Introduction to simulations and Monte Carlo methods

27.11.2025

Project nr 2

Konrad Krystecki, Paweł Lorek

DEADLINE: 06.01.2026, 23:59

1 Task

Fix the parameters: r = 0.05, $\sigma^2 = 0.125$ (thus $\mu^* = r - \sigma^2/2 = -0.0125$), S(0) = 100, and K = 100.

Estimate the $I_{n,C}$ given in (3.3) using

- a) Crude Monte Carlo estimator.
- b) Stratified estimator.
- c) For n = 1: Antithetic estimator. You may take (Z_{2i-1}, Z_{2i}) with $Z_{2i} = -Z_{2i-1}$, where Z_{2i-1} , $i = 1, \ldots, R/2$, are i.i.d. standard normal $\mathcal{N}(0, 1)$.
- d) For n=1: Control variate estimator. As a control variate, you may take X=B(1).

Compare the results. For the case n=1, compare estimations with the exact value using the Black-Scholes formula (3.4). For stratified estimators, consider proportional and optimal allocation schemes. Provide a report in a .pdf file and the working implementation you used. Test your results for at least two different values of C. In the report grading, the following will be taken into account:

- 1. Code (0-4 pts) 1 pt for results reproducability, 3 pts for code quality, i.e. code structure, appropriate comments, lack of redundancy. Code generator by AI tools needs to be clearly flagged.
- 2. Report (0-6 pts) structure of the report, readability and visualizations
- 3. Methodology (0-10 pts) completion of all parts of the task, discussion on parameter choices and comments on the comparison of European call options and discretized binary up-and-out options.

2 Brownian motion and geometric Brownian motion

DISCLAIMER: This is by no means a full introduction to Brownian motion. It is a *minimalist* introduction for the purposes of this project.

2.1 Brownian motion

Roughly speaking, a stochastic process $\mathbf{B} = (B(t))_{t \leq T}$ is a **Brownian motion** if $B(t_0) = 0$ at $t_0 = 0$, and for any $0 \leq t_1 < \ldots < t_n \leq T$, the vector $(B(t_1), \ldots, B(t_n))$ is a zero-mean multivariate normal random variable $\mathcal{N}(\mathbf{0}, \Sigma)$ with covariance matrix

$$\Sigma(i,j) = \operatorname{Cov}(B(t_i), B(t_j)) = \min(t_i, t_j), \quad i, j = 1, \dots, n.$$

In this project, we consider T=1 and equally spaced time points $(t_1,t_2,\ldots,t_n)=\left(\frac{1}{n},\frac{2}{n},\ldots,1\right)$.

2.2 Stratified sampling of a multivariate normal $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ random variable

Suppose we want to sample a random variable $\mathbf{B} = (B_1, \dots, B_n)^T \sim \mathcal{N}(\mathbf{0}, \Sigma)$ using m strata. Let $\mathbf{Z} = (Z_1, \dots, Z_n)^T$ be a multivariate standard normal random variable. The strata will be defined by ascending rings A^1, \dots, A^m , which are determined by balls A'_i centered at $(0, \dots, 0)$ with suitable radii such that $\mathbb{P}(\mathbf{Z} \in A^i) = 1/m$. Thus, let

- A'_1 be an *n*-dimensional ball such that $\mathbb{P}(\mathbf{Z} \in A'_1) = 1/m$;
- A_2' be a ball such that $\mathbb{P}(\mathbf{Z} \in A_2' \setminus A_1') = 1/m$;
- etc.

Set
$$A^1 = A'_1, A^2 = A'_2 \setminus A'_1, \dots, A^m = A'_m \setminus A'_{m-1}$$
.

Let **A** be such that $\Sigma = \mathbf{A}\mathbf{A}^T$ (Cholesky decomposition).

Define the *i*-th stratum by $S^i = \{ \mathbf{Az} : \mathbf{z} \in A^i \}$.

Assume that $\mathbf{Z}^i \stackrel{D}{=} (\mathbf{Z} \mid \mathbf{Z} \in A^i)$. Then $\mathbf{B}^i = \mathbf{A}\mathbf{Z}^i$ is from stratum S^i .

It remains to show how to sample $\mathbf{Z}^i \stackrel{D}{=} (\mathbf{Z} | \mathbf{Z} \in A^i)$. For n = 2 and m = 1, the method was presented in the lecture (which de facto is the Box-Muller method). For general $n \geq 2$, let ξ_1, \ldots, ξ_n be i.i.d. standard normal $\mathcal{N}(0,1)$ random variables. Denote $\boldsymbol{\xi} = (\xi_1, \ldots, \xi_n)^T$. Let D > 0. Then the vector

$$\left(D\frac{\xi_1}{||\boldsymbol{\xi}||},\ldots,D\frac{\xi_n}{||\boldsymbol{\xi}||}\right)^T$$

has a uniform distribution on a sphere with radius D. We have the following proposition:

Proposition 1 Let $\mathbf{Z} = (Z_1, \ldots, Z_n)$ be a standard multivariate normal random variable. Then the square of the length of \mathbf{Z} is $D^2 = Z_1^2 + \ldots + Z_n^2$ and has a χ_n^2 distribution (χ^2 with n degrees of freedom).

