable
with respect to the /* norm if the following implication holds

Xy =Xpand v # B = |[vll1 > [I8]l1- (5)

Theorem (Tardivel, Bogdan, 2019)

For any A > 0 LASSO can separate well the causal and null features if
and only if vector (3 is identifiable with respect to h norm and min;c;|5;|
is sufficiently large.

Solutions:
» threshold LASSO estimates (see e.g. LCD knockoffs)
» use adaptive LASSO



Curves setting 2, positive components

uncorrelated design strongly correlated design
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Figure: n =100, p = 300, in the right panel p(Xi, X;) = 0.9, vertical lines
correspond to n/(2log p) and the transition curve of Donoho and Tanner

(2009). k: sparsity

Figure: n =100, p = 300, in the right panel p(Xi, Xj) = 0.9 and all signs of
nonzero elements of 3 are the same.

Adaptive LASSO Spike and Slab LASSO

V.Rockova, E. George, JASA 2018

LASSO has a Bayesian interpretation as a posterior mode under the
Laplace prior

Adaptive LASSO [Zou, JASA 2006], [Candés, Wakin and Boyd, J. ST
Fourier Anal. Appl. 2008] (8) = C()\)He .
i=1
, 1 2 a
BaL = argminy, EHY - XbH2 + )\Z wilbli ¢, (6) Spike and Slab LASSO uses a spike and slab Laplace prior:
i=1
where w; = m B,- is some consistent estimator of 3; and f is an ¥ =71 %)

increasing function. ~i = 1if Bjis "large” and ~; = 0 if 3; is "small”

p
W(ﬁl)‘v 7) . CZL 1(vi=1) H e*W;l@i‘)\07
i=1

where w; = 1if v, =0and w; = c € (0,1) if 3, = 1.



Spike and Slab LASSO (2) Borrowing information

The maximum aposteriori rule is given by reweighted LASSO

. ] 1 P
B(v) = argminsers 5 |ly — Xb|[5+ Ao ; w;| bl

w; = i + (1 =) When updating it variable 6 is replaced by E(0|5_;)

Prior for 4: 71,...,7, are iid such that A1 = ¢)o - fixed at some small value

P(yi=1)=0=1—- P(y; =0) SSL package creates the path of SSL solutions for the sequence of 100 \g
values
In consecutive iterations ; is replaced with

che—<lBi o
che=clFilPo 1 (1 — g)e~ 151

wf = Pl = 118", ¢) =

and then a new estimate 3+ is calculated by solving reweighted LASSO
with the vector « replaced with the vector 7t.

Adaptive SLOPE with missing values (1) Motivation: Paris Hospital
W. Jiang, MB, J.Josse, B.Miasojedow, V.Rockova, TraumaBase Group,
arxiv 2019 -
i > Traumabase® data:
) 20000 major trauma patients X 250 measurements..
Accident type Age Sex Blood Lactate  Temperature  Platelet
pressure (G/L)
Falling 50 M 140 35.6 150
Fire 28 F 4.8 36.7 250
Knife 30 M 120 1.2 270
Traffic accident 23 M 110 3.6 35.8 170
Knife 33 M 106 36.3 230
Traffic accident 58 F 150 38.2 400
> Objective:
Develop models to help emergency doctors make decisions.
Predict Regression

Measurements — Platelet = X =——

> Challenge :
How to select relevant measurements with missing values?




Adaptive Bayesian SLOPE

We propose an adaptive version of Bayesian SLOPE (ABSLOPE). After
standardizing X so each column has a unit L, norm, the prior for (3 is

2 P (=1 1
p(B |7, c,0%A) o = 10 )Hexp{—""f\ﬂf\;/\r(ww}’
J

Interpretation of the model:
» [ is large enough = true signal; 0 = noise.
> ~; € {0,1} signal indicator. 7;|0 ~ Bernoulli(f) and 6 the sparsity.
» 1/c €[1,00): proportional to the average signal magnitude.

