
Wroc law, June 8, 2021

Exercise list no 11

Simulations and algorithmic applications of Markov chains

Definition 1
We call ZG an (ε, δ)−approximation scheme for Z if

P (|Z − ZG| ≥ εZG) ≤ δ.

Definition 2
Markov chain on a state space E = {e1, . . . , eM} with the transition matrix PX is Möbius

monotone w.r.t. partial ordering � if C−1PXC ≥ 0 (component-wise), where C(e, e′) = 1 if
e � e′ and 0 otherwise.

Exercise 1 Prove the following lemma from the lecture:

Lemma 1
Let Y1, . . . , YR be i.i.d with P (Y1 = 1) = 1 − P (Y1 = 0) = p. Let ŶR = 1

R

∑R
i=1 Yi be the

estimator of the mean. If further R >
3 log( 2

δ
)

ε2p
, then

P (|ŶR − p| > εp) ≤ δ.

Exercise 2 Let s̃i be an ( ε
2m ,

δ
m)−approximation scheme for si. Show that

z̃ = s̃1 · s̃2 · . . . · s̃m

is an (ε, δ)−approximation scheme for z = s1 · s2 · . . . · sm.

Exercise 3 (Example 3.2 “Cat Eats Mouse Eats Cheese” from the book: P. Bremaud Markov
chains: Gibbs fields, Monte Carlo simulation, and queues, 1999.)
The mouse moves through the rooms (Fig. 1) with uniform probability (i.e. if it is in a room
with 2 neighbouring rooms, it will move to any of them with probability 1

2). If is gets to the
room 5 (where the cheese is), it will stay there, but if it gets to the room 3 (where the cat is) it
will get eaten. Calculate the probability of getting to the room 5 before getting to the room 3
starting from the rooms i = 1, 2, 3, 4, 5.
Note: if it was on the last lecture (09.06.2020), you should use Siegmund duality, because it will
be easier - but you can also do it without it.
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Figure 1: Maze, mouse, and murder

Exercise 4 Let E = {0, 1}d and e = (e1, . . . , ed) ∈ E, i.e. ei ∈ {0, 1}. Let’s introduce a partial
ordering e � e′ ⇐⇒ ei ≤ e′i, i = 1, . . . , d. Let C be a matrix of the ordering � of dimension
|E| × |E|, i.e. C(e, e′) = 1 if e � e′ and 0 otherwise. Show that

C−1(e, e′) =

 (−1)|e
′|−|e| if e � e′,

0 otherwise,
,

where |e| =
∑d

i=1 ei.

Exercise 5 Show that the Möbius monotonicity definition is equivalent to

∀(ei, ej ∈ E)
∑
e�ei

µ(ei, e)PX(e, {ej}↓) ≥ 0,

where {ej}↓ = {e : e � ej} and PX(e, A) =
∑

e′ ∈ A PX(e, e′).

Exercise 6 Show that if the partial ordering � is in fact a linear ordering, then the Möbius
monotonicity is equivalent to stochastic monotonicity.
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