Mapping class groups and cohomology of Homeo(M, vol)

Michał Marcinkowski

Wrocław University

Online Seminar on Bounded Cohomology and Simplicial Volume, 24.06.2024

joint work with M. Brandenbursky

M be a compact Riemannian manifold, * ∈ *M* a base-point, vol, a measure on *M* defined by a volume form

A 10

- - E + - E +

- *M* be a compact Riemannian manifold, * ∈ *M* a base-point, vol, a measure on *M* defined by a volume form
- π₁(M, *) is center free, M(M, *) mapping class group of punctured M

伺下 イヨト イヨト

- *M* be a compact Riemannian manifold, * ∈ *M* a base-point, vol, a measure on *M* defined by a volume form
- π₁(M, *) is center free, M(M, *) mapping class group of punctured M
- Homeo₀(*M*, vol), Diff₀(*M*, vol) are vol preserving, isotopic to the *Id* via vol preserving maps.

- M be a compact Riemannian manifold, * ∈ M a base-point, vol, a measure on M defined by a volume form
- π₁(M, *) is center free, M(M, *) mapping class group of punctured M
- Homeo₀(*M*, vol), Diff₀(*M*, vol) are vol preserving, isotopic to the *Id* via vol preserving maps.
- $H_b^{\bullet}(G)$ is the bounded cohomology of a discrete group

- M be a compact Riemannian manifold, * ∈ M a base-point, vol, a measure on M defined by a volume form
- π₁(M, *) is center free, M(M, *) mapping class group of punctured M
- Homeo₀(*M*, vol), Diff₀(*M*, vol) are vol preserving, isotopic to the *Id* via vol preserving maps.
- $H_b^{\bullet}(G)$ is the bounded cohomology of a discrete group
- Aim: $\Gamma_b^{\mathcal{M}}$: $H_b^n(\mathcal{M}(M, *)) \to H_b^n(\text{Homeo}(M, \textit{vol}))$

<日本

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

We want to assign elements of $\pi_1(M, *)$ to f.

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

We want to assign elements of $\pi_1(M, *)$ to f. There is no homomorphism.

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

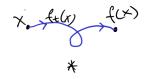
We want to assign elements of $\pi_1(M, *)$ to f. There is no homomorphism. Let $x \in M$ and consider the trajectory $f_t(x)$.

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

We want to assign elements of $\pi_1(M, *)$ to f. There is no homomorphism. Let $x \in M$ and consider the trajectory $f_t(x)$.

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

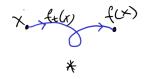
We want to assign elements of $\pi_1(M, *)$ to f. There is no homomorphism. Let $x \in M$ and consider the trajectory $f_t(x)$.



A system of paths: for every $y \in M$ pick a path s_y connecting * to y.

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

We want to assign elements of $\pi_1(M, *)$ to f. There is no homomorphism. Let $x \in M$ and consider the trajectory $f_t(x)$.



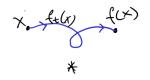
A system of paths: for every $y \in M$ pick a path s_y connecting * to y.

Define

$$\gamma(f, x) =$$

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

We want to assign elements of $\pi_1(M, *)$ to f. There is no homomorphism. Let $x \in M$ and consider the trajectory $f_t(x)$.



A system of paths: for every $y \in M$ pick a path s_y connecting * to y.

Define

 $\gamma(f, x)$

$$= \frac{\chi_{1} + \xi_{1}(x)}{s_{1}} + \frac{\xi_{2}(x)}{s_{1}} + \frac{\xi_{2}(x)}{s_{2}} + \frac{\xi_{2}(x)}{s_{1}} + \frac{\xi_{2}(x)}{s_{2}} + \frac{\xi_{2}(x)}{s_{1}} + \frac{\xi_{2}(x)}{s_{2}} + \frac{\xi_{2}(x)}{s_{1}} + \frac{\xi_{2}(x)}{s_{2}} + \frac{\xi_{2}(x)}{s_{1}} + \frac{\xi_{2}(x)}{s_{1}}$$

Let $f \in \text{Homeo}_0(M, vol)$ and let f_t be an isotopy between Id and f.

We want to assign elements of $\pi_1(M, *)$ to f. There is no homomorphism. Let $x \in M$ and consider the trajectory $f_t(x)$.

A system of paths: for every $y \in M$ pick a path s_y connecting * to y.

