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Abstract. We study maximal WAP and tame (in the sense of topologi-

cal dynamics) quotients of SX(C), where C is a sufficiently saturated (called

monster) model of a complete theory T , X is a ∅-type-definable set, and
SX(C) is the space of complete types over C concentrated on X. Namely,

let FWAP ⊆ SX(C) × SX(C) be the finest closed, Aut(C)-invariant equiva-

lence relation on SX(C) such that the flow (Aut(C), SX(C)/FWAP) is WAP,
and let FTame ⊆ SX(C)× SX(C) be the finest closed, Aut(C)-invariant equiv-

alence relation on SX(C) such that the flow (Aut(C), SX(C)/FTame) is tame.

We show good behaviour of FWAP and FTame under changing the monster
model C. Namely, we prove that if C′ � C is a bigger monster model, F ′

WAP
and F ′

Tame are the counterparts of FWAP and FTame computed for C′, and
r : SX(C′) → SX(C) is the restriction map, then r[F ′

WAP] = FWAP and

r[F ′
Tame] = FTame. Using these results, we show that the Ellis (or ideal)

groups of (Aut(C), SX(C)/FWAP) and (Aut(C), SX(C)/FTame) do not depend
on the choice of the monster model C.

1. Introduction

The project is to study maximal WAP and tame quotients (in the sense of
topological dynamics) of type spaces over sufficiently saturated models (in the sense
of model theory). In this paper, we show the fundamental property of “model-
theoretic absoluteness” of Ellis groups of such quotients, i.e., that they do not
depend on the model for which they are computed.

Recall that a flow is pair (G,X), where G is a topological group acting con-
tinuously on a compact (Hausdorff) space X. The essential for this paper terms
appearing in this introduction are defined in Section 2.

Weakly almost periodic (or WAP) flows form a well-behaved family, playing a
fundamental role in topological dynamics with applications to other areas, e.g. to
ergodic theory (see [EN89]). The minimal WAP flows are known to be equicon-
tinuous and have been been classified as homogeneous spaces for compact groups
[Aus88, Chapter 3, Theorem 6].

Tame flows, originating in [Kö95], form a wider important family, intensively
studied in recent two decades by Glasner, Megrelishvili, and others (see e.g. [Gla07;
GM13; Gla18; GM18]). In the case of metrizibale flows, tameness corresponds to
one of the two situations in the so-called dynamical Bourgain, Fremlin, Talagrand
dichotomy (see [GM04, Theorem 3.2]). A deep structure theorem on tame, metriz-
able, minimal flows was obtained by Glasner in [Gla18]. Tame flows are related to
several other areas, e.g. Banach spaces, circularly ordered systems, substitutions
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and tilings, quasicrystals, cut and project schemes (so to the so-called theory of
aperiodic order); see [Auj15] and the survey [GM13].

From the point of view of this paper, it is important that there exist direct
correspondences between model-theoretic stability and WAP flows (discovered in
[BY14; BYT16], see also [Con21; HKP22]), and between model-theoretic NIP and
tame flows (discovered independently in [CS18], [Iba16], and [Kha20], and further
developed e.g. in [KR20] and [CH23]). One of the well-known forms of these kind
of correspondences is that stability [resp. NIP] of a theory T is equivalent to saying
that all flows of the form (Aut(M), S(M)) (where M is a model of T , Aut(M) is
the group of automorphisms of M , and S(M) is the space of complete types over
M in a fixed tuple of variables) are WAP [resp. tame] (e.g., see [KR20, Section 5]).

Stability theory is the core of model theory [She90; Pil96], and in the last three
decades model theory has been focusing on extending the context of stability theory
to wider classes of theories, which often requires new ideas and tools, and has
applications to other branches of mathematics (e.g. to algebraic geometry and
additive combinatorics). And one of the most deeply studied classes of theories
extending stable theories is the class of theories with NIP (the non independence
property); e.g., see [She05; HPP08; HP11; CS18].

Around 2005, Newelski came up with an idea of using tools from topological
dynamics in order to extend some aspects of stability theory to much wider un-
stable situations [New09]. The point is that various spaces of types can be natu-
rally treated as flows and so become objects of topological dynamics. Since then,
the topic has been broadened by a multitude of authors: Ben Yaacov, Chernikov,
Hrushovski, Krupiński, Newelski, Pillay, Rzepecki, Simon, and others (e.g., [CS18;
BYT16; KNS19; KPR18; Pil13]). This led not only to essentially new results in
model theory (e.g. on the complexity of strong types in [KPR18; KR20]) but also
to applications to additive combinatorics in [KP23b].

Both in topological dynamics and in model theory, it is natural to study quotients
by suitable equivalence relations. In topological dynamics, these are quotients of
flows by closed, invariant equivalence relations (equivalently, homomorphic images
of flows). In model theory, these are quotients of a sufficiently saturated model (or a
subset of such a model) by nice (definable, type-definable, invariant, ...) equivalence
relations. This includes strong types, hyperimaginary sorts, or quotients of defin-
able groups by various model-theoretic connected components. A particular role
is played by quotients by bounded (i.e. with few classes comparing to the degree
of saturation of the model) equivalence relations; see e.g. [LP01; HPP08; HP11;
KPR18]. In recent papers [HP18; KP22; KP23a], also maximal stable quotients
entered the picture, mostly in the NIP context.

In this paper, we study maximal WAP and tame quotients of flows of the form
(Aut(C), SX(C)), where C is a sufficiently saturated model, X is a ∅-type-definable
set, and SX(C) is the space of complete types over C concentrated on X.

As mentioned above, in various contexts, stability corresponds to WAP and NIP
to tameness. We check in Section 5 that indeed the quotient of a ∅-type-definable
set X by a ∅-type-definable equivalence relation is stable [resp. NIP] if and only if
the quotient of the type space SX(C) by the corresponding closed, Aut(C)-invariant
equivalence relation is WAP [resp. tame]. However, in Proposition 5.5, we observe
that for an arbitrary ∅-type-definable non-stable [resp. IP] set X, the finest closed,
Aut(C)-invariant equivalence relation on SX(C) with WAP [resp. tame] quotient
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is never induced by a ∅-type-definable equivalence relation on X (necessarily with
stable [resp. NIP] quotient). Thus, one can expect that the maximal WAP [resp.
tame] quotient of X captures more information about the theory in question than
the quotient induced by the finest ∅-type-definable, stable [resp. NIP] equivalence
relation on X.

The Ellis (or ideal) groups of flows play a very important role both in abstract
topological dynamics (for example, in general structural theorems about minimal
flows (e.g., see [Aus88; Gla18])) and in model theory (for example, to get new
information about model-theoretic invariants such as G/G000 or the Lascar Galois
group of the theory T denoted by GalL(T ) (see [KP17; KPR18; KR20])), and in
recent applications to additive combinatorics in [KP23b]. From the model-theoretic
perspective, the so-called Newelski’s conjecture (or Ellis group conjecture) turned
out to be particularly influential (e.g., see [New09; GPP15; CS18; KP17]).

