EXERCISE LIST NO 7

SIMULATIONS AND ALGORITHMIC APPLICATIONS OF MARKOV CHAINS

If something is called random without specifing the underlying distribution, you should assume that the distribution is uniform.

Exercise 1 Consider graph G = (V, E) with $V = \{1, 2, ..., N\}$ and $E = \{(i, i+1) : i \in \{1, 2, ..., N-1\}\}$. Show that in a hard-core model on this graph (one-dimensional hard-core model) the number of all valid configurations is equal to f_{N+1} , where f_k are Fibonacci numbers.

Exercise 2 How many valid q-colorings exist for the graph from Exercise 1?

Exercise 3 How many valid q-colorings exist for a full binary tree of depth n?

Exercise 4 Prove the following Lemma.

Lemma 1

Let $\varepsilon \in [0, 1]$, k be a positive natural number and $a_1, \ldots, a_k, b_i, \ldots, b_k$ be non-negative numbers such that

$$\left(1-\frac{\varepsilon}{2k}\right) \le \frac{a_j}{b_j} \le \left(1+\frac{\varepsilon}{2k}\right), \qquad j=1,\ldots,k.$$

Then

$$1-\varepsilon \leq \frac{a}{b} \leq 1+\varepsilon,$$

where $a = \prod_{j=1}^{k} a_j, b = \prod_{j=1}^{k} b_j.$

Exercise 5 Let $R = (R^1, \ldots, R^q)$ be a random permutation of the set $\{1, 2, \ldots, q\}$. Set $S \subset \{1, \ldots, q\}$ and define

$$X = R^{i}, \quad \text{where} \quad i = \min_{j} \{ j : R^{j} \in S^{C} \},$$

 S^C is complement of S. Show that $X \sim \text{Unif}(S^C)$, i.e. X is distributed uniformly on S^C .

Exercise 6 Let X and X' be two q-colorings of the graph G = (V, K). Set a vertex $v \in V$ and let S(X(v)) be a set of colors of neighbours of v in coloring X. Define

$$B_{2} = \{r \in \{1, \dots, q\} : r \in S(X(v)) \cap S(X'(v))\},\$$
$$B_{1} = \{r \in \{1, \dots, q\} : r \in [S(X(v)) \cap (S(X'(v)))^{C}] \cup [((S(X(v))^{C} \cap S(X'(v)))]\},\$$
$$B_{0} = \{r \in \{1, \dots, q\} : r \in [S(X(v)) \cup S(X'(v))]^{C}\}.$$

Let $R = (R^1, \ldots, R^q)$ be a random permutaion of the set $\{1, 2, \ldots, q\}$. Further define

$$Y = R^a$$
, where $a = \min_j \{j : R^j \in S(X(v))^C\}$

and

$$Z = R^b, \quad \text{where} \quad b = \min_{j} \{j : R^j \in S(X'(v))^C\}.$$

Show that $P(Y = Z) = \frac{|B_0|}{|B_0| + |B_1|}$, where $|B_i|$ is the power of set B_i .

1

Exercise 7 Describe a simple and effective method of generating a random permutation of the set $\{1, 2, \ldots, d\}$.

Exercise 8 Consider Gibbs algorithm for q-colorings of the graph (the version with randomization of verices, not the 'sweep' one). Let $G = (V, E), V = \{v_1, \ldots, v_M\}$. Show that for all $v \in V$ probability that v will be chosen during the first M iterations of the algorithm is equal to at least $1 - \frac{1}{e}$.

Exercise 9 For G = (V, E) subset $I \subset V$ is called a independent set in G if none of the vertices in I are connected by an edge from G. Let $\mathcal{I}(G)$ denote the set of all independent sets in G. Give an example of a Markov chain, which has uniform stationary distribution on $\mathcal{I}(G)$. Hint: Construct Gibbs algorithm, which picks a random vertex and considers removing or adding it to current independent set/state.