
Wroc law, March 26, 2021

Exercise list no 5

Simulations and algorithmic applications of Markov chains

(Poincare constant). Let X be a reversible Markov chain with a transition matrix P on a graph
G = (V,K), where V = {e1, . . . , eM} are the vertices and K = {(ei, ej) : P(ei, ej) > 0} are the
edges. For a directed edge k̃ = (ei, ej) (ei is the starting edge) define Λ(k̃) = π(ei)P(ei, ej). For
set verices ei and ej let Γ(ei, ej) be a deterministic, unique path. Let |Γ(ei, ej)| =

∑
k̃ ∈ Γ(ei,ej)

1

be a length of that path. Poincare constant is defined as

γP := max
k̃

 1

Λ(k̃)

∑
(ei,ej):k̃ ∈ Γ(ei,ej)

|Γ(ei, ej)|π(ei)π(ej)


(for set k̃ the sum goes through all the vertices (ei, ej) such that the edge k̃ belongs to the path
Γ(ei, ej)).

Theorem 1
Let λ2 denote the second largest (in terms of absolute value) eigenvalue of a transition matrix

P of a reversible Markov chain X. Then

|λ2| ≤ 1− 1

γP
.

Similarly to the Poincare constant, for a reversible and ergodic Markov chain X ∼ P one can
define the Cheeger constant via

γC := min
A⊂E:π(A)≤1/2

∑
ei ∈ A

∑
ej ∈ AC

π(ei)P(ei, ej)

π(A)
.

Theorem 2
With λ2 defined as previously we have

|λ2| ≤ 1− 1

2
γ2
C .

Theorem 3
For a reversible Markov chain X ∼ P we have

dTV (δeP
n, π) ≤ 1

2

1√
π(e)

|λ2|n,

where δeP
n is the distribution of the n−th step of the chain that started in state e.
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Theorem 4
For any (not necessarily reversible!) Markov chain X ∼ P we have

dTV (δeP
n, π) ≤ 1

2

1√
π(e)

|λ2(M)|
n
2 ,

where λ2(M) is the second largest (in terms of absolute value) eigenvalue of a matrix M = PP̃.

Exercise 1 For φ : E → R define V ar(φ) =
∑

e φ
2(e)π(e) − (

∑
e φ(e)π(e))2. Show that

V ar(φ) = 1
2

∑
ei,ej ∈ E(φ(ei)− φ(ej))

2π(ei)π(ej).

Exercise 2 Let n(ε) be such that dTV (δeP
n(ε), π) ≤ ε. Show that for nγP (ε) = γP log

(
1

2ε
√
π(e)

)
dTV (δeP

nγP (ε), π) ≤ ε,

where γP is the Poincare constant.

Exercise 3 Show that for nγC (ε) = 2
γ2C

log

(
1

2ε
√
π(e)

)
dTV (δeP

nγC (ε), π) ≤ ε,

where γC is the Cheeger constant.

Exercise 4 Consider the symmetric random walk on a circle: E = {0, 1, . . . , n− 1}.

P =



1− 2p p 0 0 . . . 0 0 p

p 1− 2p p 0 . . . 0 0 0

0 p 1− 2p p 0 . . . 0 0

. . .

p 0 0 0 0 . . . p 1− 2p


,

where p < 1
2 . Calculate (or estimate) γP .

Exercise 5 For previous exercise, calculate (or estimate) γC .

Exercise 6 For what p the Cheeger constant is better that the Poincare constant in the case
of random walk on a circle (by better we mean that it gives better estimation in Theorem 2).

Exercise 7 Once again consider a random walk on a circle: E = {0, 1, . . . , n− 1}

P =



1− p p 0 0 . . . 0 0 0

0 1− p p 0 . . . 0 0 0

0 0 1− p p 0 . . . 0 0

. . .

p 0 0 0 0 . . . 0 1− p


.
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Show that by calculating M = PP̃ the task to calculate γC and γP reduces to exercises 4 and
5. Give the estimations.

Exercise 8 Let X be a simple random walk on a graph G = (V,K), where V = {e1, . . . , eM}
are the vertices and K = {(ei, ej) : P(ei, ej) > 0} are the edges. Let the transition matrix be
P(vi, vj) = 1/d(vi) if (vi, vj) ∈ K, where d(vi) is the degree of vertex vi. Let Γ(v, v′) denote some
choice of a path from v to v′ which doesn’t include the same edge more than once. Define

d∗ = max
v
d(v), s∗ = max

v,v′
|Γ(v, v′)|, η∗ = max

k̃ ∈ K
#{(v, v′) ∈ V 2 : k̃ ∈ Γ(v, v′)}.

Show that γP ≤ (d∗)2s∗η∗

|K| .
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