A good model-theoretic notion should be independent of the choice of the (suf-
ficiently saturated) model in which it is defined. If this happens to be true, we
say that the notion is (model-theoretically) absolute; one can also say that it is an
invariant of the theory in question.

The main result of [KNS19] says that the Ellis group of SX(C) is absolute (i.e.,
does not depend on C). The main theorem of this paper says that the same is true
for the Ellis groups of the maximal WAP and tame quotients of SX(C). Below are
detailed statements; the relevant definitions are given in further sections.

Let C ≺ C′ be models of a complete theory T which are κ-saturated and strongly
κ-homogeneous, where κ is specified in the statements below. Let X be a ∅-type-
definable subset of Cλ (where λ is a cardinal number). Let F ′ be a closed, Aut(C′)-
invariant equivalence relation defined on SX(C′), and F a closed, Aut(C)-invariant
equivalence relation defined on SX(C). We say that F ′ and F are compatible if
r[F ′] = F , where r : SX(C′)→ SX(C) is the restriction map.

Let FWAP ⊆ SX(C) × SX(C) be the finest closed, Aut(C)-invariant equiva-
lence relation on SX(C) such that the flow (Aut(C), SX(C)/FWAP) is WAP, and
let FTame ⊆ SX(C)×SX(C) be the finest closed, Aut(C)-invariant equivalence rela-
tion on SX(C) such that the flow (Aut(C), SX(C)/FTame) is tame.

Here is the main result of this paper.

Theorem 1.1. The Ellis groups of the Aut(C)-flows SX(C)/FWAP and SX(C)/FTame

(treated as groups with the τ -topology) do not depend on the choice of C as long as
C is (ℵ0 + λ)+-saturated and strongly (ℵ0 + λ)+-homogeneous.

In fact, we prove the following general theorem.

Theorem 1.2. Assume that C ≺ C′ are ℵ0-saturated and strongly ℵ0-homogeneous.
If F ′ and F are compatible equivalence relations respectively on SX(C′) and SX(C),
then the Ellis group of the flow (Aut(C′), SX(C′)/F ′) is topologically isomorphic to
the Ellis group of the flow (Aut(C), SX(C)/F ).

Theorem 1.1 is a consequence of Theorem 1.2 and the following

Theorem 1.3. Assume C ≺ C′ are (ℵ0 + λ)+-saturated and strongly (ℵ0 + λ)+-
homogeneous. Then F ′WAP is compatible with FWAP and F ′Tame is compatible with
FTame (where F ′WAP and F ′Tame are the counterparts of FWAP and FTame computed
for C′).

The main result of [KNS19] about absoluteness of the Ellis group of a theory was
reproved in [Hru22] using a new notion of infinitary definablity patterns structures.
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In Section 2.3, we take the opportunity and present yet another approach and proof,
using infinitary definablity patterns structures together with topological dynamics.
This approach is inspired by Pierre Simon’s seminar notes on [Hru22]. Various facts
obtained in Section 2.3 are then used in the proofs of Theorems 1.2 and 1.3 which
are included in Sections 3 and 4, respectively. Moreover, the approach from Section
2.3 has a potential to be adapted to other contexts in the future (e.g., to Keisler
measures or general topological dynamics).

In Section 4, there is also another related (but much easier) application of our
general Theorem 1.2. Namely, let Est

∅ [resp. ENIP
∅ ] be the finest ∅-type-definable

equivalence relation on X with stable [resp. NIP] quotient X/E. Let Ẽst
∅ [resp.

ẼNIP
∅ ] be the induced equivalence relation on SX(C), as described after Proposition

2.3. By Ẽ′st∅ [resp. Ẽ′NIP
∅ ] we denote the analogously defined equivalence relation

for the model C′.

Proposition 1.4. Without any assumption on saturation, the relation Ẽ′st∅ is com-

patible with Ẽst
∅ , and Ẽ′NIP

∅ is compatible with ẼNIP
∅ .

Corollary 1.5. The Ellis group of SX(C)/Ẽst
∅ (treated as a topological group with

the τ -topology) does not depend on the choice of C as long as C is at least ℵ0-
saturated and strongly ℵ0-homogeneous.

In the above discussion, we are talking about the finest closed, Aut(C)-invariant
equivalence relation FWAP [resp. FTame] on the Aut(C)-flow SX(C) with WAP [resp.
tame] quotient, and about the finest ∅-type-definable equivalence relation Est

∅ [resp.

ENIP
∅ ] on X with stable [resp. NIP] quotient. Why do they exist? The existence

of FWAP [resp. FTame] is a folklore knowledge in topological dynamics, which we
explain in Section 2.2. The existence of Est

∅ [resp. ENIP
∅ ] follows from fact that

stable [resp. NIP] quotients are closed under taking products. In the stable case,
this property is well-known, but we include a proof for the reader’s convenience.
Regarding NIP, the observation seems to be new and more involved. Both proofs
are included in Appendix B.

2. Preliminaries

2.1. Model theory. T will usually denote a first order complete theory in a lan-
guage L. A model M of T is κ-saturated if every complete type p ∈ Sn(A) over
a subset A of M of cardinality less than κ has a realization in M ; it is said to
be strongly κ-homogeneous if every partial elementary map between subsets of M
of cardinality less than κ extends to an isomorphism of M . By a monster model
C of T one usually means a κ-saturated and strongly κ-homogeneous model for a
sufficiently large cardinal κ (often a strong limit cardinal greater than |T |). But in
this paper we will usually require much less about κ. Precise requirements will be
given in the main results. In any case, the above κ is called the degree of saturation
of C.

Let x be a tuple of variables of length λ (typically, λ < κ). By a ∅-type-definable
set we mean a partial type π(x) without parameters in variables x or the actual
subset X = π(C) of Cλ. By Sπ(C) or SX(C) we denote the space of complete types
over C concentrated on X, that is containing π(x) as a set of formulas.
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The group Aut(C) of automorphisms of C acts naturally on the left on SX(C)
by σ(p) := {ϕ(x, σ(a)) : ϕ(x, a) ∈ p}. Then (Aut(C), SX(C)) is a flow with Aut(C)
equipped with the pointwise convergence topology.

Let C′ � C be a bigger monster model whose degree of saturation is greater than
|C|. Then the complete types over C can be realized in C′. For p ∈ S(C) and a ∈ C′,
a |= p or p = tp(a/C) means that a realizes p.

Let E be a ∅-type-definable equivalence relation on a ∅-type-definable subset
X = π(C) of Cλ, with λ < κ (where κ is the degree of saturation of C). The
equivalence classes of E are called hyperimaginary elements, while all the sets of
the form X/E are called hyperdefinable sets (over ∅).

Recall that the complete types over C of elements of X ′/E′ (where X ′ = π(C′)
and E′ := E(C′)) can be defined as the Aut(C′/C)-orbits on X ′/E′, or the preimages
of these orbits under the quotient map, or the partial types defining these preimages,
or the classes of the closed, Aut(C)-invariant equivalence relation Ẽ on SX(C) given
by

pẼq ⇐⇒ (∃a |= p, b |= q) (aE′b) .