Define

Pin

Let $q: \pi_1(M, *) \to \mathbb{R}$ be a quasimorphism.

ъ

-

Let $q: \pi_1(M, *) \to \mathbb{R}$ be a quasimorphism. We define a quasimorphism on $\text{Diff}_0(M, \text{vol})$ by integrating:

Let $q: \pi_1(M, *) \to \mathbb{R}$ be a quasimorphism. We define a quasimorphism on $\text{Diff}_0(M, \text{vol})$ by integrating:

$$\bar{q}(f) = \int_{M} q(\gamma(f, x)) dx$$

Let $q: \pi_1(M, *) \to \mathbb{R}$ be a quasimorphism. We define a quasimorphism on $\text{Diff}_0(M, \text{vol})$ by integrating:

$$\bar{q}(f) = \int_{M} q(\gamma(f, x)) dx$$

Depends on the system of paths

Let $q: \pi_1(M, *) \to \mathbb{R}$ be a quasimorphism. We define a quasimorphism on $\text{Diff}_0(M, \text{vol})$ by integrating:

$$\bar{q}(f) = \int_{M} q(\gamma(f, x)) dx$$

Depends on the system of paths

More generally, we can define

 $\Gamma_b: \operatorname{H}^n_b(\pi_1(M,*)) \to \operatorname{H}^n_b(\operatorname{Homeo}_0(M,\operatorname{vol}))$

Let $q: \pi_1(M, *) \to \mathbb{R}$ be a quasimorphism. We define a quasimorphism on $\text{Diff}_0(M, \text{vol})$ by integrating:

$$\bar{q}(f) = \int_{M} q(\gamma(f, x)) dx$$

Depends on the system of paths

More generally, we can define

 $\Gamma_b: \operatorname{H}^n_b(\pi_1(M, *)) \to \operatorname{H}^n_b(\operatorname{Homeo}_0(M, \operatorname{vol}))$

By: $\Gamma_b(c)(f_0,\ldots,f_n) = \int_M c(\gamma(f_0,x),\ldots,\gamma(f_n,x)) dx$

On \widetilde{M} we have two measure preserving commuting actions

On \widetilde{M} we have two measure preserving commuting actions

 $\pi_1(M, *) \subset \widetilde{M} \supseteq \operatorname{Homeo}_0(M, \operatorname{vol})$

On \widetilde{M} we have two measure preserving commuting actions

 $\pi_1(M, *) \subset \widetilde{M} \supseteq \operatorname{Homeo}_0(M, \operatorname{vol})$

 $\gamma(f, x)$ can be defined in terms of these two actions and a measurable fundamental domain *F* for $\pi_1(M, *)$ action.

On \widetilde{M} we have two measure preserving commuting actions

 $\pi_1(M, *) \subset \widetilde{M} \supseteq \operatorname{Homeo}_0(M, \operatorname{vol})$

 $\gamma(f, x)$ can be defined in terms of these two actions and a measurable fundamental domain *F* for $\pi_1(M, *)$ action.

Martin Nitsche: Γ_b does not depend on the choice of F.

 $p \colon \widetilde{M} \to M$ is the universal cover

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $p: \tilde{M} \to M$ is the universal cover Element of $p^{-1}(x)$ is a homotopy type rel. endpoints of a path connecting * to x in M

 $p: \widetilde{M} \to M$ is the universal cover Element of $p^{-1}(x)$ is a homotopy type rel. endpoints of a path connecting * to x in M

Systems of paths $s_x \leftrightarrow$ fundamental domains (measurable)

.

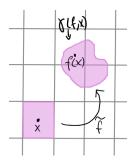
 $p: \widetilde{M} \to M$ is the universal cover Element of $p^{-1}(x)$ is a homotopy type rel. endpoints of a path connecting * to x in MSystems of paths $s_x \longleftrightarrow$ fundamental domains (measurable)

The fundamental domain tiles \widetilde{M} , and tiles are in bijection with elements in $\pi_1(M, *)$

 $p: \tilde{M} \to M$ is the universal cover Element of $p^{-1}(x)$ is a homotopy type rel. endpoints of a path connecting * to x in M

Systems of paths $s_x \leftrightarrow$ fundamental domains (measurable)

The fundamental domain tiles \widetilde{M} , and tiles are in bijection with elements in $\pi_1(M, *)$



Birman exact sequence: $\pi_1(M, *) \xrightarrow{P_U} \mathcal{M}(M, *) \xrightarrow{F} \mathcal{M}(M)$

Birman exact sequence: $\pi_1(M, *) \xrightarrow{P_u} \mathcal{M}(M, *) \xrightarrow{F} \mathcal{M}(M)$

We want to assign elements of $\mathcal{M}(M, *)$ to $f \in \text{Homeo}(M, vol)$.

