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primary 60G15 being of order uiz where u represents initial capital for the companies. Approximation
secondary 60G70 of this problem is of interest for the analysis of Parisian ruin probability in bivariate

Brownian risk model, which is a standard way of defining prolonged ruin models in the

Multidimensional Brownian motion financial markets,
Stationary random fields © 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

Extremes BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords:

1. Introduction

Consider the following Brownian risk model for two portfolios
Ri(t) = u; + it — Wi(t),i= 1,2,

where the claims Wj(t), t > 0 are represented by two dependent standard Brownian motions, u; > 0 can be interpreted
as initial capitals and ¢; can be interpreted as premiums. The following representation of the dependence between the
claims has been proposed in Delsing et al. (2018) and Debicki et al. (2020)

(Wi(s), Wa(t)) = (Bi(s), pB1(t) + /1 — p2By(t)), s,t>0,

where Bi, B, are two independent standard Brownian motions and p € [—1, 1]. The ruin probability of a single portfolio
in the time horizon [0, T], T > 0 is given by (see e.g., Debicki and Mandjes (2015))

nr(ci, u) == IP’{ inf Ri(t) < O} = IP{ sup Wi(t) — ¢t > u}
tel0,T] te[0,T]
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fori=1,2,u > 0, with @ the distribution function of an N(0, 1) random variable. Since from self-similarity of Brownian

motion we have the following equalities in distribution for ¢} = u=-L

R N
B(tT) — c1t > u < ~/TB(t) — cit > u < B(t) — cat>u,

then without loss of generality one can assume T = 1. There are at least two different approaches on how to define the
extension of the above to the two-dimensional model. Denote W;*(s) = Wi(s) — ¢;s, Bf (s) = Bi(s) —¢;s, i = 1, 2. Define the
simultaneous ruin probability as

Tap(Cr, €2, U, v) = P {Tseq s W) > u, Wi (s) > v}

which has been recently studied in Debicki et al. (2020) for A = [0, 1]. Similarly, define non-simultaneous ruin probability
as

TaxB,p(C1, €2, U, V) =P {ElseA.teB FWI(s) > u, Wi(t) > U}

which has been studied for the case A = B = [0, 1] in Debicki et al. (2021). In this contribution we focus on an extension
of the non-simultaneous results of ruin for two-dimensional risk portfolios. In Loeffen et al. (2013), Czarna and Renaud
(2016) the so-called Parisian ruin of a single portfolio was investigated which is defined as

PX,H(u)(Cv u)="mr {Els’eAVse[s’,s/+H(u)]X(5) > u} )

for some H(u) > 0,A = [0, T] and x a Lévy process. This model defines the concept of the ruin as crossing the barrier
over the extended period of time, the so-called time in red. It seems more natural than the classical ruin approach, since it
allows for easier practical investigations whether the ruin has occurred. This model has also been studied for various sets
A and various processes in many other contributions, e.g. Debicki et al. (2015), Bai and Luo (2017), Debicki et al. (2016),
Dassios and Wu (2008). To analyse the model in two-dimensional framework we use the following definition of the ruin
probability

P:XB’H(H)(Clv C,u,v) =P {as’eA,t’eBVse[s’.s/+H1(u)]vte[t’,t’Jer(u)]Wl*(s) > U, Wz*(t) > U} s

for some Hy(u), Hy(u) > 0 and intervals A, B. We refer to Dassios and Wu (2011), where one can find an application of
Parisian ruin to actuarial risk theory, where R; is treated as a surplus process of an insurance company with initial capital
u;. Similar model for simultaneous type of ruin has been investigated in Kriukov (2020).

