
Wprowadzenie do symulacji i metod Monte Carlo 02.01.2026

Projekt: Optymalizacja relokacji samochodów
z wykorzystaniem łańcuchów Markowa

Paweł Lorek

DEADLINE: xx.01.2026, 23:59

1 Opis problemu
Rozważamy uproszczony model firmy wypożyczającej samochody na dużym obszarze
geograficznym. Celem firmy jest podjęcie decyzji, jak relokować samochody w nocy tak,
aby zmaksymalizować oczekiwany dzienny zysk.
W tej sekcji opisujemy problem w postaci ogólnej, modelowej. Konkretne wartości
wszystkich parametrów używanych w projekcie zostaną podane dalej i są ustalone na
stałe na potrzeby zadania.
Obszar geograficzny jest zdyskretyzowany do kwadratowej siatki o rozmiarze L × L.
Każda komórka siatki (x, y) reprezentuje strefę, gdzie

x, y ∈ {0, 1, . . . , L− 1}.

Stan systemu jest reprezentowany przez macierz

S =
(
S(x, y)

)
x,y

,

gdzie S(x, y) oznacza liczbę samochodów znajdujących się w strefie (x, y). Łączna liczba
samochodów w systemie jest stała i równa n. W konsekwencji stan spełnia∑

x,y

S(x, y) = n.

Pod koniec każdego dnia zakładamy, że samochody są losowo rozproszone po siatce. W
nocy firma może relokować samochody pomiędzy strefami. Relokacja wiąże się z kosztem
transportu, ale może zwiększyć całkowity dochód, jeśli samochody zostaną przeniesione
do bardziej dochodowych obszarów.
Celem jest znalezienie konfiguracji S, która równoważy te dwa efekty:

• wysoki oczekiwany dochód w następnym dniu,

• niski łączny koszt relokacji względem konfiguracji początkowej.

Model dochodu. Każda strefa (x, y) jest scharakteryzowana przez parametr do-
chodowości

γx,y > 0.

Intuicyjnie, γx,y mierzy atrakcyjność danej strefy dla wypożyczeń samochodów. Strefy
o dużych wartościach γx,y odpowiadają obszarom o wysokim popycie, natomiast strefy
o małych wartościach γx,y – obszarom o niskim popycie.
Parametry γx,y są ustalone dla danej instancji problemu i są dostarczone wraz z danymi.
Przykładowa realizacja tzw. heatmapy (γx,y) jest pokazana na Rysunku 1 (a).

Monte_Carlo_project_MCMC_cars_pl 1

a) b)

Figure 1: a) Mapa (heatmapa) parametrów dochodowości stref γx,y. Jaśniejsze obszary
odpowiadają strefom o większym oczekiwanym popycie. b) Konfiguracja początkowa
Sinit. Samochody są rozmieszczone w przybliżeniu równomiernie po siatce. Rozmiar
siatki L× L = 100× 100 oraz łączna liczba samochodów n = 8000.

1.1 Funkcja lokalnego dochodu

Jeśli w strefie (x, y) na początku dnia znajduje się s samochodów, to oczekiwany dochód
generowany przez tę strefę jest dany przez

f(x, y, s) = f(γx,y, s).

W projekcie funkcja lokalnego dochodu ma postać Michaelisa–Mentena

f(γ, s) = γ
s

s+ k
,

gdzie k > 0 jest ustalonym parametrem nasycenia.
Taki wybór odzwierciedla następującą intuicję ekonomiczną:

• dla małych s dochód rośnie w przybliżeniu liniowo wraz z liczbą samochodów,

• dla dużych s dochód ulega nasyceniu, co odzwierciedla ograniczony lokalny popyt,

• strefy z większym γx,y generują większy dochód przy tej samej liczbie samochodów.

Rysunek 2 pokazuje funkcję f(γx,y, s) dla kilku losowo wybranych stref o różnych poziomach
dochodowości.

1.2 Całkowity dochód

Całkowity oczekiwany dochód odpowiadający konfiguracji S otrzymujemy sumując po
wszystkich strefach:

D(S) =
∑
x,y

f
(
γx,y, S(x, y)

)
.