Recall that the density and c.d.f. of χ_n^2 are as follows:

$$f_{\chi_n^2}(r) = \frac{1}{2^{n/2}\Gamma(n/2)} r^{n/2-1} e^{-r/2}, \quad F_{\chi_n^2}(r) = \frac{1}{\Gamma(n/2)} \gamma_{n/2}(r/2),$$

2

where Γ is the gamma function, and γ is the incomplete gamma function.¹ For n=2, the random variable D has the Rayleigh distribution. Admittedly, there is no explicit formula for the inverse function of $F_{\chi_n^2}(r)$ for general n, but numerically this inverse is available in several libraries.²

Summing up, sampling $\mathbf{B}^i \stackrel{D}{=} (\mathbf{B} \mid \mathbf{B} \in A^i)$ is as follows:

- 1. Perform Cholesky decomposition: $\Sigma = AA^T$.
- 2. Sample $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^T$, where $\xi_i \sim \mathcal{N}(0, 1)$ i.i.d. Set

$$\mathbf{X} = (X_1, \dots, X_n)^T = \left(\frac{\xi_1}{||\boldsymbol{\xi}||}, \dots, \frac{\xi_n}{||\boldsymbol{\xi}||}\right)^T.$$

3. Sample $U \sim \mathcal{U}(0,1)$. Set

$$D^{2} = F_{\chi_{n}^{2}}^{-1} \left(\frac{i-1}{m} + \frac{1}{m} U \right).$$

- 4. Set $\mathbf{Z} = (Z_1, \dots, Z_n) = (DX_1, \dots, DX_n)$.
- 5. Return $\mathbf{B}^i = \mathbf{AZ}$.

2.2.1 Stratified sampling of a Brownian motion

We can simply use the procedure described in Section 2.2. Recall that $\mathbf{B} = (B(1/n), B(2/n), \dots, B(1))$ is a multivariate normal random variable $\mathcal{N}(\mathbf{0}, \Sigma)$ with the covariance matrix

$$\Sigma(i,j) = \frac{1}{n}\min(i,j).$$

We can perform the Cholesky decomposition $\Sigma = \mathbf{A}\mathbf{A}^T$, where

$$\mathbf{A}(i,j) = \begin{cases} \frac{1}{\sqrt{n}} & \text{if } j \leq i \\ 0 & \text{otherwise.} \end{cases}$$

3

In Figure 1, 5000 points within 4 strata were simulated using the above method.

https://en.wikipedia.org/wiki/Incomplete_gamma_function

²E.g., scipy.stats.chi2.ppf in Python or chi2inv in Matlab

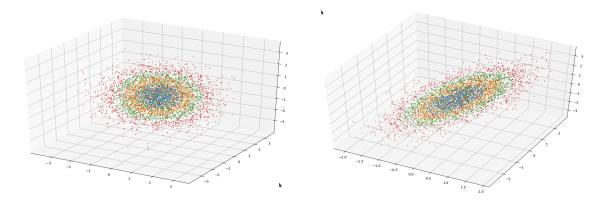


Figure 1: 5000 points from a 3-dimensional standard normal distribution obtained using stratified (4 strata) sampling (left). Points from a 3-dimensional normal distribution with covariance matrix $\Sigma(i,j) = \min(i,j)/3$ (right).

2.3 Geometric Brownian motion

The evolution of stocks (assets) is often modeled as geometric Brownian motion, denoted $GBM(\mu, \sigma)$, which is defined by

$$S(t) = S(0) \exp\left(\left(r - \frac{\sigma^2}{2}\right)t + \sigma B(t)\right), \qquad 0 \le t \le T, \tag{2.1}$$

where B(t) ($0 \le t \le T$) is Brownian motion. In computing option prices, often the interest rate r and volatility σ are known; we then make computations for $GBM(r, \sigma)$. Denote $\mu^* = r - \sigma^2/2$. Then we have

$$S(t) = S(0) \exp(\mu^* t + \sigma B(t)), \qquad 0 \le t \le T.$$
 (2.2)

3 European and Barier call options

We are interested in estimating the following (called an *option*, with discounted payoff at time 1) with price given by the formula

$$A_{n,C} = \begin{cases} e^{-r}(S(1) - K)_{+}, & \text{when } \forall_{i \in 1,2,\dots,n} S(i/n) < C, \\ 0, & \text{otherwise} \end{cases},$$
(3.3)

where S(t) is given in (2.2) and

$$I_{n,C} = E[A_{n,C}]$$

In the case $C = \infty$, this is called a **European call option**; otherwise, it is called a **discrete barrier up-and-out call option**.

3.1 Black-Scholes formula

In the case $C=\infty$ (i.e., a European call option), the exact value of $E(A_{1,\infty}-K)_+=E(S(1)-K)_+$ is provided by the Black-Scholes formula (where Φ is the c.d.f. of $\mathcal{N}(0,1)$):

$$E(S(1) - K)_{+} = S(0)\Phi(d_1) - Ke^{-r}\Phi(d_2), \tag{3.4}$$

where

$$d_1 = \frac{1}{\sigma} \left[\log \left(\frac{S(0)}{K} \right) + r + \frac{\sigma^2}{2} \right],$$

and

$$d_2 = d_1 - \sigma.$$

5