> W = diag(wi, ws, -+ ,w,) and its diagonal element:

¢ =1

vw:cvﬁ(l—w):{l =0
k] il

Major difference between SSL and ABSLOPE

ABSLOPE spike prior is "fixed” and frequentist motivated, with the aim
of FDR control

Slab component is "estimated” via the estimation of the average signal
magnitude

Adaptive Bayesian SLOPE

Advantage of introducing W:
» when v; =0, w; =1, i.e., the null variables are treated with the regular
SLOPE penalty
> when v; =1, w; = ¢ < 1, i.e, smaller penalty X\, (s ) for true predictors
than the regular SLOPE one

Prior

— nestore

prior density
prior density

Prior
— AesiopeasLopE
— stope

o 5 ] H ) 0 5 1] H k)
beta beta

(a) Null B (b) Non-null 8
Figure: comparison of SLOPE prior and ABSLOPE prior

Model selection with missing values

Decomposition: X = (Xobs, Xmis)
1, if Xj; is observed

Pattern: matrix M with M;; = .
0, otherwise

Assumption 1: Missing at random (MAR)

P(M | Xobss Xmis) = P(M | Xobs) = ignorable missing patterns
e.g. People at older age didn't tell his income at larger probability.

Assumption 2: Distribution of covariates
Xi~iid Np(u,X), i=1,--,n.
Problem: With NA, only a few methods are available to select a model, and their
performances are limited. For example,
» (Claeskens and Consentino, 2008) adapts AIC to missing values = Impossible to
deal with high dimensional analysis.
> (Loh and Wainwright, 2012) LASSO with NA
= Non-convex optimization; requires to know bound of ||3][1
= difficult in practice


https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2008.01003.x
https://projecteuclid.org/euclid.aos/1346850068

ABSLOPE with missingness: Summary

[
o
@

X

Leomp =logp(y, X, v, ¢; B,0,0%)
=log {p(X: wX)ply | X; B,6%)p(B; 7, ) p(; 9)p(6)}
Objective: Maximize lops = [[[ Leomp dXmis dc dO d7.

Adapted SAEM algorithm

» E step:

Qt = IE(‘gcomp) wrt P(Xmim’Yv c, 0 ‘ Y7X0bsvﬁt70't7ut7 zt)

» Simulation: draw one sample (X%, 7", ¢, 0") from

P(Xunis; 7, 6,0 | y, Xobs, 871,07, pf 7L T
[Gibbs sampling]
» Stochastic approximation: update function Q with

Q"= Q@+ e (Leomp(Xiusr ', 5,07 — @)

> M step: B+, ot pttl T = arg max QL.

[When 7, = 1: Reweighted SLOPE, Shrinkage of covariance]

Details of initialization, generating samples and optimization are in the draft (arXiv:1909.06631)

EM algorithm

» E step: evaluate
Qt = ]E(ECOmP) wrt p(XIniS7’Yv c, 0 ‘ Y5 Xobss ﬂtv Utv th7 Zt)-

» M step: update
Bt ot put, Xt = arg max QF

Problem: The function Q is not tractable. =

1. Monte Carlo EM ? (Wei and Tanner 1990) Mente-CatloEM-—2
Expensive to generate a large number of samples.

2. Stochastic Approximation EM (book, Lavielle 2014)
» One sample in each iteration;

SLOBE

Instead of using Gibbs sampling v and c¢ are replaced with the
approximation to their conditional expectations given data,  and o


https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10474930
https://hal.archives-ouvertes.fr/hal-01122873
https://arxiv.org/abs/1909.06631

R package: ABSLOPE

Install package:

library(devtools)
install_github("wjiang94/ABSLOPE")

Main algorithm:

lambda = create_lambda_bhq(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda)

Method comparison

vyvvyVvYy

>

ABSLOPE and SLOBE
ncLASSO: non convex LASSO (Loh and Wainwright, 2012)
Meanlmp + SLOPE: Mean imputation followed by SLOPE with known &

