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Testing for Global Null and Multiple Testing

Model selection in multiple regression - Information Criteria

Regularization techniques (1)

Regularization techniques (2)
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Analysis of Large Data

Classical example: Principle Components Analysis

Xn×p - data matrix

Assumption - X = M + E , where M is a low rank matrix
representing the signal and E is a random noise

Goal - recovering M, separating signal from the noise

Purpose - understanding the biological/economical etc phenomena
which generate the data, data compression (few basis vectors
[principal components] may contain most of the information in the
data), missing values imputation

General goal of large data analysis - separating the signal from
noise, identifying the low dimensional structure spanning the noisy
data

Major problem - multiple comparisons, multiple testing (in PCA
selection of nonzero singular values)

Maªgorzata Bogdan SLOPE

Identifying genes associated with cancer

Xn1×p - expressions of p genes for n1 healthy individuals

Yn2×p - expressions of p genes for n2 cancer patients

Assumption: Xij for i = 1, . . . , n1 are iid with E (Xij) = µ1j and
Var(Xij) = σ21j <∞
Yij for i = 1, . . . , n2 are iid with E (Yij) = µ2j and
Var(Yij) = σ22j <∞
Gene j is associated with cancer if µ1j 6= µ2j

We test H0j : µ1j = µ2j with a t-test tj =
X̄·j−Ȳ·j

S(X̄·j−Ȳ·j )
, where

S(X̄·j − Ȳ·j) is the estimate of the standard deviation of X̄·j − Ȳ·j

If n1 and n2 are large enough then tj ∼ N(µj , 1) with

µj =
µ1j−µ2j

σ1j/
√
n1+σ2j/

√
n2

and H0j : µj = 0
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Multiple testing (1)

Xi ∼ N(µi , 1), i = 1, . . . , p

H0i : µi = 0 vs µi 6= 0

Reject H0i when |Xi | > c

Multiple comparison problem: if all µi s are equal to zero than
max(|X1|, . . . , |Xp|) =

√
2 log p(1 + op)

Thus to separate signal from noise we need c = c(p)→∞ as
p →∞.
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Testing for global null, Bonferroni procedure

Xi ∼ N(µi , 1), i = 1, . . . , p

H0i : µi = 0 vs µi 6= 0

H0 :

p⋂
i=1

H0i

Bonferroni procedure: Reject H0 when

max(|X1|, . . . , |Xp|) ≥ Φ−1
(
1− α

2p

)
= cBon

Probability of type I error:

PH0

 p⋃
j=1

{|Xj | > cBon}

 ≤ p∑
j=1

P({|Xj | > cBon} = α
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Exact type I error of Bonferroni

Due to independence

P(Type I Error) = 1− PH0

 p⋂
j=1

{|Xj | < cBon}


= 1−

(
1− α

p

)p

→ 1− e−α = α + o(α)

α = 0.05 , n = 30000,P(Type I Error) ≈ 0.0488
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Needle in haystack

Needle in haystack: for some i ∈ {1, , p}, µi = µp and for all
j 6= i , µj = 0
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How long needle can be found ?

CBon =
√

2 log p(1 + op)

If µp = (1 + ε)
√
2 log p then power of Bonferroni converges to 1

If µp = (1− ε)
√
2 log p then power of Bonferroni converges to

q(α) < α.

Is there a test procedure which can �nd a shorter needle ?
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Neyman-Person test for the needle in haystack problem

H0: x = (x1, . . . , xp) has the likelihood L0(x)

HA: x has the likelihood LA(x)

Neyman-Pearson optimal test (maximal power for a given type I
error) has the form

Reject H0 for large values of L(x) = LA(x)
L0(x)

Bayesian model for �needle in haystack� problem

H0 : µ = (µ1, . . . , µp) = 0

HA : µ ∼ 1

p

p∑
i=1

δµi

δµi : P ({µi = µp, µj = 0 for j 6= i}) = 1

Interpretation: under HA there is just one signal of known
magnitude µp but we do not know where and assume a uniform
distribution over i ∈ {1, . . . , p}.
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Neyman-Pearson test for the needle in haystack problem (2)

L(x) =
1

p

p∑
i=1

exiµ
p− 1

2
(µp)2

If µp = (1− ε)
√
2 log p then the power of Neyman-Pearson test at

the signi�cance level α converges to α as p →∞

Interpretation - Bonferroni correction has asymptotically optimal
detection region under the needle in haystack problem
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Chi-square test (1)