For more general intervals A, B we have the following comparison between Parisian and classical ruin

Taxp,p(C1, €2, Uy QU) > Py p (€1, €2, U, aAUL). (1.1)
Further let

P

[0,1]2,H(u)(c17 C2, U, au) ==

Wi(s) > u Wi(v) >u
P {35’,t’e[0,1JV5€[5’,5’+H1(U)JVIEU’J’+H2(U)J Wz*}(t) > au Fo,weo.1) W (w) > au

To simplify notation we denote

75, 5,(C1, €2, U, au) := P* sz>(C1, Ca, U, au)

[0, 1]2 (51
and write

Psy.s5,(C1, 2, U, AU) = 73[0 12,6152 sz)(

c1, €2, U, au).
Similarly to the classical ruin, the Parlslan ruin probability cannot be determined explicitly for general Gaussian risks,
therefore our aim is to investigate the asymptotic behaviour as u — oo. Notice that

*

(012, s1 52) (¢1, €2, u, au)

*
;@[0 ", (51

52)(C1! Ca, U, au)
n[o_l]z,p(cl, Cp, U, aul)

Together with results for 7o 112 (€1, 2, U, au) from Debicki et al. (2021) calculating asymptotics of %, s,(c1, ¢z, u, au) and

Ps, 5,(C1, €2, u, au) is equivalent and to show a direct comparison between different kinds of ruin we decided to present

results in terms of the former, but we focus the proofs on the latter. We investigate for which H(u) we have that for some

C>0

lim 2

usoo 10,112, H(u)(cl, ¢y, u,au) =C.

We prove that the above is true for H(u) = (uz, le) (51

52) for some S1, S, > 0. For the choice of H;(u) = o(uiz), Vie(1,2)
following the same line of proof we have that

lim J[O \P.Hu )(C1, C,u,au)=1.

u—oo
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On the other hand, if we choose H(u) such that Elieu’z}qu,A(u) — 00, Hj(u) < 1, then the methods employed in this
contribution are not sufficient and the asymptotics are of different order, even in the one-dimensional setting.

2. Main results

Based on the relation between a and p, either both of the coordinates impact the asymptotics, or one of the coordinates
is negligible (up to a constant). We begin with cases where one of the coordinates dominates the other one and hence
the results can be derived from one-dimensional models. Note that without loss of generality we can assume a < 1.
Additionally we can assume a > 0, since for a < 0 we already have W5(0) > au and hence the second coordinate
vanishes. For the special case a = p = 1 notice that the only difference in coordinates comes from a drift and since

P{B(t) — c1t > u, B(t) — cot > u} = P{B(t) — max(cq, c)t > u}

we can omit this case. Denote by ¥ the survival function of a standard Normal random variable.
LetCp(S)=E {exp (suptZO infse[o,%] V2B(t —5) = 2|t — s|1(t > s)) } which by Debicki et al. (2016)[Cor 3.5] is positive
and finite.

Theorem 2.1. Ifa < p, then

Cp(S1)
-

Our next results are separated into different cases, based on a relative relation between p and A; = 41—0(1 —+/8a% +1).
Function A, has been found by analytical calculations. Heuristically, when p < 0 is relatively big compared to a (in terms
of absolute value), then it is less likely that the ruin will occur simultaneously and the asymptotics should be significantly
different from the ones that have been discovered for simultaneous ruin in Kriukov (2020).

Denote t, = m and introduce the following notation for the constants

lim Zs, s,(c1, ¢, u, au) =
u—0o

Plwi, wy, S) == / P {Hs’e[o.oo)vse[s’,s’+s[ 1 B(s) — wis > X} e"2%dx,
R

. 1
H(wq, wy, S) = lim ZIP {Elt’e[o,A]Vte[t/,t’+S]B(t) —wit > x} eV dx,

A—o0 Jp

_ . Wi(s)—s>x S xt
R(S1,52) = /]RZ P {Els’,t’e[o,oo)vse[s’,s’+51],te[t/,t’+52] S W(t)—at >y el-r »*"dxdy € (0, 00).

Theorem 2.2. Let p € (—1, 1) and a € (max(0, p), 1] be given.
(i) If p > Aq, then
. R(51, S2)
lim 2 C1,Cy, U, AU) = ———. 2.1
U 00 51,52( 1, L2 ) R(O, 0) ( )