By tp(a/E/C) we denote the type of a/E over C. In particular,

pẼq ⇐⇒ (∃a |= p, b |= q)
(

tp(a/E
′
/C) = tp(b/E

′
/C)
)
,

and

pẼq ⇐⇒ (∀a |= p, b |= q)
(

tp(a/E
′
/C) = tp(b/E

′
/C)
)
.

The collection of all such types is denoted by SX/E(C) and is equipped with the

quotient topology on SX(C)/Ẽ. Then (Aut(C), SX/E(C)) becomes an Aut(C)-flow.
Complete types of hyperimaginaries over any sets of parameters (in place of the

whole C) are defined analogously. In particular, Ẽ is defined for any (not necessarily
sufficiently saturated) model C as long as E is ∅-type-definable in the sense that
there exists a partial type ρ(x, y) over ∅ which defines an equivalence relation E(M)
on X(M) in a sufficiently saturated (equivalently, in every) model M of T .

Recall now what it means that X/E is stable and NIP (see [HP18; KP22]).

Definition 2.1. We say that X/E is stable if for every indiscernible sequence
(ai, bi)i<ω with ai ∈ X/E for all (equivalently, some) i < ω, we have

tp(ai, bj) = tp(aj , bi)

for all (some) i 6= j < ω.

Definition 2.2. We say that X/E has NIP if there do not exist an indiscernible
sequence (bi)i<ω and d ∈ X/E such that ((d, b2i, b2i+1))i<ω is indiscernible and
tp(d, b0) 6= tp(d, b1).

Note that the bi’s in the above definitions can be anywhere, not necessarily in
X/E.

The properties of stability and NIP for hyperdefinable sets are both preserved
under (possibly infinite) Cartesian products and taking type-definable subsets.
Closedness of stability under taking products was remarked (without a proof) in
[HP18]; closedness of NIP under taking products seems to be a new result and the
proof is more involved. Both proofs are included in Appendix B. As a corollary
of these results, in Corollary B.1 we obtain the existence of the finest ∅-definable
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equivalence relation on X with stable [resp. NIP] quotient. Below is a more pre-
cise information that partial types defining these finest equivalence relations do not
depend on the choice of C.

Proposition 2.3. Given a partial type π(x) over ∅ (with |x| = λ), there exists a
partial type πst(x, y) [resp. πNIP(x, y)] over the empty set which for every (ℵ0 +λ)-
saturated model C defines the finest ∅-type-definable equivalence relation on X :=
π(C) with stable [resp. NIP] quotient. This relation will be denoted by Est

∅ [resp.

ENIP
∅ ].

Proof. Let us fix a model C andX ⊆ Cλ as above. Corollary B.1 implies that a finest
∅-type-definable equivalence relation on X with stable [resp. NIP] quotient exists.
Let πst [resp. πNIP] be the partial type defining this relation. Put X ′ := π(C′) ⊆ C′λ

where C′ is a different (ℵ0 + λ)-saturated model. It is a routine exercise to check
that πst(C′,C′) [resp. πNIP(C′,C′)] defines the finest ∅-type-definable equivalence
relation on X ′ with stable [resp. NIP] quotient. �

Even if C is not sufficiently saturated, then by Est
∅ we could mean πst(X(C), X(C)).

However, we do not need to talk about it, as we will only work with the equivalence
relation Ẽst

∅ on SX(C) which is defined as we did above. Namely,

pẼst
∅ q ⇐⇒ (∃a |= p, b |= q)(πst(a, b)),

where a, b are taken in a big monster model. Similarly for NIP, we are interested
in the relation ẼNIP

∅ on SX(C) defined by

pẼNIP
∅ q ⇐⇒ (∃a |= p, b |= q)(πNIP(a, b)).

By E′st∅ , E′NIP
∅ , Ẽ′st∅ , and Ẽ′NIP

∅ we denote the relations defined as above but working
with C′ in place of C (where C′ is another model of T ).

2.2. Topological dynamics. We recall various definitions and state some facts
concerning topological dynamics. For a more in depth study of the topic see e.g.
[Aus88] and [Gla76]. A concise presentation (with proofs) of basic Ellis theory can
be found in Appendix A of [Rze18].

In this paper, compact spaces are Hausdorff by definition.

Definition 2.4. • A G-flow is a pair (G,X) consisting of a topological group
G that acts continuously on a compact space X.
• If (G,X) is a G-flow, then its Ellis semigroup E(X) is the pointwise closure

in XX of the set of functions πg : x 7→ g · x for g ∈ G.

Fact 2.5. The Ellis semigroup of a G-flow (G,X) is a compact left topological
semigroup with composition as its semigroup operation. Moreover, E(X) is itself a
G-flow equipped with the action gη := πg ◦ η for g ∈ G and η ∈ E(X).

Recall that a left ideal I of a semigroup S, written as IES, is a subset of S such
that SI ⊆ I.

The following is due to Ellis [Ell69]. For a proof see also [Rze18, Fact A.8].

Fact 2.6. Let (G,X) be a flow. Minimal left ideals of E(X) exist and coincide with
the minimal subflows of (G,E(X)). If ME E(X) is a minimal left ideal, then:

• The ideal M is closed and for every a ∈M we have M = E(X)a.
• The set of idempotents of M, denoted by J (M), is nonempty. Moreover,
M =

⊔
u∈J (M) uM.
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• For every u ∈ J (M), uM is a group with the neutral element u. Moreover,
the isomorphism type of this group does not depend on the choice of u and
M. We will call it the Ellis group of X. (This is the terminology used by
model theorists; in the topological dynamics literature “Ellis group” usually
denotes a related but different object.)
• Let u ∈ J (M). For any minimal left ideal N there exists an idempotent
v ∈ N such that vu = u and uv = v.
• For every u ∈ J (M) and s ∈M, su = s.

Let (G,X) be a flow, MEE(X) a minimal lef ideal, and u ∈ J (M). The Ellis
group uM has the inherited topology from E(X). However, there exists another
important topology on uM, called the τ -topology. We recall it now (for the proofs
see [Rze18, Appendix A]). First, for any a ∈ E(X) and B ⊆ E(X) let a ◦B be the
set of all limits of the nets (gibi)i∈I such that gi ∈ G, bi ∈ B and lim gi = a (where
gi is identified with πgi). The closure operator clτ on subsets of uM is given by
clτ (B) := uM∩ (u ◦B) = u(u ◦B) (for B ⊆ uM). The τ -topology is the topology
induced on uM by the closure operator clτ . The Ellis group uM equipped with
with the τ -topology is a quasi-compact T1 semitopological group (i.e. the group
operation is separately continuous). In fact, in the third item of Fact 2.6, we have
that the isomorphism type of uM as a group equipped with the τ -topology does
not depend on the choice of u and M (for a proof see e.g. [Rze18, Fact A.37]).

For a proof of the following fact see [Rze18, Proposition 5.41].

Fact 2.7. Let (G,X) and (G, Y ) be two G-flows, and let Φ : X → Y be a G-flow
epimorphism. Then Φ∗ : E(X)→ E(Y ) given by

Φ∗(η)(Φ(x)) := Φ(η(x))

is a continuous epimorphism.
If M is a minimal left ideal of E(X) and u ∈ J (M), then:

• M′ := Φ∗[M] is a minimal left ideal of E(Y ) and u′ = Φ∗(u) ∈ J (M′).
• Φ∗�uM: uM → u′M′ is a group epimorphism and a quotient map in the
τ -topologies.

