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@ M be a compact Riemannian manifold, * € M a base-point,
vol, a measure on M defined by a volume form

m1(M, %) is center free, M (M, =) mapping class group of
punctured M

Homeog (M, vol), Diffo(M, vol) are vol preserving, isotopic to
the Id via vol preserving maps.

@ H}(G) is the bounded cohomology of a discrete group

Aim: 4" HE(M(M, %)) — H}(Homeo(M, vol))
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The starting point: Gambaudo-Ghys construction

Let f € Homeog(M, vol) and let f; be an isotopy between /d and f.
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We want to assign elements of 71 (M, *)
to f.
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The starting point: Gambaudo-Ghys construction

Let f € Homeog(M, vol) and let f; be an isotopy between /d and f.

We want to assign elements of 71 (M, *)
to f. There is no homomorphism.
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The starting point: Gambaudo-Ghys construction

Let f € Homeog(M, vol) and let f; be an isotopy between /d and f.

We want to assign elements of w1 (M, )
to f. There is no homomorphism.
Let x € M and consider the trajectory

fr(x).
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The starting point: Gambaudo-Ghys construction

Let f € Homeog(M, vol) and let f; be an isotopy between /d and f.

We want to assign elements of 71 (M, *)

to f. There is no homomorphism. 7@ (x —Q()Q
Let x € M and consider the trajectory
fe(x).

%
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Let f € Homeog(M, vol) and let f; be an isotopy between /d and f.

We want to assign elements of w1 (M, )
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Let x € M and consider the trajectory ’/\#\%—)*
fr(x).
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A system of paths:
for every y € M pick a path s, connecting * to y.

Michat Marcinkowski Mapping class groups and cohomology of Homeo(M, vol)



The starting point: Gambaudo-Ghys construction

Let f € Homeog(M, vol) and let f; be an isotopy between /d and f.
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A system of paths:
for every y € M pick a path s, connecting * to y.
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The starting point: Gambaudo-Ghys construction

Let f € Homeog(M, vol) and let f; be an isotopy between /d and f.

We want to assign elements of 71 (M, *)

to f. There is no homomorphism. ' (x —Q()Q
: : R
Let x € M and consider the trajectory

fr(x).
¥

A system of paths:
for every y € M pick a path s, connecting * to y.

Define
(e Lo®
7(f¢ X) =

Sx S
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The starting point: Gambaudo-Ghys construction

Let f € Homeog(M, vol) and let f; be an isotopy between /d and f.

We want to assign elements of 71 (M, *)

to f. There is no homomorphism. ' (x —Q()Q
: : R
Let x € M and consider the trajectory

fe(x).
%

A system of paths:

for every y € M pick a path s, connecting * to y.

Define

Y Al KOO
v(f, x) = e (M, *)
37< S(b@
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The transfer map

Let g: m1(M,*) — R be a quasimorphism.
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The transfer map

Let g: m1 (M, *) — R be a quasimorphism. We define a
quasimorphism on Diffo(M, vol) by integrating:
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The transfer map

Let g: m1 (M, *) — R be a quasimorphism. We define a
quasimorphism on Diffo(M, vol) by integrating:
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The transfer map

Let g: m1 (M, *) — R be a quasimorphism. We define a
quasimorphism on Diffo(M, vol) by integrating:
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The transfer map
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The transfer map

Let g: m1 (M, *) — R be a quasimorphism. We define a
quasimorphism on Diffo(M, vol) by integrating:

3(f) = jM g(4(F,x))dx

Depends on the system of paths

More generally, we can define

Mp: Hi(m1 (M, %)) — HE(Homeog (M, vol
b b

By: Th(c)(fo, ..., fa) = §pc(v(fo0, %), ..., (fa, x)) dx
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v in the language of couplings

Let p: M — M be the universal cover, with vol pull-back measure.
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v in the language of couplings

Let p: M — M be the universal cover, with vol pull-back measure.

On M we have two measure preserving commuting actions
m1(M, %) & M © Homeog(M, vol)

v(f, x) can be defined in terms of these two actions and a
measurable fundamental domain F for 71 (M, %) action.
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v in the language of couplings

Let p: M — M be the universal cover, with vol pull-back measure.