(ii) If p = Aq and a < 1, then
(1—ap)P(1=%, =%, S1)H(a, 24, S)

lim 2, s (c1, C2, U, au) = 1= 12p? (2.2)
U—00 122 20(1 — ,02)
(iii) If p = Aq, a = 1, then
C41Cl 1 + C42Ch
lim 2, s, (c1. ¢, u, au) = ——21 4242 (23)
u—00 Cy

where Cyq1 = P(2,2,51)H(1,2,S,), Cyp = P(2,2,5)H(1,2,S) and

(Fer+ep)? (Geprer?
—2-2 1 1 —2-2 1 1
c,,=1e TP (et 30), —301<C i, =1¢ 5P (c+30), —30 <0
1, otherwise, 1, otherwise,
(%C1+c2)2 (%62+C1)2
e d(e+ia)+te? 3 D (04 30), € >max(—3cq, —2c)
are? 1 1 1
C,=1¢ 3 ¢(C2+5C1)+§, —501 <G < —2¢
1 L Gera? 1 1
;+e TP (04 50). 201 <0 < —30
1, ¢ < min(—3cy, —2¢1).
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(iv)Ifa < 1, p < Aq, then

1— 1—
,P(l_pa;;*’ 1_;2‘; 751)H([ ) t 752)

lim %, s,(c1, €2, U, au) = (2.4)
u—00

2p
() Ifa=1,p <A, then
. G
lim Zs, s,(c1, ¢, u, au) = ——, (2.5)
u—00 2,0
P, 2 syl 2)S,) <o
where t, = —-—, Cs = 1o 1 i
pep P(l_pzt*, TR SSH(E £.51), a>o

3. Proofs
3.1. Proof of Theorem 2.1

We divide the proof into two parts: a < p and a = p, since the methods used are quite different. Further define
S1.2 = max(Sy, Sz), which will be commonly used notation in both parts of the proof.

Case (i) : a < p. First note that

sels’,s'+

Ps,.5,(C1, €2, U, au) < P {35'5[0,1]\7' W1 (s) > U}

On the other hand
Ps,.5,(C1, €2, U, au)
Vo Hh}B’{(t) > 1, pBy(t) + /1 — p2By(t) — cot > au
512 Bi(6) > u— I, pBi(6) + /T — p?Ba(t) — ot > au

te[t’+% t'+ 2]
V[E“,[, s]J () > u, plu+cit) + /1 — p2By(t) — ot > au
,5123*(t)>u f, o(u —ﬁ+c1r)+,/1—p232(t)—czt>au

S
telt’'+2%.t/+
u

> P {3vepo.n

> P {3vepo,n

P{d Vts[t’ t'+ 51 ]B* V1= p?Bylt —plut (e —palt

= t'€[0,1] * _ —
te[[,+%’t,+51117_22131( Zi V1= p?Ba(t) > (a — plu+ L +(ca — per)t
(a—plu+(c2 = per)s + 4 A 3 Bilt) =it > u
> P { Vscpo,11B2(s) > = sAven y s, B(t) > u— L
V1=0p telt'+ 51[+12J1 N

2L Vre[t,,t,Jrsil]B*{(t) >u 2y B) (a— plu+(c; — pcy)s+ %

= t'€[0,1] * _ 1 se[0,11D2(S) >
Vtelt’+ ’+5122JB1(t) “UT A 1—p?

Since a < p, we have that

T (@—pu+(ca—par)s+ % :
ul)ffolo sef0,11B2(s) > m =
Further from independence of increments of Brownian motion we have for B a Brownian motion independent of B1, B,
*
V[E[[,,[,_*_%]W] (t) > U

su]wl*(t) >u— L+

P 3repo.
[e[[’+%,t/+—z Viu
u u

1
>P {Elt/e[oy”Vte[t,,t,_'_%]BT(t) > u, Vse[o, max(SZZ—Sl.O)]B(S) +c1s < — }

Ju
Cc1S
=P {Ht’e[o,l]vtdt/ o 51 ]B (t) > u} P {Vse[o,max(.ssz],O)]B(s) + o < «/E} .
Finally we have that

. C1S
lim P [Vse[o,max(srsl,O)]B(S) + o < x/a} =

u—oo
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and from Debicki et al. (2016)[Cor 3.5] we have