Moreover, if Φ : X → Y is a G-flow isomorphism, then Φ∗�uM: uM→ Φ(u)Φ[M]
is a group isomorphism and a homeomorphism in the τ -topologies.

From the last item of Fact 2.6, we easily deduce the following:

Remark 2.8. If X is a G-flow, M a minimal left ideal in E(X), and u ∈ M
an idempotent, then the map f : uM→ Sym(Im(u)) given by f(η) := η�Im(u) is a
group monomorphism.

We now briefly discuss Ellis semigroups in a model-theoretic context. In par-
ticular, we recall the definition of content, introduced in [KNS19, Definition 3.1],
which will be an important tool in this paper.

Definition 2.9. Fix A ⊆ B.

• For p(x) ∈ S(B), the content of p over A is the following set:

cA(p) := {(ϕ(x, y), q(y)) ∈ L(A)×Sy(A) : y is finite and ϕ(x, b) ∈ p(x) for some b |= q}.
• Similarly, the content of a sequence p0(x), . . . , pn(x) ∈ S(B) over A, cA(p0, . . . , pn),

is defined as the set of all (ϕ0(x, y), . . . , ϕn(x, y), q(y)) ∈ L(A)n×Sy(A) with
y finite such that for some b |= q and for every i ≤ n we have ϕi(x, b) ∈ pi.
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If A = ∅, we simply omit it.

The fundamental connection between contents and the Ellis semigroup of the
flow (Aut(C), Sπ(C)) is the following. For a proof see [KNS19, Proposition 3.5]. In
fact, in this result it is enough to assume that C is strongly ℵ0-homogeneous.

Fact 2.10. Let π(x) be a partial type over ∅, Sπ(C) the set of complete types
over C extending π, and (p0, . . . , pn) and (q0, . . . , qn) sequences from Sπ(C). Then
c(q0, . . . , qn) ⊆ c(p0, . . . , pn) if and only if there exists η ∈ E(Sπ(C)) such that
η(pi) = qi for every i ≤ n.

Definition 2.11. Let π(x) be a partial type over ∅ and (p0, . . . , pn) and (q0, . . . , qn)
sequences from Sπ(C). We write (q0, . . . , qn) ≤c (p0, . . . , pn) if c(q0, . . . , qn) ⊆
c(p0, . . . , pn).

For the rest of the section we fix a G-flow (G,X). Let C(X) denote the space
of all continuous real-valued maps on X. Given f ∈ C(X) and g ∈ G, we define
gf ∈ C(X) by (gf)(x) := f(g−1x). This is a left action of G on C(X).

We recall two important classes of flows: weakly almost periodic flows and tame
flows. For a more in depth treatment of the topic we recommend [EN89] for weakly
almost periodic flows and [GM18] for tame ones.

Recall that the weak topology on C(X) is defined as the coarsest topology such
that for every bounded (equivalently, continuous with respect to the supremum
norm) linear functional ` : C(X)→ R, the map

` : C(X)→ R

is continuous.

Definition 2.12. We say that a function f ∈ C(X) is weakly almost periodic
(WAP) if (gf : g ∈ G) is relatively compact in the weak topology on C(X). A flow
(G,X) is WAP if every f ∈ C(X) is WAP.

The following fact is due to Grothendieck [Gro52] (see also [KL16, Appendix
D]).

Fact 2.13. Let X0 be any dense subset of X. Let f ∈ C(X). The following are
equivalent:

• f is WAP.
• {gf : g ∈ G} is relatively compact in the topology of pointwise convergence

on C(X).
• The pointwise closure of {gf : g ∈ G} is contained in C(X).
• For any sequences (gnf)n<ω ⊆ {gf : g ∈ G} and (xn)n<ω ⊆ X0 we have

lim
n

lim
m
gnf(xm) = lim

m
lim
n
gnf(xm)

whenever both limits exits.

The next two facts will be useful in this paper:

Fact 2.14. For any flow (G,X), the WAP functions form a closed (with the supre-
mum norm) unital subalgebra of C(X).

The above fact is well-known and can be easily shown using Fact 2.13. Combining
it with the Stone-Weierstrass theorem, we obtain the second fact:
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Fact 2.15. If A ⊆ C(X) is a family of functions that separate points, then (G,X)
is WAP if and only if every f ∈ A is WAP.

Definition 2.16. We say that a sequence of functions (fn)n<ω ∈ C(X) is inde-
pendent if there are real numbers r < s such that⋂

n∈P
f−1
n (−∞, r) ∩

⋂
n∈M

f−1
n (s,∞) 6= ∅

for all finite disjoint P,M ⊂ ω. Given a dense X0 ⊆ X, we can equivalently require⋂
n∈P

f−1
n (−∞, r) ∩

⋂
n∈M

f−1
n (s,∞) ∩X0 6= ∅

for all finite disjoint P,M ⊂ ω.

Definition 2.17. Let {fn : X → R}n∈N be a uniformly bounded sequence of func-
tions. We say that this sequence is an `1-sequence on X if there exists a real
constant a > 0 such that for all n ∈ N and choices of real numbers c1, . . . , cn we
have

a ·
n∑
i=1

|ci|≤

∥∥∥∥∥
n∑
i=1

cifi

∥∥∥∥∥
∞

.

The following equivalences can be found in [GM18, Theorem 2.4]

Fact 2.18. The following are equivalent for a bounded F ⊆ C(X):

• F does not contain an independent sequence.
• F does not contain an `1-sequence.
• Each sequence in F has a pointwise convergent subsequence in RX .

Definition 2.19. We say that a function f ∈ C(X) is tame if {gf : g ∈ G} does
not contain an independent sequence. A flow (G,X) is tame if every f ∈ C(X) is
tame.

The next two facts will be useful throughout this paper:

Fact 2.20. For any flow (G,X), the tame functions form a closed (with the supre-
mum norm) unital subalgebra of C(X).

A proof can be found e.g. in [Rze18, Fact 2.72]. From this fact and Stone-
Weierstrass theorem, we obtain the following:

Fact 2.21. If A ⊆ C(X) is a family of functions that separate points, then (G,X)
is tame if and only if every f ∈ A is tame.

By compactness, every epimorphism ρ : X → Y of G-flows is automatically a
topological quotient map (meaning that a subset of Y is open if and only if its
preimage under ρ is open) and can be identified with the quotient map X → X/∼,
where ∼ is the closed, invariant equivalence relation on X given by x ∼ y ⇐⇒
ρ(x) = ρ(y). Conversely, every closed, invariant equivalence relation ∼ on X yields
the quotient G-flow (G,X/∼) and the quotient epimorphism X → X/∼.