Dla konfiguracji początkowej Sinit, w której samochody są losowo rozmieszczone po
siatce, rozkład przestrzenny samochodów jest pokazany na Rysunku 1 (b). Ze względu na

Monte_Carlo_project_MCMC_cars_pl 2

Figure 2: Funkcja lokalnego dochodu f(γx,y, s) dla czterech losowo wybranych stref.
Każda krzywa odpowiada innej wartości γx,y.

losowe rozmieszczenie samochody nie są skoncentrowane w strefach o wysokim popycie,
a uzyskany dochód jest zatem suboptymalny.
W projekcie rozważamy jedną, ustaloną instancję problemu o następujących parame-
trach:

• rozmiar siatki: L = 100,

• łączna liczba samochodów: n = 8000,

• parametr nasycenia w funkcji dochodu: k = 6,

• parametr kosztu transportu γtransport.

Dodatkowo instancja zawiera:

• mapę dochodowości (γx,y) na siatce,

• konfigurację początkową Sinit.

Wszystkie powyższe wielkości, w szczególności wartości liczbowe L, n i k, a także tablice
(γx,y) i Sinit, są zapisane w jednym pliku instance.npz. Plik ten stanowi część specy-
fikacji zadania i nie wolno go modyfikować.
Technicznie, plik instance.npz przechowuje dane instancji jako tablice NumPy. Można
go wczytać w Pythonie następująco:
import numpy as np
data = np.load("data/instance.npz")

a następnie odwoływać się do poszczególnych elementów instancji, np.:
S_init = data["S_init"]
gamma_map = data["gamma_map"]
k = data["k"]
L = data["L"]
n = data["n"]

Tutaj S_init jest dwuwymiarową tablicą NumPy o rozmiarze L × L, reprezentującą
początkową konfigurację samochodów, natomiast gamma_map jest dwuwymiarową tablicą
o tym samym rozmiarze, zawierającą parametry dochodowości γx,y. Wartości k, L i n są
zapisane jako skalarne tablice NumPy.
W całym projekcie parametry instancji są ustalone. Zadanie polega na zaprojektowaniu
i przeanalizowaniu algorytmu, który aktualizuje konfigurację S, startując od Sinit, tak
aby poprawiać całkowity zysk.

Monte_Carlo_project_MCMC_cars_pl 3

1.3 Koszt relokacji

Relokacja samochodów pomiędzy strefami generuje koszt transportu. Intuicyjnie, przenosze-
nie samochodów na duże odległości jest kosztowne i powinno być wykonywane tylko
wtedy, gdy prowadzi do wystarczająco dużego wzrostu oczekiwanego dochodu.
Niech Sinit oznacza konfigurację początkową, a S konfigurację docelową uzyskaną po
nocnych relokacjach. Koszt relokacji definiujemy jako łączny koszt potrzebny do prze-
transportowania samochodów z ich lokalizacji początkowych do lokalizacji końcowych.
W projekcie zakładamy, że koszt przetransportowania jednego samochodu ze strefy
(x1, y1) do strefy (x2, y2) jest proporcjonalny do odległości Manhattan pomiędzy tymi
strefami,

d
(
(x1, y1), (x2, y2)

)
= |x1 − x2|+ |y1 − y2|.

Odpowiadający temu koszt transportu wynosi

cost = γtransport d
(
(x1, y1), (x2, y2)

)
,

gdzie γtransport > 0 jest ustalonym parametrem określającym koszt jednostkowy (prze-
transportowania jednego samochodu na jednostkę odległości).
Całkowity koszt relokacji związany z przejściem z Sinit do S otrzymujemy sumując koszty
wszystkich pojedynczych przemieszczeń samochodów. Koncepcyjnie odpowiada to za-
gadnieniu optymalnego transportu pomiędzy dwiema dyskretnymi dystrybucjami na
siatce.
Implementacja kosztu relokacji nie jest celem tego projektu. W pliku helpers.py
dostarczona jest gotowa funkcja licząca koszt relokacji (zob. Rozdział 3.2), z której
można bezpośrednio korzystać. Funkcję tę można traktować jako czarną skrzynkę; nie
trzeba implementować żadnych algorytmów transportu ani dopasowań.