Meanlmp + LASSO: Mean imputation followed by LASSO, with A tuned
by cross validation

Meanlmp + adaLASSO: Mean imputation followed by adaptive LASSO
(Zou, 2006)

In the SLOPE type methods, A = BH sequence which controls the FDR at
level 0.1

Simulation study (200 rep. = average)

n = p =100, no correlation and 10% missingness

Numb
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Method comparison (200 rep. = average)
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Figure: Comparison of power (a), FDR (b), bias of 3 (c) and prediction error
(d) with varying sparsity and signal strength, with 10% missingness over 200
simulations in the case with correlation.


https://projecteuclid.org/euclid.aos/1346850068
https://www.tandfonline.com/doi/abs/10.1198/016214506000000735

Method comparison (200 rep. = average)

500%500 dataset, 10% missingness, with correlation

5 > 5
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(a) Bias of

(b) Prediction error

Figure: Comparison of power (a), FDR (b), bias of 8 (c) and prediction error
(d) with varying sparsity and signal strength, with 10% missingness over 200
simulations in the case with correlation.

Variables in the TraumaBase data set (APHP)

Goal - quick prediction of the level of platelets

>
>

Age: Age

SI: Shock index indicates level of occult shock based on heart rate (FC)
and systolic blood pressure (PAS). SI = %. Evaluated on arrival of
hospital.

PAM: Mean arterial pressure is an average blood pressure in an individual
during a single cardiac cycle, based on systolic blood pressure (PAS) and
diastolic blood pressure (PAD). PAM = ZPADLPAS - Eyalyated on arrival of
hospital.

delta_Hemocue: The difference between the hemoglobin on arrival at
hospital and that in the ambulance.

Temps.lieux.hop: Time spent in hospital i.e., medicalization time, in
minutes.

Lactates: The conjugate base of lactic acid.

Temperature: Patient’s body temperature.

n=p =500, ¥; =057 FDR and Power

Percentage NA
—~— 01
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—— 03

Percentage NA
— o1
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— 03

025

2 40 60
Number of relevant features

Variables

>
>
>

>
>
>
>

>

FC: heart rate measured on arrival of hospital.

Remplissage: A volume expander is a type of intravenous therapy that has
the function of providing volume for the circulatory system.

CGR.dechoc: A binary index which indicates whether the transfusion of
Red Blood Cells Concentrates is performed.

S1.SMUR: Shock index measured on ambulance.
PAM.SMUR: Mean arterial pressure measured in the ambulance.
FC.max: Maximum value of measured heart rate in the ambulance.

PAS.min: Minimum value of measured systolic blood pressure in the
ambulance.

PAD.min: Minimum value of measured diastolic blood pressure in the
ambulance.



Percentage of missing values Results

Predict
TraumaBase: Measurements — Platelet

Cross-validation: random splits to training and test sets x 10
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Figure: Percentage of missing values in each pre-selected variable from RE ABSLOPE adalASSO  BIC ssL LASSO
TraumaBase.

» Comparable to random forest
» Interpretable model selection and estimation results
Selected variables With interactions

Figure: Number of times that each variable is g :
selected over 10 replications. Bold numbers indicate °
which variables are included in the model selected by 3 .
ABSLOPE. 2 I
] —
o N :
& |  —
Variable ABSLOPE SLOPE LASSO adalLASSO BIC z :
Age 10 10 4 10 10 8 , —
S| 10 2 0 0 9 ° i
MBP 1 10 1 10 1 8 :
Delta.hemo 10 10 8 10 10 °
Time.amb 2 6 0 4 0 84 3
Lactate 10 10 10 10 10 — : : .
Temp 2 10 0 0 0 RF ABSLOPE adaLASSO LASSO
HR 10 10 1 10 10
VE 10 10 2 10 10
RBC 10 10 10 10 10
Sl.amb 0 0 0 0 0
MBP.amb 0 0 0 0 0
HR.max 3 9 0 1 0
SBP.min 5 10 10 10 8
DBP.min 2 10 2 1 0