We already defined a left action of G on C(X): (gf)(x) := f(g−1x). By a unital,
closed G-subalgebra of C(X) we mean a closed (in the supremuem norm topology)
subalgbra of C(X) which is closed under the left action of G and contains the
constant function equal to 1. The next fact belongs to folklore and an easy proof
is left as a routine exercise using Stone-Weierstrass theorem.
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Fact 2.22. Let (G,X) be a flow. There is a 1-1 correspondence between closed,
invariant equivalence relations on X and closed, unital G-subalgebras of C(X).

More precisely, for any closed, invariant equivalence relation ∼ on X, let Y :=
X/∼ and π : X → Y be the quotient map, and put

Φ(∼) := {f ◦ π : f ∈ C(Y )}.
Conversely, for any closed, unital G-subalgebra A of C(X) put

Ψ(A) := ∼,
where x ∼ y if and only if f(x) = f(y) for all f ∈ A. Then Φ is a bijection from
the set of closed, invariant equivalence relations on X to the set of closed, unital
G-subalgebras of C(X), and Ψ is the inverse of Φ.

Remark 2.23. Let ρ : X → Y be an epimorphism of G-flows. Let h ∈ C(Y ) and
f := hρ. Then f ∈ C(X) and:

(1) f is WAP if and only if h is WAP.
(2) f is tame if and only if h is tame.

Proof. Item (1) follows immediately from the characterization of WAP via the dou-
ble limit criterion from Fact 2.13. Item (2) follow directly from the definition of
tame flows. �

Corollary 2.24. Let (G,X) be a flow.

(1) There exists a finest closed, invariant equivalence relation FWAP on X such
that the quotient flow (G,X/FWAP) is WAP.

(2) There exists a finest closed, invariant equivalence relation Ftame on X such
that the quotient flow (G,X/Ftame) is tame.

Proof. Let WAP(X) ⊆ C(X) be the set of all WAP functions onX, and Tame(X) ⊆
C(X) the set of all tame functions on X. By Facts 2.14 and 2.20, we know that
both WAP(X) and Tame(X) are closed, unital subalgebras of C(X). And it is clear
that they are G-subalgebras. By Fact 2.22 and Remark 2.23, the corresponding
equivalence relations FWAP := Ψ(WAP(X)) and Ftame := Ψ(Tame(X)) fulfill the
requirements. �

We finally apply these general considerations to our model-theoretic context. So
C is a monster model of T (although here it could be actually any model of T ),
and X is a ∅-type-definable set (so here X does not denote a flow anymore). As
explained in Section 2.1, we have the flow (Aut(C), SX(C)). By Corollary 2.24,
there exists a finest closed, Aut(C)-invariant equivalence relation FWAP on SX(C)
such that the flow (Aut(C), SX(C)/FWAP) is WAP. Similarly, there exists a finest
closed, Aut(C)-invariant equivalence relation FTame on SX(C) such that the flow
(Aut(C), SX(C)/FTame) is tame. Whenever we work with another model denoted
by C′, the corresponding equivalence relations will be denoted by F ′WAP and F ′Tame,
respectively.

2.3. Infinitary definability patterns. We introduce the necessary machinery of
infinitary definability patterns structure on SX(C) that will be used throughout the
rest of the paper. The results here are based on the first author’s course on topologi-
cal dynamics in model theory, which is an alternative approach to Hrushovski’s “in-
finitary core” inspired by Pierre Simon’s seminar notes on [Hru22]. This approach
is a combination of Simon’s approach to Hrushovski’s definability patterns and
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topological dynamics, and has a potential to wide generalizations, e.g. to Keisler
measures or more general topological dynamics contexts, which will be studied in
the future. The notion of ip-minimal set below, some basic lemmas about it, and
an application to get Theorem 2.41 are adapted from Simon’s notes.

We will assume in this section that C is at least ℵ0-saturated and strongly ℵ0-
homogeneous. Let X be a ∅-type-definable set of tuples of arbitrary (possibly
infinite) length λ and x be a corresponding tuple of variables (i.e., of length λ). All
sets of parameters are contained in C.

The notions of content of a tuple of types p̄ (denoted by c(p̄)) and of the order
≤c were already recalled in Definitions 2.9 and 2.11. Now, we recall the notion of
strong heir, which first appeared in [KNS19, Definition 3.2].

Definition 2.25. Let M ≺ C be contained in B and q(x) ∈ S(B). We say that
q(x) is a strong heir extension of q �M (x) or that it is a strong heir over M if for
every finite m ⊆M and finite tuple of variables y

(∀ϕ(x, y) ∈ L)(∀b ⊆ B)[ϕ(x, b) ∈ q(x) =⇒ (∃b′ ⊆M)(ϕ(x, b′) ∈ q(x) ∧ b ≡
m
b′)].

The next fact is [KNS19, Lemma 3.3].

Fact 2.26. Assume M ⊆ A ⊆ C, where M ≺ C is ℵ0-saturated. Then each type
p(x) ∈ S(M) (in possibly infinitely many variables x) has an extension p′(x) ∈ S(A)
which is a strong heir over M .

The next definition is due to Hrushovski [Hru22].

Definition 2.27 (Infinitary definability patterns structure on SX(C)). For any n-
tuple ϕ = (ϕ1(x, y), . . . , ϕn(x, y)) of formulas in L with y finite and q(y) ∈ Sy(∅),
we define Rϕ,q on SX(C)n by

Rϕ,q(p) ⇐⇒ (ϕ1(x, y), . . . , ϕn(x, y), q) /∈ c(p),
where p = (p1, . . . , pn), i.e., there is no b |= q such that ϕ1(x, b) ∈ p1∧· · ·∧ϕn(x, b) ∈
pn. The infinitary definability patterns structure on SX(C) consists of all such
relations Rϕ,q. We denote by End(SX(C)) the semigroup of endomorphisms of
SX(C) as the infinitary definability patterns structure.

In this section, we also consider SX(C) as the flow (Aut(C), SX(C)). Recall that
by E(SX(C)) we denote the Ellis semigroup of this flow (see Definition 2.4).

Lemma 2.28. We have the following:

• End(SX(C)) = E(SX(C)).
• SX(C) is homogeneous in the sense that any partial morphism between sub-

structures of SX(C) (i.e., any structure preserving map f : A → B where
A,B ⊆ SX(C)) extends to an endomorphism of SX(C).

Proof. End(SX(C)) ⊇ E(SX(C)) follows from the right to left implication of Fact
2.10.

The inclusion End(SX(C)) ⊆ E(SX(C)) and homogeneity follow from the left to
right implication of Fact 2.10 and compactness of E(SX(C)). �

Proposition 2.29. Let M E E(SX(C)) be a minimal left ideal and u ∈ M an
idempotent. Let J := Im(u) ⊆ SX(C). Then the map

δ : uM→ Aut(J )
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given by δ(η) := η�J is a group isomorphism, where Aut(J ) is the group of auto-

morphisms of J as the infinitary definability patterns structure.

Proof. By Remark 2.8, δ is a monomorphism from uM to Sym(J ). The fact that
δ takes values in Aut(J ) follows from the first part of Lemma 2.28. The fact that
δ is onto Aut(J ) follows by homogeneity of SX(C). �

Proposition 2.30. For any minimal left ideals M,N of E(SX(C)) and idempo-
tents u ∈ M and v ∈ N , Im(u) ∼= Im(v) as the infinitary definability patterns
structures.