Pon.% s (C1,u) ~ Cp¥(u+ 1) (3.1)

with Cp = E ysup;sq infse[ s

0.5 eﬁB(f‘s)‘z“‘s“(b”} € (0, co). Further we recall that from Debicki et al. (2021)[Thm 2.1]
2

we have that

Tio,112,p(C15 €25 U, AU) ~ 2W¥ (U + ¢1).
This completes the proof of case (i).
Case (ii) : a = p. Notice that for A > 0

Psisy (€1 Ci AU) S Py (51,5 (€10 Q23 U W)+ g 412 4 g2 (€1, 23 U, Q).
A R u

Denote A(u) = [1 — -

L 1]. Then we have that as u — oo

*

P[l—%,l]Z,(S"ZSZJ(Cl’ C2; U, au)
u u
1
_ * * * o
=P {35’,t’eA(u)V(s,r)e[s/,s#i;]x[t&,r’+i§]wl (s) > u, Wy (t) > au, V, 5,y Wi (v) < u + \/ﬁ}
1
+P 13, cawWi(v) > u+ Jﬂ} =P +P
Next observe that
Bi(s)—cis>u 1
— —_ K —_—
Pr=P 35’.t’eA(U)V(s,t)e[s’,s’+%]x[t’,t’+z—§] By(t) — L%Zzt > -4 VoeawBi(v) <u+ N
< B eV 5y B0~ 8 > u}IP’ {EltreA(u)Vte[t,t+s2]Bz(t) \/7“‘ o}
1-—
— PG
<P ES’EZ(u)Vse[s/,sur%]Bl(5) —c15 > up P 3 xuBa(t) — t >0

P — 0
=7 (L) | ———
[0.11.%} /1— p2

Notice that with Debicki et al. (2016) we have for some C; > 0

) (140(1)), u— oc.

(C17 u)

Aw). >}

im — ¥
u—oco  Y(u+cqp)

and with Debicki and Mandjes (2015) we have for some C; > 0

T &y, p(C15 U)

we Wluto)
Hence
* c, U
T R
lim 4 = —

u=>00 ”Z(u),p(clvu) ey
Since from Debicki et al. (2021) [Thm 2.1] we have
P;=0 (”Z(u),p(cl, u)) > TT0,12\Aw)2,p (c1, C; u,au) =o (”A (C], )) )

hence as u — o0

pPC — G
Ps,.5,(C1, €25 u, au) < @ () 7’[*0 1 sil(ch u).
1.5

JV1—=p2
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Finally, following calculations from case (i) we have that for B a Brownian motion independent of By, B,

737( W2, (51 52)(C15 Cy; U, au)

~pl3 Vte[[/_[q,%]BT(t) > U, mBz(t) > (C2 — pC1)t

= t'eA(u) 1 — b 3
Vte[t +Sl t/+5122 JBT(t) >u Ju’ \/ﬁBz(t) > i =+ (CZ pCq )t

pl3 Vte[t’t+sl]B 0>

z t'eA(u) " 1

Vre[r+51r+5128()>u 7
0
P {VtGA(u)mBZ(t) > (2 — pCy )t + \/a}

Cc1S
=P {3t’6l0,1lvte[t/ 045} ]B (t) > U} {Vse[o max(s—s;. 01 B(8) + — - < ﬁ]

14
XP{H[/GA(H te(t' '+ 512)\/1— Bz —,OC])f-i-\/a}.

Further we have
P
P {VteZ(u)V 1— p?By(t) > (cz — pc1)t + ﬁ} < { reamV 1= p?Ba(t) > (c2 — per)t }

On the other hand with self-similarity and independence of increments of Brownian motion we have that for B, B Brownian
motions independent of By, B,

[ rezuV 1= p?Ba(t) > (c2 — pcr) }
)

P{VT= 01— L) > (e — per)(1 = 1)+ -}

P 1 1
>P V1 — p2By( (ca — pc — 1 — p2By( —pc1)1——=)+ —
= P Vieaw H(t 2 — pC1) f v 2( ﬁ > (€2 — pc1)( u) %}
>plv B(s) — (c; — pc L =plv U gy — Lic,— pey)s < = — P

_ _ B — —(cy — - _Pr
= sel&%] — pc1)s % u 56[0,1]% \/ﬁ 2 — PG % ﬁ
1 4 0
=P Vse[O,l]B(S) — %( pC1 S < J/U— Tu} ~1

Finally

lim P {3@(”)\/1 — 02By(t) > (cy — pcl)t]
_ g1 L _ _ 1 1} _ofra=c
—uan;OP{ 1 — p2By(1 ﬁ)>(cz pci)(1 ﬁ)+f/ﬂ = m .

