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Analysis of Large Data

@ Testing for Global Null and Multiple Testing

@ Model selection in multiple regression - Information Criteria
o Regularization techniques (1)

@ Regularization techniques (2)
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Identifying genes associated with cancer

Classical example: Principle Components Analysis
Xnxp - data matrix

Assumption - X = M + E, where M is a low rank matrix
representing the signal and E is a random noise

Goal - recovering M, separating signal from the noise
Purpose - understanding the biological/economical etc phenomena
which generate the data, data compression (few basis vectors

[principal components] may contain most of the information in the
data), missing values imputation

General goal of large data analysis - separating the signal from
noise, identifying the low dimensional structure spanning the noisy
data

Major problem - multiple comparisons, multiple testing (in PCA
selection of nonzero singular values)
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Xnyxp - expressions of p genes for ny healthy individuals

Y xp - expressions of p genes for ny cancer patients
Assumption: Xj; for i =1,...,n are iid with E(Xj) = p1; and
Var(Xj) = ij < oo
Yjj fori=1,...,no are iid with E(Y};) = up; and
Var(Yj) = agj < oo
Gene j is associated with cancer if p11; # po;

Xj=Y,;
_ _ S(Xj=Yj)' _ _
S(Xj—Y,) is the estimate of the standard deviation of X; — Y;
If ny and ny are large enough then t; ~ N(p;,1) with

Hi1j—H2j

M = o] mTas v and Hoj =0

We test Hp; : 11 = poj with a t-test t; = where
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Multiple testing (1) Testing for global null, Bonferroni procedure

X,'NN(,LL,',].), I:]-a?p
Hoi i p1i =0 vs p; #0
XiNN(/I’hl)v I:].,,,D

P
Hoi i pti =0 vs p; #0 HoiﬂHo,'
Reject Hop; when |X;| > ¢ i=1
Multiple comparison problem: if all ;s are equal to zero than Bonferroni procedure: Reject Hy when
max(|1X1), ..., |1X,]) = v2Tog p(1 + o) max(Xi), ... [X,|) > &1 (1 - %) = Cgon
Thus to separate signal from noise we need ¢ = ¢(p) — oo as Probability of type | error:

p — 00.

P P
Pro | LLIXil > cgon} | <D PUIX)| > cgon} = @
Jj=1 Jj=1
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Exact type | error of Bonferroni Needle in haystack

Needle in haystack: for some i € {1,,p}, p; = pP and for all
J#i, pj=0

Due to independence

.
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P
P(Type | Error) = 1— Py, ﬂ{\XJ| < CBon}
j=1

a\?
1—(1—5) —1l-e*=a+o(a)

a =0.05 ,n=30000, P(Type | Error) ~ 0.0488
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How long needle can be found 7 Neyman-Person test for the needle in haystack problem

Ho: x = (x1,...,Xp) has the likelihood Lo(x)
Ha: x has the likelihood La(x)

Neyman-Pearson optimal test (maximal power for a given type |
Ceon = /2log p(1 + 0p) error) has the form
_ La(x)

Reject Hp for large values of L(x) = 50

If 4P = (1 + €)y/2log p then power of Bonferroni converges to 1 Bayesian model for "needle in haystack” problem

Ho:p=(pa,...,pp) =0
If uP = (1 — €)v/2log p then power of Bonferroni converges to

a) < . 1<
a() Ha:p~— Zé :
P
Is there a test procedure which can find a shorter needle ? O« P({mi = pP pj=0forj#i}) =1

Interpretation: under Hy there is just one signal of known
magnitude P but we do not know where and assume a uniform
distribution over i € {1,...,p}.
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Neyman-Pearson test for the needle in haystack problem (2) = Chi-square test (1)

Reject Ho when || X|[2 = Y7, X? > x3(1 — a)
P
1) =L 3 ey Under Ho: T = IXIE=2 — w(o, 1)
Pia Under Hi: [|X|12 = S,y (i + Z)2, Zi ~ N(0,1)

E(ui+Zi) = ui +1, Var(ui+ Z)* = 4} +2
If uP = (1 — €)v/2log p then the power of Neyman-Pearson test at
the significance level o converges to o as p — o E (||XH2) = [|ul?+p, Var (HX||2) = 4|l +2p

X 2 2
Interpretation - Bonferroni correction has asymptotically optimal If |u|?/p — O then [IXTF = e+ [1w711)

>— = N(0,1)
detection region under the needle in haystack problem 2p + 4[]
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Chi-square test (2) Can we do better 7

Bayesian model for equally distributed signals:

Ho:p=0, Ha:p~ m, uniform distribution on the sphere of radius p

For large p
Interpretation: We know Ly norm of the vector of means under
0 . Mk alternative but we do know how it is distributed between elements
T~N|[014+—] withf= ! . .
V/p/8 \V2p of this vector, so we assume a uniform distribution on the sphere
Power of the chi-square test converges to 1 if % — 00 w=pu, La(X)= / ) L(X|u)m(du)
Sp=
Power of the chi-square test converges to « if % -0 Neyman-Pearson test:

o (~2llx—pull?)
L= / s (du)

Sp—1 exp (f%\|x||2)

2
Power of Neyman-Pearson test converges to o when % =0
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Relationship between signal strength and the sparsity Sparse mixture model

Only one mean different from 0 and equal to 24/2log p - Bonferroni Model:

strong, chi-square test weak
Ho:p=0, Ha:pa,....pup iid (1 —€)do+ €,

Interpretation: If alternative holds then all nonzero means are equal
P | Bonf i K chi to fixed and known p. The percentage of non-zero means is equal
= /P means equal to 5 - Bonferroni weak, chi-square test strong to € and every u; has the same chance of being different from zero.