Proof. By Fact 2.6, there is an idempotent u′ ∈M such that vu′ = u′ and u′v = v.
Then, Im(u′) = Im(v), so we can assume that M = N without loss of generality.
Then, uv = u and vu = v, and so the maps

u�Im(v): Im(v)→ Im(u)

and

v�Im(u): Im(u)→ Im(v)

are mutual inverses. Hence, Im(v) ∼= Im(u) by Lemma 2.28. �

By Proposition 2.30, up to isomorphism, both J = Im(u) and Aut(J ) do not
depend on the choice of the minimal left ideal M and idempotent u ∈M.

The following definition is an analog of Hrushovski’s definition of pp-topology
for definability patterns [Hru22].

Definition 2.31 (ipp-topology). The ipp-topology on Aut(J ) is given by the sub-
basis of closed sets consisting of

Fϕ̄,p̄,q̄,r := {f ∈ Aut(J ) : Rϕ,r(f(p1), . . . , f(pm), q1, . . . , qn)}
for any ϕ1(x, y), . . . , ϕm+n(x, y) ∈ L, r ∈ Sy(∅), and p1, . . . , pm, q1, . . . , qn ∈ J .

One can easily check that the above subbasis is in fact a basis of closed sets,
i.e. the union of any two sets from this subbasis is the intersection of a family of
subbasic sets, but we will not need it.

The proof of the next proposition is a bit technical, so we move it to Appendix
A.

Proposition 2.32. The map

δ : uM→ Aut(J )

from Proposition 2.29 is a homeomorphism when uM is equipped with the τ -topology
and Aut(J ) with the ipp-topology.

Definition 2.33. A subset Q ⊆ SX(C) is ip-minimal (from infinitary patterns
minimal) if any morphism f : Q→ SX(C) is an isomorphism onto Im(f).

Proposition 2.34. Let p be an enumeration of SX(C) and q = ηp (coordinate-wise)
for some η ∈ E(SX(C)). Then the following are equivalent:

(1) q is ≤c minimal in E(SX(C))p, where q′ ≤c q′′ means

(q′i1 , . . . q
′
in) ≤c (q′′i1 , . . . q

′′
in)

for any finite sets of indices i1 < · · · < in, or equivalently,

q′ ≤c q′′ ⇐⇒ q′ ∈ E(SX(C))q′′.
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(2) The coordinates of q form an ip-minimal subset Q.
(3) η belongs to a minimal left ideal of E(SX(C)).

Proof. (1) ⇒ (2). Take any f : Q → SX(C). Lemma 2.28 implies that f can be

extended to an endomorphism f̃ : SX(C) → SX(C), and then η := f̃ ∈ E(SX(C)).
Hence, ηq ≤c q. By minimality of q, there is η′ ∈ E(SX(C)) such that η′ηq = q.
Thus, f is an isomorphism to its image by Lemma 2.28.

(2)⇒ (1). Take any q′ ∈ E(SX(C))p such that q′ ≤c q, that is, q′ = ηq for some
η ∈ E(SX(C)). By Lemma 2.28, f := η�Q: Q → SX(C) is a morphism, hence it is
an isomorphism to its image and has an inverse f ′ : Im(f) → Q. By Lemma 2.28,
f ′ can be extended to η′ ∈ E(SX(C)). Then η′q′ = q. This implies that q ≤c q′.

(1)⇒ (3) Consider any η′ ∈ E(SX(C)). Then, η′q ≤c q and η′q = η′ηp. By (1),
q ≤c η′q, so there is η′′ ∈ E(SX(C)) such that η′′η′q = q, that is η′′η′ηp = ηp. Since
p is an enumeration of SX(C), we get η′′η′η = η as elements of E(SX(C)). Hence,
E(SX(C))η is a minimal left ideal.

(3)⇒ (1). Consider any q′ ∈ E(SX(C))p such that q′ ≤c q. Then,

q′ = η′q = η′ηp

for some η′ ∈ E(SX(C)). Since E(SX(C))η is a minimal left ideal, there is η′′ ∈
E(SX(C)) such that η′′η′η = η. Thus, η′′q′ = η′′η′ηp = ηp = q. Therefore,
q ≤c q′. �

Corollary 2.35. There exists an ip-minimal Q ⊆ SX(C) with a morphism

g : SX(C)→ Q.

Proof. Let p be an enumeration of SX(C),MEE(SX(C))) a minimal left ideal and
η ∈ M. Then, Q := η[SX(C)] and g := η satisfy the requirements by Proposition
2.34. �

The next remark follows from the fact that for any element η in a minimal left
ideal M E E(SX(C)) we can find an idempotent u ∈ M with η ∈ uM, and then
Im(u) = Im(η) (note that all elements in uM have the same image).

Remark 2.36. If the conditions of Proposition 2.34 hold, then the ip-minimal set
Q of Proposition 2.34(2) satisfies Q ∼= J .

Lemma 2.37. A subset Q ⊆ SX(C) is ip-minimal if and only if every finite Q0 ⊆ Q
is ip-minimal. In particular, the union of a chain of ip-minimal subsets of SX(C)
is ip-minimal.

Proof. It follows by homogeneity of SX(C) obtained in Lemma 2.28. �

By the previous lemma and Zorn’s lemma, there exists some ip-minimal IC ⊆
SX(C) maximal with respect to inclusion.

Lemma 2.38. Let f : IC → K be a morphism, where K is an ip-minimal set.
Then f is surjective and is therefore an isomorphism.

Proof. Let I ′ := f [IC] ⊆ K. By ip-minimality of IC, the map f : IC → I ′ is an
isomorphism (in the infinitary definability patterns language). Let g : I ′ → IC be
the inverse of f . By Lemma 2.28, there exists g ∈ End(SX(C)) extending g. Let
K ′ := g[K]. Since K is ip-minimal, g�K : K → K ′ is an isomorphism and K ′ is
also ip-minimal. So K ′ = IC by maximality of IC. Therefore, by injectivity of g�K ,
I ′ = K. Thus, f : IC → K is onto. �
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Corollary 2.39. There is a unique (up to isomorphism) ip-minimal subset K ⊆
SX(C) with a morphism SX(C) → K. It is the ip-minimal set IC described above.
Moreover, there is a retraction SX(C)→ IC.

Proof. Let g : SX(C)→ K be a morphism and K an ip-minimal subset (which exists
by Corollary 2.35). By Lemma 2.38, the map g�IC : IC → K is an isomorphism,
which proves uniqueness.

For the moreover part, take a morphism g : SX(C) → IC (which exists by the
first part). Then g�IC : IC → IC is an isomorphism, and so f := (g�IC)−1 ◦ g is a
retraction from SX(C) to IC. �

By Lemma 2.28, Corollary 2.39, and Remark 2.36, we can assume that IC = J .

Lemma 2.40. Let C′ � C. Then the restriction

r : SX(C′)→ SX(C)

is a morphism of infinitary definability patterns structures and has a section

s : SX(C)→ SX(C′)

which is a morphism of infinitary definability patterns structures.