4 3 b

Birman exact sequence: $\pi_1(M, *) \xrightarrow{P_u} \mathcal{M}(M, *) \xrightarrow{F} \mathcal{M}(M)$

We want to assign elements of $\mathcal{M}(M, *)$ to $f \in \text{Homeo}(M, vol)$. There is no homomorphism.

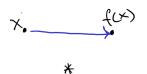
Birman exact sequence: $\pi_1(M, *) \xrightarrow{P_u} \mathcal{M}(M, *) \xrightarrow{F} \mathcal{M}(M)$

We want to assign elements of $\mathcal{M}(M, *)$ to $f \in \text{Homeo}(M, vol)$. There is no homomorphism. Let $x \in M$ and consider f(x).

Birman exact sequence: $\pi_1(M, *) \xrightarrow{P_u} \mathcal{M}(M, *) \xrightarrow{F} \mathcal{M}(M)$

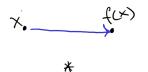
We want to assign elements of $\mathcal{M}(M, *)$ to $f \in \text{Homeo}(M, vol)$. There is no homomorphism.

Let $x \in M$ and consider f(x).



Birman exact sequence: $\pi_1(M, *) \xrightarrow{P_u} \mathcal{M}(M, *) \xrightarrow{F} \mathcal{M}(M)$

We want to assign elements of $\mathcal{M}(M, *)$ to $f \in \text{Homeo}(M, vol)$. There is no homomorphism. Let $x \in M$ and consider f(x).

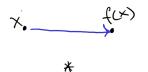


A system of homeomorphisms:

for every $y \in M$ pick a homeomorphism h_y mapping * to y.

Birman exact sequence: $\pi_1(M, *) \xrightarrow{P_u} \mathcal{M}(M, *) \xrightarrow{F} \mathcal{M}(M)$

We want to assign elements of $\mathcal{M}(M, *)$ to $f \in \text{Homeo}(M, vol)$. There is no homomorphism. Let $x \in M$ and consider f(x).

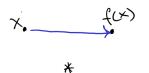


A system of homeomorphisms: for every $y \in M$ pick a homeomorphism h_y mapping * to y.

Define
$$\gamma^{\mathcal{M}}(f, x) = [h_{f(x)}^{-1} \circ f \circ h_x] \in \mathcal{M}(M, *)$$

Birman exact sequence: $\pi_1(M, *) \xrightarrow{P_u} \mathcal{M}(M, *) \xrightarrow{F} \mathcal{M}(M)$

We want to assign elements of $\mathcal{M}(M, *)$ to $f \in \text{Homeo}(M, vol)$. There is no homomorphism. Let $x \in M$ and consider f(x).



A system of homeomorphisms: for every $y \in M$ pick a homeomorphism h_y mapping * to y.

Define
$$\gamma^{\mathcal{M}}(f, x) = [h_{f(x)}^{-1} \circ f \circ h_x] \in \mathcal{M}(M, *)$$

If $f \in \text{Homeo}_0(M, vol)$, then $\gamma^{\mathcal{M}}(f, x) \in \pi_1(M, *)$

$$\begin{array}{ccc} \mathsf{H}^{\bullet}_{b}(\mathcal{M}(M,\ast)) & \xrightarrow{\Gamma^{\mathcal{M}}_{b}} & \mathsf{H}^{\bullet}_{b}(\mathsf{Homeo}(M,\mathit{vol})) \\ & & & \downarrow \\ & & \downarrow \\ \mathsf{H}^{\bullet}_{b}(\pi_{1}(M,\ast)) & \xrightarrow{\Gamma_{b}} & \mathsf{H}^{\bullet}_{b}(\mathsf{Homeo}_{0}(M,\mathit{vol})). \end{array}$$

$$\begin{array}{c} \mathsf{H}_{b}^{\bullet}(\mathcal{M}(M,\ast)) \xrightarrow{\Gamma_{b}^{\mathcal{M}}} \mathsf{H}_{b}^{\bullet}(\mathsf{Homeo}(M,\mathit{vol})) \\ & \downarrow_{\mathit{Pu}^{\ast}} & \downarrow \\ \mathsf{H}_{b}^{\bullet}(\pi_{1}(M,\ast)) \xrightarrow{\Gamma_{b}} \mathsf{H}_{b}^{\bullet}(\mathsf{Homeo}_{0}(M,\mathit{vol})). \end{array}$$