1.4 Całkowity zysk

Celem problemu relokacji samochodów jest maksymalizacja oczekiwanego zysku całkowitego.
Zysk ten definiujemy jako różnicę pomiędzy dochodem uzyskiwanym w ciągu dnia a
kosztem relokacji ponoszonym w nocy.
Niech Sinit oznacza konfigurację początkową, a S konfigurację po relokacjach. Całkowity
zysk odpowiadający konfiguracji S definiujemy jako

profit(S) = D(S)− C(Sinit,S), (1.1)

gdzie

• D(S) oznacza całkowity oczekiwany dochód dla konfiguracji S,

• C(Sinit,S) oznacza całkowity koszt relokacji potrzebny do przejścia z Sinit do S
(liczony funkcją relocation_cost dostarczoną w pliku helpers.py).

Składnik D(S) faworyzuje umieszczanie samochodów w strefach o wysokich wartościach
γx,y, natomiast składnik C(Sinit,S) penalizuje relokacje na duże odległości. Wynikowe
zadanie optymalizacyjne polega więc na znalezieniu kompromisu pomiędzy tymi dwoma
efektami.
W całym projekcie konfiguracja początkowa Sinit jest ustalona. Zadanie polega na za-
projektowaniu algorytmu, który generuje kolejne konfiguracje o rosnących wartościach
profit(S).

Monte_Carlo_project_MCMC_cars_pl 4

2 Zadanie
Celem projektu jest znalezienie konfiguracji S∗ o dużym całkowitym zysku, najlepiej
bliskiej optymalnej

Sopt = argmax
S

profit(S),

gdzie
profit(S) = D(S)− C(Sinit,S).

Ponieważ przestrzeń wszystkich możliwych konfiguracji jest ogromna, przeszukanie zu-
pełne jest niemożliwe. Twoim zadaniem jest zatem implementacja algorytmu Metropolisa
(lub Metropolisa–Hastingsa), który konstruuje łańcuch Markowa

Sinit → S(1) → S(2) → · · · ,

i ma tendencję do przechodzenia w kierunku konfiguracji o większych wartościach profit(S).
W każdej iteracji należy zaproponować modyfikację aktualnej konfiguracji S (zgodnie z
pewnym mechanizmem propozycji / macierzą generowania kandydatów) oraz zaakcep-
tować bądź odrzucić propozycję zgodnie z regułą akceptacji Metropolisa, na podstawie
zmiany wartości profit(S).
Można korzystać z funkcji dostarczonych w pliku helpers.py do obliczania:

• całkowitego dochodu D(S),

• kosztu relokacji C(Sinit,S).

Implementacja samego kosztu relokacji nie jest częścią zadania.

Pliki do oddania. Należy oddać:

• plik Pythona main_123456.py, gdzie 123456 należy zastąpić numerem indeksu,

• raport w formacie PDF.

Raport. Należy przygotować krótki raport opisujący algorytm i wyniki eksperymen-
tów. Raport musi zawierać:

• jasny opis mechanizmu propozycji oraz reguły akceptacji zastosowanej w algoryt-
mie,

• wykres profit(S(t)), tj. całkowity zysk w kolejnych iteracjach,

• wizualizację relokacji wykonanych przez algorytm, zgodnie z opisem poniżej.

Wizualizacja relokacji. Oprócz wykresu zysku należy dołączyć rysunek pokazu-
jący, gdzie algorytm relokował samochody. Wizualizacja powinna bazować na różnicy
pomiędzy konfiguracją końcową a konfiguracją początkową,

∆S = S(final) − Sinit.