Hence the claim follows from (3.1) and from Debicki et al. (2021)[Thm 2.1], which gives

pG — Cz) Y(u+cy). O

JV1—=p2

”[0,1]2,p(c1, Cy; u,au) ~ 2@ (

3.2. Proof of Theorem 2.2

Before we begin the proof we need few technical lemmas. First let

S = < s p min(s, t))

p min(s, t) t

be the covariance matrix of (W;(s), W5(t)). In Debicki et al. (2021) it was noted that the drift has a significant impact
on the optimization problem that was used to determine asymptotics for the classical ruin. We denote below for
a:(]+c]s a+czt)

Ga(s,t):=a' X 'a, b(s,t):= 3 a
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and set

qi(s, t) =mingx(s, t), q; = min q;(s, t). (3.2)
x>a s,tel0,1]

Note that for a > p and large enough u we have b(s, t) ~ (s[i_paz‘zn’?ii:((;':)))z, St‘f;{zr’:ii:((:'g)z) > 0. From Debicki et al. (2010)

we have that for any s, t positive the following logarithm asymptotics occurs

*

.1 q
lim — logP {3 rej0,yW;(s) > u, W(t) > au} = — . (3.3)

u—o0 U 2

Hence we will use the function gj(s, t) to reflect the asymptotics of P {W;“(s) > u, Wi(t) > au}. Recall the optimization
results first calculated in Debicki et al. (2021)[Lemma 3.1]

Lemma 3.1. For all large u we have:
(i)Ifa=1,p (-1, —%), then q:;u(snt)(s, t) attains its unique local minima on [0, 1]? at

1 - 1
Su, ty) =1 1, , Sy, ty) = ,1].
(Sus tu) < p(Zp—l)-i—Cz_l,pC]) (Sus tu) (,0(2,0—1)—1—61_“’)62 )
(ii)Ifa=1,p = —%, then qju(s‘t)(s, t) attains its unique local minima on [0, 1]? at

1 _ 1
(Su, tu) = <17 min(ﬁ; ])) ) (EU9 tu) = (mln(cm’ ])s 1) .
1+ Zu 1 1_;’_ lu 2

(iii) For any other a € (max(0, p), 1], p € (—1, 1), qzu(s’t)(s, t) attains its unique minimum on [0, 1]? at

1 g i 4 0,1
(Su, tu) = {( " pap-1r P p(2ap—1)+ 251 €[.1]

(1, 1), otherwise.
In the rest of the paper we denote

t* == lim t,.

u—oo

)A

Further let k, = 1 — %=D4 (-Da
u

,lu=tu—u—2,u>0,A>0andset
Eu,k = [(k+ 1)u7 ku]s Eu,k,l = Eu,k X Eu,ls E= [_A, O] x [_A, O]

Define also 7y ki(s, t) == (11,uk(s); M2,u1(t)) = uWr (33 + ki) — Wilky) — 155, Wals5 + L) — Wa(ly) — c2-7). The following
lemma is used to calculate the ruin probability on an interval of size of order O(u%)-

Lemma 3.2. et p € (—1,1),a € (max(0, p), 1], k = O(%) and A, Sq, S, > 0 be given constants. Then, as u — oo

_ 1,20 % "
Py (e ot au) ~ 207 (U + ¢1, au + ety )y (A)e 2 Gallwk)=dall.),
u, ,’uiz