But how to define $\gamma^{\mathcal{M}}$ by couplings?

$$\begin{array}{ccc} \mathsf{H}^{\bullet}_{b}(\mathcal{M}(M,*)) & \xrightarrow{ \Gamma^{\mathcal{M}}_{b}} & \mathsf{H}^{\bullet}_{b}(\mathsf{Homeo}(M,\mathit{vol})) \\ & & \downarrow_{\mathit{Pu}^{*}} & & \downarrow \\ & \mathsf{H}^{\bullet}_{b}(\pi_{1}(M,*)) & \xrightarrow{ \Gamma_{b}} & \mathsf{H}^{\bullet}_{b}(\mathsf{Homeo}_{0}(M,\mathit{vol})). \end{array}$$

But how to define $\gamma^{\mathcal{M}}$ by couplings?

We need a cover, which is bigger than the universal cover.

$$\begin{array}{ccc} \mathsf{H}_{b}^{\bullet}(\mathcal{M}(M,*)) & \stackrel{\Gamma_{b}^{\mathcal{M}}}{\longrightarrow} & \mathsf{H}_{b}^{\bullet}(\mathsf{Homeo}(M,\mathit{vol})) \\ & & \downarrow \\ & \downarrow \\ \mathsf{H}_{b}^{\bullet}(\pi_{1}(M,*)) & \stackrel{\Gamma_{b}}{\longrightarrow} & \mathsf{H}_{b}^{\bullet}(\mathsf{Homeo}_{0}(M,\mathit{vol})). \end{array}$$

But how to define $\gamma^{\mathcal{M}}$ by couplings?

We need a cover, which is bigger than the universal cover.

$$\mathcal{M}(M, *) \subset \hat{M} \subset \text{Homeo}(M, vol)$$

$$\downarrow$$
 M

Easy answer: $\mathcal{M}(M, *) \times \widetilde{M}$, divided by the action of $\pi_1(M, *)$: $\gamma.(h, x) = (h\gamma^{-1}, \gamma.x).$

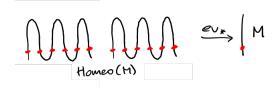
4 3 b

Easy answer: $\mathcal{M}(M, *) \times \widetilde{M}$, divided by the action of $\pi_1(M, *)$: $\gamma.(h, x) = (h\gamma^{-1}, \gamma.x)$. No action of Homeo(M, vol).

Easy answer: $\mathcal{M}(M, *) \times \widetilde{M}$, divided by the action of $\pi_1(M, *)$: $\gamma.(h, x) = (h\gamma^{-1}, \gamma.x)$. No action of Homeo(M, vol).

Easy answer: $\mathcal{M}(M, *) \times \widetilde{M}$, divided by the action of $\pi_1(M, *)$: $\gamma.(h, x) = (h\gamma^{-1}, \gamma.x)$. No action of Homeo(M, vol).

$$\begin{array}{l} (\text{path } * \to x)_{/\text{rel end pt}} \in \text{paths starting at } *_{/\sim} = \widetilde{M} \stackrel{p}{\longrightarrow} M \\ & \downarrow^{Pu} \\ (\text{homeo } * \to x)_{/\text{rel } * \to x} \in \text{Homeo}(M)_{/\sim} = \hat{M} \stackrel{ev_*}{\longrightarrow} M \end{array}$$



Michał Marcinkowski Mapping class groups and cohomology of Homeo(M, vol)

$$(\text{homeo} * \to x)_{/\text{rel}} * \to x \in \text{Homeo}(M)_{/\sim} = \hat{M} \xrightarrow{ev_*} M$$

Image: A marked black

$$(\text{homeo} * \to x)_{/\text{rel}} * \to x \in \text{Homeo}(M)_{/\sim} = \hat{M} \xrightarrow{ev_*} M$$

Image: A marked black

$$(\text{homeo} * \to x)_{/\text{rel}} * \to x \in \text{Homeo}(M)_{/\sim} = \hat{M} \xrightarrow{ev_*} M$$