On M we have two measure preserving commuting actions
m1(M, %) & M © Homeog(M, vol)

v(f, x) can be defined in terms of these two actions and a
measurable fundamental domain F for 71 (M, %) action.

Martin Nitsche: 'y, does not depend on the choice of F.
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v in the language of couplings

p: M — M is the universal cover
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p: M — M is the universal cover

Element of p~!(x) is a homotopy type rel. endpoints of a path
connecting % to x in M
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Element of p~!(x) is a homotopy type rel. endpoints of a path
connecting % to x in M

Systems of paths s, «<— fundamental domains (measurable)
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v in the language of couplings

p: M — M is the universal cover

Element of p~!(x) is a homotopy type rel. endpoints of a path
connecting % to x in M

Systems of paths s, «<— fundamental domains (measurable)

The fundamental domain tiles
M, and tiles are in bijection
with elements in 71 (M, )
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v in the language of couplings

p: M — M is the universal cover

Element of p~!(x) is a homotopy type rel. endpoints of a path
connecting % to x in M

Systems of paths s, «<— fundamental domains (measurable)

gL
TV
The fundamental domain tiles 69—
M, and tiles are in bijection
with elements in 71 (M, ) j
x| =77
1
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Extending to the mapping class group

Birman exact sequence: 71 (M, x) LR M(M, ) LR M(M)
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Extending to the mapping class group

Birman exact sequence: 71 (M, x) LR M(M, ) LR M(M)

We want to assign elements of M (M, )
to f € Homeo(M, vol).
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Extending to the mapping class group

Birman exact sequence: 71 (M, x) LR M(M, ) LR M(M)

We want to assign elements of M (M, )

to f € Homeo(M, vol). There is no
homomorphism.
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Extending to the mapping class group

Birman exact sequence: 71 (M, x) LR M(M, ) LR M(M)

We want to assign elements of M (M, )
to f € Homeo(M, vol). There is no : _QQL)

homomorphism. X’\>ﬂ
Let x € M and consider f(x).
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Extending to the mapping class group

Birman exact sequence: 71 (M, x) LR M(M, ) LR M(M)

We want to assign elements of M (M, )
to f € Homeo(M, vol). There is no

homomorphism. X’\>ﬂ
Let x € M and consider f(x).

A system of homeomorphisms:
for every y € M pick a homeomorphism h, mapping * to y.
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Extending to the mapping class group

Birman exact sequence: 71 (M, x) LR M(M, ) LR M(M)
We want to assign elements of M (M, =)
to f € Homeo(M, vol). There is no

homomorphism. X’\>ﬂ
Let x € M and consider f(x).

A system of homeomorphisms:
for every y € M pick a homeomorphism h, mapping * to y.

Define v™(f, x) = [h;(lx) of o hy] e M(M,x)
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Extending to the mapping class group

Birman exact sequence: 71 (M, x) LR M(M, ) LR M(M)

We want to assign elements of M (M, )
to f € Homeo(M, vol). There is no

homomorphism. X’\>ﬂ
Let x € M and consider f(x).

A system of homeomorphisms:
for every y € M pick a homeomorphism h, mapping * to y.

Define v™(f, x) = [h;(lx) of o hy] e M(M,x)

If f € Homeog(M, vol), then v (f, x) € w1 (M, )
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Extending to the mapping class group

HE(M(M, ) — 2 HE (Homeo(M, vol))

| P |

HS (1 (M, %)) —2 H?(Homeog(M, vol)).
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Extending to the mapping class group

HE(M(M, ) — 2 HE (Homeo(M, vol))
[ |

HS (1 (M, %)) —2 H?(Homeog(M, vol)).

But how to define v* by couplings?
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HE(M(M, ) — 2 HE (Homeo(M, vol))

| P |

HS (1 (M, %)) —2 H?(Homeog(M, vol)).

But how to define v* by couplings?