Selected variables

Method Variables selected

ABSLOPE  Age * MBP.amb, Delta.hemo * Lactate
Lactate * RBC, HR * SBP.min

RBC, SBP.min
Age  Lactate, Age * VE
LASSO Delta.hemo * Lactate, Delta.hemo * VE
Lactate * VE, Lactate x RBC

Age x Time.amb, Age x HR
Age * MBP.amb, Age * SBP.min
adaLASSO MBP x HR, Delta.hemo * VE
Lactate * VE,HR x HR.max
HR % SBP.min, VE x RBC

Strong screening rule for SLOPE

J. Larsson, MB, J. Wallin (2020)

Conclusion & Future research

Conclusion:
» ABSLOPE reduces the estimation bias of large regression coefficients.
» This allows for

1. Improved estimation and prediction properties
2. FDR control under much wider range of scenarios than for regular
SLOPE

» Modeling in a Bayesian framework allows for the estimation of the
structure of predictors such as the signal sparsity and the signal strength;

Future research:
» Deal with other missing mechanisms

> Application for other statistical models (e.g. GLM or Gaussian Graphical
Models)

> Theoretical analysis of statistical properties (asymptotic FDR control,
minimaxity)

> Speeding the SLOPE algorithm

Predictor screening rules

Goal
Constructing the SLOPE solution path corresponding to the sequence N,
j€{1,...,m} such that for all i € {1,...,p}, X > Xi**

Basic idea

Use the solution at the step j to construct a relatively cheap test to
determine which predictors will be inactive before fitting the model for
the step j + 1.

Safe and Heuristic Rules
safe rules certifies that discarded predictors are not in model

heuristic rules may incorrectly discard some predictors, which means
problem must sometimes be solved several times (in
practice never more than twice)



Motivation for lasso strong rule

Assume we are solving the lasso, i.e. minimizing
P
gB)+h(B),  h(B)=A>_ I8
i=1

KKT stationarity condition is
0 € Vg(5) + 0h(5),

where 9h(f) is the subdifferential for the £; norm with elements given by

sign(B)A B #0

Oh(B)i = {[—A, A Bi=o,

which means that |Vg(B)i| < A = B;=0.

The unit slope bound

A simple (and usually conservative) estimate turns out to be

AK=1) _ \(K) i e assume that the gradient is piece-wise linear function

with slope bounded by 1.
T

T
1] , :
a
= 05| , .
> AK=1) _ z(k)
ol AR k=1 i
| I |
0 0.5 1

A

Gradient estimate

Assume that we are fitting a regularization path and have S(A(k~1))—the
solution for A(k~1)—and want to discard predictors corresponding to the
problem for A(K).

Basic idea: replace Vg(f3) with an estimate and apply the KKT
stationarity criterion, discarding predictors that are estimated to be zero.

What estimate should we use?

The strong rule for the lasso

Discard the jth predictor if

‘vg (ﬁ(,\(k—l))>‘ LAY 3R £ \®)
N— ————

- X unit slope bound
previous gradient

gradient prediction for k

e
‘Vg </§’(/\(k’1))>’ < 2200 _ (k1)
Empirical results show that the strong rule leads to remarkable

performance improvements in p > n regime (and no penalty
otherwise) (tibshirani2012).



