Prowadzący: prof. dr hab. Ryszard Szekli, prof. dr hab. Krzysztof Dębicki

Kontakt: dr Michał Krawiec (sekretarz), michal.krawiec at math.uni.wroc.pl

For English version please see: English version.

Aktualna działalność:

Seminarium odbywa się raz w tygodniu, w czwartki w godz. 12:15 - 14:00 stacjonarnie w sali 603 lub w formie wideokonferencji na platformie Zoom. Wszystkie aktualne i bardziej szczegółowe informacje można uzyskać u sekretarza seminarium. Pełen wykaz zaplanowanych referatów znajduje się w zakładce Referaty.

Najbliższy referat: 2025-01-30, 12:15 - 14:00

prof. Georgiy Shevchenko (Kyiv School of Economics)

Stratonovich stochastic differential equation with power non-linearity: (non)-uniqueness and selection problem

Streszczenie:
I will review results regarding a Stratonovich stochastic differential equation Xt=X0+0t|Xs|αdBs, which was introduced in the physical literature under the name ``heterogeneous diffusion process''. It turns out that equation has properties quite different from its Ito counterpart. Namely, we show that for α(0,1) it has infinitely many strong solutions spending zero time at zero. They are given by Xθ=((1α)Bθ+(X0)1α)1/(1α), where for θ(1,1), Bθ is the θ-skew Brownian motion, and (x)γ=|x|γsignx. It appears that there are no other homogeneous strong Markov solutions to the equation. To address the non-uniqueness, we consider a perturbation of the equation by a small independent noise. It appears that the solution to such equations converge to the solution of initial equation corresponding to θ=0, i.e. the physically symmetric case.