 $[c] \in \hat{M}, [h] \in \mathcal{M}(M, *), [h].[c] = [ch].$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

$$(\text{homeo} * \to x)_{/\text{rel}} * \to x \in \text{Homeo}(M)_{/\sim} = \hat{M} \xrightarrow{ev_*} M$$

$$[c] \in \hat{M}, [h] \in \mathcal{M}(M, *), [h].[c] = [ch].$$
$$[c] \in \hat{M}, h \in \text{Homeo}(M, vol), h.[c] = [hc].$$

Image: A marked black

$$(\mathsf{homeo} * \to x)_{/\mathsf{rel}} * \to x \in \mathsf{Homeo}(M)_{/\sim} = \hat{M} \xrightarrow{\mathsf{ev}_*} M$$

$$[c] \in \hat{M}, [h] \in \mathcal{M}(M, *), [h].[c] = [ch].$$
$$[c] \in \hat{M}, h \in \text{Homeo}(M, vol), h.[c] = [hc].$$

In particular we can lift elements of $Homeo_0(M, vol)$ without selecting an isotopy.

A B F A B F

$\pi_1(M, *) \subset \widetilde{M} \supseteq \operatorname{Homeo}_0(M, \operatorname{vol})$

 $\Gamma_b: \operatorname{H}^n_b(\pi_1(M, *)) \to \operatorname{H}^n_b(\operatorname{Homeo}_0(M, \operatorname{vol}))$

(日本) (日本) (日本)

3

$\pi_1(M, *) \subset \widetilde{M} \heartsuit$ Homeo₀(*M*, *vol*)

 $\Gamma_b: \operatorname{H}^n_b(\pi_1(M,*)) \to \operatorname{H}^n_b(\operatorname{Homeo}_0(M,\operatorname{vol}))$

 $\mathcal{M}(M, *) \subset \hat{M} \supset \operatorname{Homeo}(M, vol)$

 $\Gamma_b^{\mathcal{M}}$: $H_b^n(\mathcal{M}(M, *)) \to H_b^n(\text{Homeo}(M, vol))$

▲日▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のくぐ

By the Dehn-Nielsen theorem $\mathcal{M}_+(S,*)\simeq \operatorname{Aut}_+(\pi_1(S,*)),$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

By the Dehn-Nielsen theorem $\mathcal{M}_+(S,*) \simeq \operatorname{Aut}_+(\pi_1(S,*))$, thus $\mathcal{M}_+(S,*)$ acts on the Gromov boundary $\partial \pi_1(S,*) \simeq S^1$.

伺 ト イヨ ト イヨト

The Euler class

By the Dehn-Nielsen theorem $\mathcal{M}_+(S,*) \simeq \operatorname{Aut}_+(\pi_1(S,*))$, thus $\mathcal{M}_+(S,*)$ acts on the Gromov boundary $\partial \pi_1(S,*) \simeq S^1$. Hence we have a representation

$$\mathcal{M}_+(S,*) \to \operatorname{Homeo}_+(S^1).$$

< ∃ >

By the Dehn-Nielsen theorem $\mathcal{M}_+(S,*) \simeq \operatorname{Aut}_+(\pi_1(S,*))$, thus $\mathcal{M}_+(S,*)$ acts on the Gromov boundary $\partial \pi_1(S,*) \simeq S^1$. Hence we have a representation

$$\mathcal{M}_+(S,*) \to \operatorname{Homeo}_+(S^1).$$

We can pull-back the Euler class $e_b \in H^2_b(\operatorname{Homeo}_+(S^1))$ to $e_b^{\mathcal{M}} \in H^2_b(\mathcal{M}_+(S,*)).$

By the Dehn-Nielsen theorem $\mathcal{M}_+(S,*) \simeq \operatorname{Aut}_+(\pi_1(S,*))$, thus $\mathcal{M}_+(S,*)$ acts on the Gromov boundary $\partial \pi_1(S,*) \simeq S^1$. Hence we have a representation

$$\mathcal{M}_+(S,*) \to \operatorname{Homeo}_+(S^1).$$

We can pull-back the Euler class $e_b \in H^2_b(\operatorname{Homeo}_+(S^1))$ to $e_b^{\mathcal{M}} \in H^2_b(\mathcal{M}_+(S,*)).$

Theorem

 $\Gamma_b^{\mathcal{M}}(e_b^{\mathcal{M}}) \in H_b^2(\text{Homeo}_+(S, area))$ has a positive norm.

伺下 イヨト イヨト