Wi(s) —s > x
P13y Ysers' s s M dxdy I, =k
f]Rz { s/, t/€[0,A] Vsels',s'+S1),telt/ .t/ +5;] Wy(t) — at > y A u
/ P {Jvco.a1Veerw v+, : Walt) — Aat > y}
R2 I, > ky
I](A) = X P {EIS’G[O,A]VSE[S’,S’+51J : W](S) — 5> X} ex1x+)t2ydxdy
P {Hs’e[O,A]Vse[s’,s’+51] s Wi(s) — Ags > X}
2 I, < ky,
Pl3 " - W _ E A1X+Aoy
X trer0,41 Vet t/+s,] - Wa(t) t*t >yre
1- °
% ]_2‘2’ L, =k, x - ;2, L, =k,
and Ay = ;:;g, L > ky, Ay = t:}:gz, I, > ky
1— ppo
N l—p‘;/t)*’ lu < ku %, lu < ku.
Additionally
Wiky) =u— 3

lim sup /2 P {H(S/,E/)EEVSE[SCS/‘FS]].IE“’/.[’+52] : nu,k,l(S, t) > (x,y) }eMX-szdXdy < oQ.
R

u
U=00 | k—0(u log u) Wi(l) =au—*%

(3.4)
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The proof of the above lemma is identical to the proof of Debicki et al. (2021)[Lemma 3.4] for a different functional,
which does not influence the technique and hence the proof is omitted.

Proof of Theorem 2.2. We split the main part of the proof into several cases which depend on the behaviour of the
variance and the optimization point we get from Debicki et al. (2021)[Lem. 3.1]. The proofs for cases (iii)-(v) are very
similar and analogous to the proof of case (ii) and proofs from Debicki et al. (2021)[Thm 2.2] and hence are omitted. Let
next

ulog(u C —C1pu 1 — Gpu
N, = Lﬁj, KV = M, K@ = (172'0)7
Epmo=1[m+ 1y, my], El; = [0+ Dujul.
where m, = 1— "2 j =, — =34 For A > 0 we have for any F, C [0, 17
P (5.5 (€15 C23 U, au)
Us uz

Ps,s,(€1, ¢35 u, au) > -
To.12(€1, €2; U, au)

On the other hand
7’: (s1.5) (€15 €23 U, au) + 70 12, (€1, €25 U, GU)

us u2

Ps,.5,(C1, €25 U, au) <
Tjo.12(C1, €25 U, au)

Since from Debicki et al. (2021)[Thm 2.2] we have that
7T, 1, Co; U, au
lim 0121 (1 @2 ) =0
u=00 77[0,1]2((31, C2; U, au)

therefore

* .
77Fu’(51v252)(cl7 C2; U, au)
u

Tpo,112(€1, €25 U, au)

Ps, s5,(C1, €5 U, au) ~

where F, is case dependent.
Case (i): p > ﬁ(l — +/8a% + 1). According to Debicki et al. (2021)[Lem. 3.1] t* = t, = 1. From Debicki et al. (2021)[Thm
2.2, case (i)] we have F, .= ELZI_]. Using Lemma 3.2 and taking u — oo and then A — oo, we get that

. -2
P sy (€ €23 U, au) ~ u™"gy(u + ¢, au + ¢3),
u,1 2

Wi(s) —s > x e
where | = [, P {Hs/.t/gloqoo)vsgls/’sq_slJ.tglt/,t/_'.szj : Wzl((t))— at>> y }eh"“”dxdy. Positivity of I comes of the constant

from the fact that the function that we integrate is positive on a set of positive mass. Finiteness follows straightforwardly
from

o Wis)—s>x S W)= >x
P {Els/,t/eR+Vse[s/,s’+Sl],te[t’,t’+52] . Wz(l') —at >y } <P {Hs’,t/eﬂbr . Wz(t,) —at' > y
and Debicki et al. (2021) [Lemma 3.6]. With that, the proof of case (i) is complete.

Case (ii): p = 4—10(1 — +/8a2% + 1). We split this case into two subcases since the behaviour of the optimizing point is
slightly different. First let, c; — pc; < 0. According to Debicki et al. (2021)[Lem. 3.1] t* = t, = 1. From Debicki et al.
(2021)[Thm 2.2, case (ii)] we have F, .= [1 — u%, 1] x [1— %, 1-— u%]. Using Bonferroni inequality we have that