We need a cover, which is bigger than the universal cover.
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Extending to the mapping class group

HE(M(M, ) — 2 HE (Homeo(M, vol))

| P |

HS (1 (M, %)) —2 H?(Homeog(M, vol)).

But how to define v* by couplings?

We need a cover, which is bigger than the universal cover.

M(M, %) & M O Homeo(M, vol)

|

M
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Couplings again

Easy answer: M (M, *) x M, divided by the action of 71 (M, *):
v.(h,x) = (hy™ 1, 7).
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Couplings again

Easy answer: M (M, *) x M, divided by the action of 71 (M, *):
7v.(h,x) = (hy~1,v.x). No action of Homeo(M, vol).
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Couplings again

Easy answer: M (M, *) x M, divided by the action of 71 (M, *):
7v.(h,x) = (hy~1,v.x). No action of Homeo(M, vol).

~

(path * — X) el end pt € Paths starting at ;. = M P oM

lPu
~ evy

(homeo  — X) el «—x € Homeo(M),. = M ——— M
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Couplings again

Easy answer: M (M, *) x M, divided by the action of 71 (M, *):
7v.(h,x) = (hy~1,v.x). No action of Homeo(M, vol).

~

(path * — X) el end pt € Paths starting at ;. = M P oM

lPu
~ evy

(homeo  — X) el «—x € Homeo(M),. = M ——— M

WY W =

Howu’/o (\“‘1\
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Couplings again

N evy

(homeo * —> X)/rel x—x € Homeo(/\/’)/~ =M M
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Couplings again

N evy

(homeo * —> X)/rel x—x € Homeo(/\/’)/~ =M M

Actions:
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Couplings again

(homeo = — X) et € Homeo(M) . = M —=% M

Actions:

[c] € M, [h] € M(M, ), [h].[c] = [ch].
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Couplings again

(homeo = — X) et € Homeo(M) . = M —=% M

Actions:

[c] € M, [h] € M(M, ), [h].[c] = [ch].
[c] € M, h e Homeo(M, vol), h.[c] = [hc].
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Couplings again

(homeo = — X) et € Homeo(M) . = M —=% M

Actions:

[c] € M, [h] € M(M, ), [h].[c] = [ch].
[c] € M, h e Homeo(M, vol), h.[c] = [hc].

In particular we can lift elements of Homeog (M, vol) without
selecting an isotopy.
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T (M, %) & M O Homeoo(M, vol)

Mp: Hi(m1 (M, *)) — Hp(Homeog (M, vol))
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T (M, %) & M O Homeoo(M, vol)

Mp: Hi(m1 (M, *)) — Hp(Homeog (M, vol))

M(M, %) & M O Homeo(M, vol)

r': HE(M(M, x)) — HE(Homeo(M, vol))
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The Euler class

By the Dehn-Nielsen theorem M (S, ) ~ Auty (m1(S, *)),
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The Euler class

By the Dehn-Nielsen theorem M (S, *) ~ Aut, (71(S, *)), thus
M (S, %) acts on the Gromov boundary o71(S, *) ~ SL.
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The Euler class

By the Dehn-Nielsen theorem M (S, *) ~ Aut, (71(S, *)), thus
M (S, %) acts on the Gromov boundary 071 (S, *) ~ S. Hence
we have a representation

M (S, #) — Homeo, (S1).
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The Euler class

By the Dehn-Nielsen theorem M (S, *) ~ Aut, (71(S, *)), thus
M (S, %) acts on the Gromov boundary 071 (S, *) ~ S. Hence
we have a representation

M (S, #) — Homeo, (S1).

We can pull-back the Euler class e, € H3 (Homeo (S1)) to
eyt € HE(M. (S, %)
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The Euler class

By the Dehn-Nielsen theorem M (S, %) ~ Aut (m1(S, *)), thus
M (S, %) acts on the Gromov boundary 071 (S, *) ~ S. Hence
we have a representation

M (S, #) — Homeo, (S1).

We can pull-back the Euler class e, € H3 (Homeo (S1)) to
eyt € HE(M. (S, %)

¥ (ep) € H2(Homeo. (S, area)) has a positive norm.
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