Reject H0 when ||X ||2 =
∑p

i=1 X
2
i > χ2p(1− α)

Under H0: T = ||X ||2−p√
2p
→ N(0, 1)

Under H1: ||X ||2 =
∑

i=1(µi + Zi )
2, Zi ∼ N(0, 1)

E (µi + Zi )
2 = µ2i + 1, Var(µi + Zi )

2 = 4µ2i + 2

E
(
||X ||2

)
= ||µ||2 + p, Var

(
||X ||2

)
= 4||µ||2 + 2p

If ||µ||2/p → 0 then
||X ||2 − (p + ||µ2||)√

2p + 4||µ||2
→ N(0, 1)
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Chi-square test (2)

For large p

T ∼ N

(
θ, 1 +

θ√
p/8

)
with θ =

||µ||2√
2p

Power of the chi-square test converges to 1 if ||µ||
2

√
p →∞

Power of the chi-square test converges to α if ||µ||
2

√
p → 0
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Can we do better ?

Bayesian model for equally distributed signals:

H0 : µ = 0, HA : µ ∼ πρ- uniform distribution on the sphere of radius ρ

Interpretation: We know L2 norm of the vector of means under
alternative but we do know how it is distributed between elements
of this vector, so we assume a uniform distribution on the sphere

µ = ρu, LA(X ) =

∫
Sp−1

L(X |u)π(du)

Neyman-Pearson test:

L =

∫
Sp−1

e (− 1

2
||x−ρu||2)

exp
(
−1

2
||x ||2

)π(du)

Power of Neyman-Pearson test converges to α when ||ρ||
2

√
p → 0
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Relationship between signal strength and the sparsity

Only one mean di�erent from 0 and equal to 2
√
2 log p - Bonferroni

strong, chi-square test weak

k =
√
p means equal to 5 - Bonferroni weak, chi-square test strong

What happens in the middle ?
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Sparse mixture model

Model:

H0 : µ = 0, HA : µ1, . . . , µp iid (1− ε)δ0 + εδµ

Interpretation: If alternative holds then all nonzero means are equal
to �xed and known µ. The percentage of non-zero means is equal
to ε and every µi has the same chance of being di�erent from zero.

Neyman-Pearson test:

L = Πp
i=1[(1− ε) + εeµXi−µ2/2]
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Ingster (1999) detection boundary

εp = p−β,
1

2
< β < 1

when β = 1/2 we have about k = p−1/2p =
√
p signals,

when β = 1 then the number of signals k = p−1p = 1 is equal to 1
(needle in the haystack)

µp =
√

2r log p

ρ(β) =

{
β − 1/2 for 1/2 < β ≤ 3/4

(1−
√
1− β)2 for 3/4 ≤ β ≤ 1)

Neyman-Pearson test has the full asymptotic power if r > ρ(β) and
no asymptotic power if r < ρ(β).

Donoho and Jin (2004): Bonferroni detection boundary coincides
with the optimal detection boundary if β ≥ 3/4
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Ingster detection boundary
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Interpretation: When the number of needles increases than they can
be substantially shorter than

√
2 log p to be detected by Bonferroni.
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Lesson learned from theory of testing the global hypothesis

The length of sparse needles to be detected needs to grow with p
(amount of hay).

The length of sparse needles to be detected depends on their
number. If there are more of them, they can be shorter.

There is no a single optimal method for testing the global null
hypothesis - the selection of the method should depend on the
expectation on the signal sparsity.
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Multiple testing

We now separately test each of hypotheses H0i : µi = 0

H0 accepted H0 rejected

H0 true U V p0
H0 false T S p1

W R p

FWER = P(V > 0), FDR = E
(

V
R∨1
)

E (V ) = αp0

α = 0.05, p0 = 5000→ E (V ) = 250
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Multiple testing procedures

Bonferroni correction: Use signi�cance level αp .

Reject H0i if |Xi | ≥ Φ−1
(
1− α

2p

)
=
√
2 log p(1 + o(1))

Benjamini-Hochberg (1995) procedure:

(1) |X |(1) ≥ |X |(2) ≥ . . . ≥ |X |(p)

(2) Find the largest index i such that

|X |(i) ≥ Φ−1(1− αi ), αi = α
i

2p
, (1)

Call this index iSU.