Rysunek musi być wykonany zgodnie z następującą konwencją:

Monte_Carlo_project_MCMC_cars_pl 5

• mapa (γx,y) jest pokazana w tle jako heatmapa w skali szarości,

• strefy, z których zabrano samochody (tj. ∆S(x, y) < 0), są oznaczone kolorem
niebieskim,

• strefy, do których dodano samochody (tj. ∆S(x, y) > 0), są oznaczone kolorem
czerwonym,

• wielkość |∆S(x, y)| może być odzwierciedlona w rozmiarze znaczników, tak aby
większe relokacje były wyraźniej widoczne.

Przykład wymaganej wizualizacji jest pokazany na Rysunku 3.

Figure 3: Wizualizacja istotnych relokacji samochodów. Tło przedstawia mapę do-
chodowości (γx,y) w skali szarości. Czerwone znaczniki oznaczają strefy, do których
dodano samochody (∆S(x, y) > 0), natomiast niebieskie znaczniki oznaczają strefy, z
których zabrano samochody (∆S(x, y) < 0). Rozmiar znacznika jest proporcjonalny do
|∆S(x, y)|.

Funkcja pomocnicza plot_relocations, generująca taką wizualizację, jest dostępna w
pliku helpers.py. Można użyć jej bezpośrednio lub w razie potrzeby zmodyfikować;
jednak konwencja kolorów (czerwony = dodane samochody, niebieski = zabrane samo-
chody) musi zostać zachowana.

3 Dostarczone pliki

3.1 Plik sample_visualize.py

Oprócz pliku instance.npz dostarczony jest skrypt Pythona sample_visualize.py.
Celem tego pliku jest umożliwienie wstępnej eksploracji instancji oraz zilustrowanie
struktury dostarczonych danych.
Skrypt wykonuje następujące kroki:

• wczytuje dane instancji z instance.npz,

• wypisuje wartości liczbowych głównych parametrów modelu,

• wizualizuje mapę dochodowości (γx,y) jako heatmapę,

Monte_Carlo_project_MCMC_cars_pl 6

• wizualizuje konfigurację początkową Sinit,

• rysuje funkcję lokalnego dochodu f(γx,y, s) dla kilku losowo wybranych stref.

Rysunki generowane przez sample_visualize.py są dołączone do niniejszego opisu
projektu i stanowią punkt odniesienia do interpretacji parametrów modelu. W szczegól-
ności ilustrują one niejednorodność przestrzenną popytu zakodowaną w mapie (γx,y)
oraz nasycający charakter funkcji lokalnego dochodu.
Plik sample_visualize.py służy wyłącznie do podglądu i eksperymentów. Nie ma
potrzeby jego modyfikowania. Jego rola polega na dostarczeniu intuicji dotyczącej in-
stancji oraz na weryfikacji, że dane zostały poprawnie wczytane, zanim rozpoczniesz
implementację algorytmu optymalizacji.

3.2 Szablon main.py

Plik main.py pełni rolę szablonu pokazującego, jak wczytać dane instancji oraz jak
obliczać podstawowe wielkości związane z problemem.
W szczególności skrypt wykonuje następujące kroki:

• wczytuje ustaloną instancję problemu z instance.npz,

• oblicza całkowity dochód dla konfiguracji początkowej Sinit,

• wykonuje niewielką liczbę losowych relokacji samochodów,

• oblicza dochód oraz koszt relokacji dla zmodyfikowanej konfiguracji,

• porównuje wyniki przed i po relokacjach.

Celem main.py jest wyłącznie demonstracja podstawowych obliczeń. Skrypt pokazuje,
jak dla danej konfiguracji wyznaczyć dochód oraz koszt relokacji i jak zmiany w konfig-
uracji wpływają na te wielkości.
Zachęcamy do traktowania main.py jako punktu startowego (szkieletu) dla własnych
implementacji. W szczególności, skrypt można naturalnie rozszerzyć, zastępując losowe
relokacje regułami aktualizacji wynikającymi z metod MCMC, itp.

Monte_Carlo_project_MCMC_cars_pl 7

	Opis problemu
	Funkcja lokalnego dochodu
	Całkowity dochód
	Koszt relokacji
	Całkowity zysk

	Zadanie
	Dostarczone pliki
	Plik sample_visualize.py
	Szablon main.py