Proof. The fact that r is a morphism is trivial. To construct s, let p = (pi)i<µ
be an enumeration of SX(C) and (ai)i<µ be a realization of p (i.e., ai |= pi for
i < µ). Let p := tp((ai)i<µ/C) and let a type p′ := tp((a′i)i<µ/C

′) be a strong
heir extension of p (it exists by Fact 2.26). Then, for any n < ω and i1, . . . in < µ
we have c(pi1 , . . . , pin) = c(p′i1 , . . . , p

′
in

), where p′i = tp(a′i/C
′). Hence, the map s :

SX(C)→ SX(C′) given by s(pi) := tp(a′i/C
′) is a morphism between the infinitary

definability patterns structures, and it is clearly a section of r. �

Theorem 2.41. Up to isomorphism in the infinitary definability patterns language,
J does not depend on the choice of the ℵ0-saturated, strongly ℵ0-homogeneous model
C for which it is computed.

Proof. It is enough to show that for ℵ0-saturated, strongly ℵ0-homogeneous models
C ≺ C′, IC ∼= IC′ , where IC′ is defined for C′ the same way as IC was defined for C.
We have the following maps:

• The restriction morphism r : SX(C′)→ SX(C);
• A morphism s : SX(C) → SX(C′) which is a section of r, given by Lemma

2.40;
• A retraction fC : SX(C)→ IC given by Corollary 2.39;
• A retraction fC′ : SX(C′)→ IC′ given by Corollary 2.39.

Then, the maps h1 := fC ◦ (r�IC′ ) : IC′ → IC and h2 := fC′ ◦ (s�IC) : IC → IC′ are
morphisms. Hence, the maps h2 ◦ h1 : IC′ → IC′ and h1 ◦ h2 : IC → IC are isomor-
phisms by Lemma 2.38. The first thing implies that h1 is an isomorphism onto its
image and the second one that Im(h1) = IC. Therefore, h1 is an isomorphism. �

One can show that J is precisely Hrushovski’s infinitary core (but localized to
X) considered in [Hru22, Appendix A]; however, we will not use that approach in
this paper.

The next corollary was originally proved in [KNS19] by a much longer argument
(also based on contents).
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Corollary 2.42. The Ellis group (considered as a semitopological group with the
τ -topology) of the flow (Aut(C), SX(C)) does not depend on the choice of C as long
as C is ℵ0-saturated and strongly ℵ0-homogeneous.

Proof. It follows from Propositions 2.29, 2.32, the definition of ipp-topology, and
Theorem 2.41. �

By the above corollary applied for X := Cω (or, in the multisorted situation, for
X being the product of all sorts such that each sort is repeated ℵ0-times), the Ellis
group of the flow Sx(C) does not depend on the choice of C and is called the Ellis
group of the theory T .

3. Ellis groups of compatible quotients are isomorphic

We introduce a natural condition (which we call compatibility) on closed, in-
variant equivalence relations F on SX(C) and F ′ on SX(C′), guaranteeing that
the Ellis groups of the quotient flows (Aut(C), SX(C)/F ) and (Aut(C′), SX(C′)/F )
are isomorphic as long as C ≺ C′ are ℵ0-saturated and strongly ℵ0-homogeneous.
Hence, in this section, we will assume that C ≺ C′ satisfy only those saturation
assumptions. As usual, X is a ∅-type-definable set.

Definition 3.1. Let F ′ be a closed, Aut(C′)-invariant equivalence relation defined
on SX(C′), and F a closed, Aut(C)-invariant equivalence relation defined on SX(C).
We say that F ′ and F are compatible if r[F ′] = F (i.e., {(r(a), r(b)) : (a, b) ∈ F ′} =
F ), where r : SX(C′)→ SX(C) is the restriction map.

Theorem 3.2. If F ′ and F are compatible equivalence relations respectively on
SX(C′) and SX(C), then the Ellis group of the flow (Aut(C′), SX(C′)/F ′) is topo-
logically isomorphic to the Ellis group of the flow (Aut(C), SX(C)/F ).

Proof. Let (pi)i<µ be an enumeration of SX(C) and (ai)i<µ be a sequence of real-
izations. Consider the type p := tp((ai)i<µ/C), and let p′ := tp((a′i)i<µ/C

′) be a
strong heir extension of p. For each i < µ we denote tp(a′i/C

′) by p′i.
Let s : SX(C) → SX(C′) be the function given by s(pi) := p′i. The function s is

a section of the restriction map r, and since p′ is a strong heir extension of p, s is
an isomorphism to its image in the infinitary definability patterns language.

Choose and idempotent u ∈ M, where M is a minimal left ideal of E(SX(C)).
Then IC := Im(u) is ip-minimal by Proposition 2.34. By Proposition 2.29, there is
an isomorphism δ from uM to Aut(IC). By the previous paragraph, s�IC : IC →
s[IC] is an isomorphism. On the other hand, by Corollary 2.39, let IC′ be the unique
up to isomorphism ip-minimal subset of SX(C′) for which there is a morphism from
SX(C′) to IC′ . By Theorem 2.41, we have IC′ ∼= IC, and therefore IC′ ∼= s[IC] (in
particular, s[IC] is ip-minimal in SX(C′)). Thus, by Lemma 2.38, the morphism
η := s ◦ u ◦ r : SX(C′) → s[IC] is surjective, and, by Lemma 2.28, η ∈ E(SX(C′)).
Using Proposition 2.34, we conclude that η is in some minimal left ideal M′ of
E(SX(C′)). Finally, taking an idempotent u′ ∈ ηM′, we get Im(u′) = Im(η) =
s[IC].

The quotient map π : SX(C′) → SX(C′)/F ′ induces the following commutative
diagram of functions:
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π̃ : u′M′ π̃(u′)π̃(M′)

˜̃π : Aut(s[IC]) π̃(u′)π̃(M′)�π[s[IC]]⊆ Sym(π[s[IC]])

∼= ∼= (1)

where:

• Aut(s[IC]) is the group of automorphisms in the infinitary definability pat-
terns language.
• The map π̃ is given by Fact 2.7.
• The isomorphism on the left is given by Proposition 2.29 and the fact that
s[IC] = Im(u′).
• The isomorphism on the right is given by Fact 2.8.
• The map ˜̃π : Aut(s[IC])→ Sym(π[s[IC]]) is given by ˜̃π(σ)(π(x)) := π(σ(x))

(which is the composition of the inverse of the left side isomorphism, the
map π̃ and the right side isomorphism).

Similarly, the quotient map ρ : SX(C) → SX(C)/F induces the following com-
mutative diagram of functions:

ρ̃ : uM ρ̃(u)ρ̃(M)

˜̃ρ : Aut(IC) ρ̃(u)ρ̃(M)�ρ[IC]⊆ Sym(ρ[IC])

∼= ∼= (2)

where:

• Aut(IC) is the group of automorphisms in the infinitary definability patterns
language.
• The map ρ̃ is given by Fact 2.7.
• The isomorphism on the left is given by Proposition 2.29.
• The isomorphism on the right is given by Fact 2.8.
• The map ˜̃ρ : Aut(IC) → Sym(ρ[IC]) is given by ˜̃ρ(σ)(ρ(x)) := ρ(σ(x))

(which is the composition of the inverse of the left side isomorphism, the
map ρ̃ and the right side isomorphism).