Strong rule for lasso in action Strong rule for SLOPE

25 | Exactly the same idea as for lasso strong rule.
The subdifferential for SLOPE is is the set of all g € RP such that
1 - -
cumsum(|s|, — Ags),,) 20 if B4, =0,
‘@ ol | g4, ={S€ Reard A; | cumsum(|s|; — )‘R(s)A,v) <0
|§° ADiea (Isil = Ar(s);) =0 otherwise.
1l i A; defines a cluster containing indices of coefficients equal in absolute
value.
) R(x) is an operator that returns the ranks of elements in |x|.
|x|; returns the absolute values of x sorted in non-increasing order.
Strong rule algorithm for SLOPE Efficiency for simulated data
Input: c € R, A € R?, where \; > --- > ), > 0. screened - acle oo o
0SB o T . T
0: fori<+1,...,pdo
0. B+ BU{i} g 4000 -
| D (¢j— Aj) >0 then % 2000 4 |
0: S+ SuUB 5
0 B+ o g 2000 L
0 end if g 1000 4 L
0: end for 2
O: Return S :0 T T T T T T T T T T T T T T T ]
1.0 0.8 0.6 0.4 0.2 1.0 0.8 0.6 0.4 0.2
Set o/max (o)

c = |Vg(B) + Ak _ 0 = 2R
Figure: Gaussian design, X € R¥*%0%0  predictors pairwise correlated with

and run the algorithm above; the result is the predicted support for correlation p. There were no violations of the strong rule here.

B(A)Y (subject to a permutation).



Efficiency for real data

screened —— active ----
0 20 40 60 80 100
L L L L L L L L L L L
[ OoLS logistic 10
H o 0.8
1z o6
40 o4
4 Io.2
" 107 - 0.0
§ 0.8 1 a -
R i
T 0213 L
S 004 L
5 0.0 1.0
™ o8
& A5 Los
g 19 o4
5] 1% Io.2
= ] —— —— L
10 0.0
0848 -
064E +
0449 L
0248 o
0.0 4 = -
T T T T T — T T T T T T
0 20 40 60 80 100
penalty index

Figure: Efficiency for real data sets. The dimensions of the predictor matrices
are 100 x 9920 (arcene), 800 x 88119 (dorothea), 6000 x 4955 (gisette), and
38 x 7129 (golub).

Performance

screening [ no screening [__]
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Figure: Performance benchmarks for various generalized linear models with
X € R200%20000  predictors are autocorrelated through an AR(1) process with
correlation p.

Violations

Violations may occur if the unit slope bound fails, which can occur if
ordering permutation of absolute gradient changes, or any predictor
becomes active between Ak—1) and A(¥).

Thankfully, such violations turn out to be rare.
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E 1050201 0.02 1050201 0.02 1050201 0.02

o/max (o)

Figure: Violations for sorted ¢; regularized least squares regression with
predictors pairwise correlated with p = 0.5. X € R10%P,

Algorithms

The original strong rule paper (tibshirani2012) presents two strategies
for using the screening rule. For SLOPE, we have two slightly modified
versions of these algorithms

strong set algorithm
initialize £ with strong rule set
1. fit SLOPE to predictors in £

2. check KKT criteria against EC. if there are any failures, add
predictors that fail the check to £ and go back to 1

previous set algorithm
initialize £ with ever-active predictors
1. fit SLOPE to predictors in £
2. check KKT criteria against predictors in strong set
> if there are any failures, include these predictors in £ and go back to
1
> if there are no failures, check KKT criteria against remaining
predictors; if there are any failures, add these to £ and go back to 1



Comparing algorithms Limitations

» the unit slope bound is generally very conservative

» does not use second-order structure in any way

Strong set strategy marginally % §

better for low—medium 101 F

correlation ¢ » current methods for solving SLOPE (FISTA, ADMM) do not make
. 51 r as good use of screening rules as coordinate descent does (for the

Previous set strategy starts to - lasso)

become useful for high
correlation

00 02 04 06 08

Figure: Performance of strong and
previous set strategies for OLS
problems with varying correlation
between predictors.

The SLOPE package for R

Strong screening rule for SLOPE has been implemented in the R package
SLOPE (https://CRAN.R-project.org/package=SLOPE).
Features include
» OLS, logistic, Poisson, and multinomial models
» support for sparse and dense predictors
» cross-validation
> efficient codebase in C++
Proximal Newton solver for SLOPE will be

implemented this summer with the Google
Summer of Code program.


https://CRAN.R-project.org/package=SLOPE
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