Neyman-Pearson test:

L=, [(1— o) + e 72

What happens in the middle ?
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Ingster (1999) detection boundary Ingster detection boundary

1
€p:piﬁ, §<6<1

1.0

when 8 = 1/2 we have about k = p1/2p = /P signals,
when 8 = 1 then the number of signals k = p~'p = 1 is equal to 1 2 [ —
(needle in the haystack)

uP =+/2rlogp "

p(ﬁ)={( B—1/2  for 1/2<B<3/4 /

1-V1=P) for 3/4<p5<1) T

05 0.6 0.7 0.8 0.9 1.0
Neyman-Pearson test has the full asymptotic power if r > p(3) and B
no asymptotic power if r < p(3).

0.6 0.8

0.4

0.0

Donoho and Jin (2004): Bonferroni detection boundary coincides Interpretation: When the number of needles increases than they can
with the optimal detection boundary if 3 > 3/4 be substantially shorter than \/2log p to be detected by Bonferroni.
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Lesson learned from theory of testing the global hypothesis Multiple testing

We now separately test each of hypotheses Hp; : uj =0
The length of sparse needles to be detected needs to grow with p

(amount of hay). Hy accepted | Hyp rejected
. H, \%
The length of sparse needles to be detected depends on their b true U Po
Hy false T S p1
number. If there are more of them, they can be shorter. W R )

There is no a single optimal method for testing the global null
hypothesis - the selection of the method should depend on the
expectation on the signal sparsity. E(V)=apy

a = 0.05, pp = 5000 — E(V) = 250

FWER = P(V >0), FDR=E (&%)
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Multiple testing procedures Bonferroni correction
. . . . ’ o Sorted |y|
Bonferroni correction: Use significance level £. . — Bonferroni level

Reject Ho; if |X;| > &1 (1 - %) = 2Tog p(1 + o(1)) )
Benjamini-Hochberg (1995) procedure:
(1) Xl = IXl@) = --- = [Xlp)

(2) Find the largest index i such that

Iyl

i

-1
Xlgy =2 ¢ (L —ai), aj=a,, (1) o
2p
Call this index isy.
(3) Reject all H;y's for which i < isy o ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50
k
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Benjamini and Hochberg correction FWER and FDR control
o Sorted |y|
— BHlewel For Bonferroni correction FWER < «

(Benjamini,Hochberg, 1995) If Xi,..., X, are independent then
7 . BH controls FDR at:

Iyl

v Po
FDR_E{—RVJ =a=, (2)

where pp is the number of true null hypotheses, py = |[{i : uj = 0}]

(Benjamini, Yekutieli, 2001) When test statistics are "positively
correlated"then BH controls FDR at or below the level a22.
Independently of the correlation structure FDR is controlled at or

o below the level a2 if |X|(;) is compared to o1 (1 - %le%l%)
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Estimating Bias-Variance Tradeoff

MSE(fi;) = E(fj — pi)* = B + Var;,

X; ~ N(pi,0%), Xi,...,X, are independent where B; = Efi; — pu; is the bias of fi;

and Var; = E(fi; — E(f1;))? is the variance of fi;.
p

MSE (fimie) = E|lfme — pl* = ; E(fui — wi)* = po? In our problem E(imze) — p and MSE(mme) — 3P, Var

Can we do better ?

Can we improve MSE by introducing some bias and reducing the
variance ?
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Shrinking towards zero Improvement in MSE, p = 100,0 =1

Consider the estimate [ic = cfimLe

§
Bi(c) = cpi — pi = (¢ — 1) p;i and Vari(c) = c?o?
° — MLE
& 7| | — couMLE
o _l
MSE;(c) = (c — 1)%u? 4 c%o? w °
2
g -
MSE(c) = El|fic — ulf? = (¢ = 1)?||ul[* + ¢*po?
8 -
Using elementary calculus we can show that the optimal value of ¢
is equal to o -
T T T T T
. (1122 0 5 10 15 20
Copt = argmincegMSE(¢) = ———— €[0,1) .
* ‘ ]2 + po i
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Shrinking towards the common mean

Consider an estimator
fig = (1 — d)imee + dX

2

1

1
dopt = 0-7 € (07 1]7 with Var(.“’) = Pf Z(.u'i - /]’)2

02 + Var(u)

d=1 ifandonlyif up=...=p,
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James-Stein estimators (1961)
B 1171 po® ) _ po’
Copt—ﬁ— 1_ﬁ_ = 1_72
il + po pll? + po EfX]|

opt = —5—

P 62 4 Var(p)
d _p-3 o2
BT =1 var(X)

If p > 3 then for both J-S estimators it holds
Ellfs — pll? < Ellfime — pl?
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)

Improvement in MSE, p = 100,0 =1
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Hard thresholding

When signal is sparse even better results can be obtained by hard
thresholding

L { X: when  Hy; is rejected 7 (3)

M=% 0 when Ho; is not rejected

where the decisions are made by Bonferroni or BH multiple testing
procedures. Bonferroni is optimal for very sparse signals while BH
"adapts” to the unknown sparsity (see Abramovich, Benjamini,
Donoho and Johnstone, Ann.Statist. 2006)
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Facts to remember

In high dimensional problems unbiased estimators can often be
improved by biased estimators with reduced variance.

When p > 2 then the maximum likelihood estimator of the vector
of means for the multivariate normal distribution with independent
covariates is not admissible. It can be improved by James-Stein
estimator.

In case when the signal is sparse this can be further improved by
thresholding rules.

Hard thresholded estimator of u using BH multiple testing rule
adapts to the unknown sparsity and is asymptotically optimal in the

sense discussed in (Abramovich, Benjamini, Donoho and Johnstone,
Ann.Statist. 2006)
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