* .
P sy5p(Crs €23 U, au)

us
u2

Ny
S
> Z]P {35’655‘1-I/GEiIVSE[s’,s’-o—%J’ teltt + ;] tW(s) > u, Wy(t) > au}
1=2

Ny Nu

— Z Z P {HSEE,}_1~tIEEipt2€Elg,m CWE(S) > u, Wi (t) > au, Wi(t,) > au]
1=2 m=I+1
=Py o —Dy . (3.5)
Further we have
P:u,LZSZ)(Ch Co; U, au) < Pya + Dy 4. (3.6)

u
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From Lemma 3.2 we have as u — o0

Ny
1,2 _
Pus ~ CH(ACEH (A2 (U + o1, au+ ;) Y e~ 2 alkuhaal1. 1),
1=2

where

CS;:(A) = /RP [as’e[o,A]Vse[s’,s’Hﬂ : Wi(s) — 1 :ng > x} e}_zp dx
and

CPh(A) = /R [3veio,.aVeer 45,1 : Walt) — at > x} e*¥dx.

Using Taylor expansion we have that for k < [

I —1)2A2 k2 B
u(qalky, I) — qa(1, 1)) = Ta(k — 1)A + 14% + (i)+0(7)

where 11 = 8 "";2 >0and 14 = % > 0. Therefore with Debicki et al. (2021)[Lem 3.6] we have as u — oo

Ny 2,2
1 5 _ _ 14 (I-1)°A
Pya ~ C;;,(A)C;;,( u 2<,0t*(u + ¢y, au+ c) E e 2 a2
1=2

(2)
1 G o(4) JT A ,4%
_ (1) 2,P -1 =% AV taa
= —MCM(A) 3 u e (u+cr,au+ o) E
CPH(A) 7
1) 2,P uloF
~ C A u-+cq,au+ c
27:( ) A \/H ‘/’t( 1 2)
From Dq:bicki et al. (2016)(8) we have that lim,_, CSP(A) = C277 € (0,00) and from Debicki et al. (2015)(2.5)
lima_ oo “’(A) C(z) € (0, co). Hence
Pu A
lim lim - =1
Aootmoe CS7)3C£27)> f/zT” Tof(u+cy,au +c3)
From the proof of Debicki et al. (2021)[Theorem 2.2, case (ii)] we have that for C = C217)3C2 A Jé%
D D
lim lim =22 = lim lim va =0. (3.7)

A—>00 U—00 Pu,A A—oou—oo Cu~ (pf*(U+C1,aU+C2)

i.e. the double sum is negligible compared to the single sum.
Now we consider the case of c; — pc; > 0. According to Debicki et al. (2021)[Lem. 3.1] there is exactly one minimizer

of q:;u(syt)(s, t)on [0, 17%: (su, ty) = , where from ¢, — pc; > 0 we obtain that

" p(2ap— 1)+ PR

a
C)—pC
p(2ap — 1)+ 22

/1

as u — oo. From Debicki et al. (2021)[Thm 2.2, case (iii)] we have F, := [1 — 5, 1] x [t, — loglw) g — 41 and since the
proof of this part is vastly similar to the previous one, we omit it.
Case (iii): p = —%, a = 1. According to Debicki et al. (2021)[Lem. 3.1] t* = 1. The proof is analogous to case (ii). We use
(3.6) and (3.5) with

A log(u) A log(u) A A

Fo=[1—=,11x[1— 11— 21Ul - - Z1x[1-=,
== S Slul - — Slxll-

1].

Case (iv): p < ﬁ(l — +/8a? + 1). From Debicki et al. (2021)[Lem. 3.1] we have exactly one minimizer of g (5.0) (s,t) on

[0, 117 which is (s, t,) = (1
with

2 mCz_pc] ) and for large enough u we have t, < 1. The proof is analogous to case (ii)
pRap—1)+-=—

Fm (1= 510 — 20, 1B,
u u
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Case (v) :a =1, p < Aq. According to Debicki et al. (2021)[Lem. 3.1], there are two optimal points:

1 _ 1
S,t = 1, ) E,t = 715
(Su ty) = ( p(2,o—l)+cz_u””) (Su, ty) (p(2p—l)+”_u‘”2 )
A log(u log(u log(u log(u A
Foom 11— 217 1t — 08 (o 10800,y losw) o losw), A
u? u u u u?
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