(3) Reject all H(i)'s for which i ≤ iSU
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Bonferroni correction
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Benjamini and Hochberg correction
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FWER and FDR control

For Bonferroni correction FWER ≤ α
(Benjamini,Hochberg, 1995) If X1, . . . ,Xp are independent then
BH controls FDR at:

FDR = E
[

V

R ∨ 1

]
= α

p0
p
, (2)

where p0 is the number of true null hypotheses, p0 = |{i : µi = 0}|
(Benjamini, Yekutieli, 2001) When test statistics are "positively
correlated"then BH controls FDR at or below the level αp0

p .
Independently of the correlation structure FDR is controlled at or

below the level αp0
p if |X |(j) is compared to Φ−1

(
1− jα

2p
∑p

i=1

1

i

)
.
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Estimating µ

Xi ∼ N(µi , σ
2), X1, . . . ,Xp are independent

µ̂MLE = X = (X1, . . . ,Xp)

MSE (µ̂MLE ) = E ||µ̂MLE − µ||2 =

p∑
i=1

E (µ̂i − µi )2 = pσ2

Can we do better ?

Maªgorzata Bogdan SLOPE

Bias-Variance Tradeo�

MSE (µ̂i ) = E (µ̂i − µi )2 = B2
i + Vari ,

where Bi = E µ̂i − µi is the bias of µ̂i

and Vari = E (µ̂i − E (µ̂i ))2 is the variance of µ̂i .

In our problem E (µ̂MLE ) = µ and MSE (µ̂MLE ) =
∑p

i=1 Vari

Can we improve MSE by introducing some bias and reducing the
variance ?

Maªgorzata Bogdan SLOPE

Shrinking towards zero

Consider the estimate µ̂c = cµ̂MLE

Bi (c) = cµi − µi = (c − 1)µi and Vari (c) = c2σ2

MSEi (c) = (c − 1)2µ2i + c2σ2

MSE (c) = E ||µ̂c − µ||2 = (c − 1)2||µ||2 + c2pσ2

Using elementary calculus we can show that the optimal value of c
is equal to

copt = argminc∈RMSE (c) =
||µ||2

||µ||2 + pσ2
∈ [0, 1) .
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Improvement in MSE, p = 100, σ = 1
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Shrinking towards the common mean

Consider an estimator

µ̂d = (1− d)µ̂MLE + dX̄

dopt =
σ2

σ2 + Var(µ)
∈ (0, 1], with Var(µ) =

1

p − 1

∑
(µi − µ̄)2.

d = 1 if and only if µ1 = . . . = µp
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Improvement in MSE, p = 100, σ = 1
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James-Stein estimators (1961)

copt =
||µ||2

||µ||2 + pσ2
=

(
1− pσ2

||µ||2 + pσ2
=

)
=

(
1− pσ2

E ||X ||2

)

cJS =

(
1− (p − 2)σ2

||X ||2

)

dopt =
σ2

σ2 + Var(µ)

dJS =
p − 3

p − 1

σ2

Var(X )

If p > 3 then for both J-S estimators it holds
E ||µ̂JS − µ||2 < E ||µ̂MLE − µ||2
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Hard thresholding

When signal is sparse even better results can be obtained by hard
thresholding

µ̂i =

{
Xi when H0i is rejected
0 when H0i is not rejected

, (3)

where the decisions are made by Bonferroni or BH multiple testing
procedures. Bonferroni is optimal for very sparse signals while BH
�adapts� to the unknown sparsity (see Abramovich, Benjamini,
Donoho and Johnstone, Ann.Statist. 2006)
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Facts to remember

In high dimensional problems unbiased estimators can often be
improved by biased estimators with reduced variance.

When p > 2 then the maximum likelihood estimator of the vector
of means for the multivariate normal distribution with independent
covariates is not admissible. It can be improved by James-Stein
estimator.

In case when the signal is sparse this can be further improved by
thresholding rules.

Hard thresholded estimator of µ using BH multiple testing rule
adapts to the unknown sparsity and is asymptotically optimal in the
sense discussed in (Abramovich, Benjamini, Donoho and Johnstone,
Ann.Statist. 2006)
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