Since the map r : s[IC] → IC is an isomorphism in the infinitary definability
patterns language, it induces an isomorphism

r : Aut(s[IC])→ Aut(IC)

given by r(σ)(r(p)) := r(σ(p)). Our goal is then to prove that there exists an
isomorphism f such that the diagram below commutes:

Aut(s[IC]) π̃(u′)π̃(M′)�π[s[IC]]

Aut(IC) ρ̃(u)ρ̃(M)�ρ[IC]

∼= r

˜̃π

˜̃ρ

∃f

We first prove that a function f such that the above diagram commutes exists.
It is enough to show that ker(˜̃π) ⊆ ker(˜̃ρ ◦ r). Note that σ ∈ ker(˜̃π) if and only
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if for every p ∈ s[IC] we have that σ(p)F ′p. Take an arbitrary σ ∈ ker(˜̃π). By
compatibility of F ′ and F, σ(p)F ′p implies r(σ(p))Fr(p). Hence, for every p ∈ s[IC]

we have r(σ)(r(p))Fr(p). Therefore, r(σ) is in ker(˜̃ρ) and σ is in ker(˜̃ρ ◦ r).
To see that f is an isomorphism, it is enough to show that ker(˜̃π) ⊇ ker(˜̃ρ◦r). So

take an arbitrary σ ∈ ker(˜̃ρ◦r). Then, for every p ∈ s[IC] we have that r(σ(p))Fr(p).

Claim. r(σ(p))Fr(p) implies σ(p)F ′p.

Proof of claim. By compatibility of F ′ and F , there are s1, s2 ∈ SX(C′) such that
r(s1) = r(σ(p)), r(s2) = r(p) and s1F

′s2. At the same time, since p, σ(p) ∈ s[IC],
there are i, j < µ such that:

σ(p) = p′i and p = p′j ;

r(σ(p)) = pi and r(p) = pj .

Hence, c(s1, s2) ⊇ c(r(s1), r(s2)) = c(r(σ(p)), r(p)) = c(pi, pj) = c(p′i, p
′
j) = c(σ(p), p)

(where the penultimate equality follows from the fact that p′ is a strong heir ex-
tension of p). Thus, by Fact 2.10, there is η ∈ E(SX(C′)) such that

η(s1, s2) = (σ(p), p).

Therefore, since F ′ is Aut(C′)-invariant and closed, we conclude that σ(p)F ′p. �

By the claim and the above description of ker(˜̃π), we get that σ ∈ ker(˜̃π).
Moreover, f is a homeomorphism, where π̃(u′)π̃(M′)�π[s[IC]] is equipped with

the topology induced from the τ -topology on π̃(u′)π̃(M′) via the right vertical
isomorphism in diagram (1), and ρ̃(u)ρ̃(M)�ρ[IC] with the topology induced from
the τ -topology on ρ̃(u)ρ̃(M) via the right vertical isomorphism in diagram (2). To
see this, it is enough to show that:

• ˜̃π and ˜̃ρ are topological quotient maps,
• r̄ is a topological isomorphism.

The fact that ˜̃π and ˜̃ρ are topological quotient maps follows from the fact that in
their corresponding diagrams (1) and (2), the upper horizontal maps are topological
quotient maps by Fact 2.7 and the left vertical maps are topological isomorphisms
by Proposition 2.32. The fact that r̄ is a homeomorphism follows trivially by the
definition of the ipp-topology and the fact that r̄ is induced by an isomorphism of
infinitary definability patterns structures.

We have proved that f is topological isomorphism of groups. Since the right
vertical maps in diagrams (1) and (2) are also topological isomorphisms of groups,
we conclude that the Ellis groups π̃(u′)π̃(M′) and ρ̃(u)ρ̃(M) are topologically iso-
morphic, as required. �

4. Applications to WAP, tame, stable, and NIP context

In this section, we use Theorem 3.2 to obtain absoluteness of Ellis groups of
several canonical quotients of type-spaces. These are the main results of this paper.

As in the last section, C′ � C, X is a ∅-type definable set, and r : SX(C′)→ SX(C)
is the restriction map.

Let ρ(x, y) be a partial type over ∅ (closed under conjunction) which defines an
equivalence relation E(M) on X(M) in a sufficiently saturated (equivalently, in
every) model M of T .
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Recall from Section 2.1 that Ẽ is the equivalence relation on SX(C) given by

pẼq ⇐⇒ (∃a |= p, b |= q)(ρ(a, b)),

and Ẽ′ is the equivalence relation on SX(C′) given by

p′Ẽ′q′ ⇐⇒ (∃a′ |= p′, b′ |= q′)(ρ(a′, b′)).

Proposition 4.1 and Corollary 4.2 below hold without any saturation assumptions
on C and C′.

Proposition 4.1. The equivalence relations Ẽ′ and Ẽ are compatible.

Proof. The goal is to prove that r[Ẽ′] = Ẽ.

(⊆) Consider any p′, q′ ∈ SX(C′) with p′Ẽ′q′. Then there are a′ |= p′ and b′ |= q′

such that ρ(a′, b′). Hence, a′ |= r(p′) and b′ |= r(b′), and we get r(p′)Ẽr(q′).

(⊇) Consider any p, q ∈ SX(C) with pẼq. The goal is to find some extensions

p′, q′ ∈ SX(C′) of p and q respectively, satisfying p′Ẽ′q′.
Take a |= p and b |= q such that ρ(a, b). Let tp(a′b′/C′) be an heir extension of

tp(ab/C). We claim that p′ := tp(a′/C′) and q′ := tp(b′/C) do the job. If not, then,
by compactness, there are formulas ϕ(x, y) ∈ ρ(x, y), ψ1(x, c′) ∈ p′, and ψ2(x, c′) ∈
q′ for which there are no a′′ and b′′ such that ψ1(a′′, c′)∧ψ2(b′′, c′)∧ϕ(a′′, b′′) (here
ψi(x, x

′) is a formula without parameters and c′ is a tuple from C′). Then

ψ1(x, c′) ∧ ψ2(y, c′) ∧ ¬(∃z)(∃t)(ψ1(z, c′) ∧ ψ2(t, c′) ∧ ϕ(z, t)) ∈ tp(a′b′/C′).

Since tp(a′b′/C′) is an heir extension of tp(ab/C), there is c ∈ C such that

ψ1(x, c) ∧ ψ2(y, c) ∧ ¬(∃z)(∃t)(ψ1(z, c) ∧ ψ2(t, c) ∧ ϕ(z, t)) ∈ tp(ab/C).

Taking z := a and t := b, we get a contradiction with the fact that ρ(a, b). �

Consider the relations Ẽ′
st

∅ , Ẽst
∅ , Ẽ′

NIP

∅ , and ẼNIP
∅ defined after Proposition 2.3.

Corollary 4.2. (1) The equivalence relations Ẽ′
st

∅ and Ẽst
∅ are compatible.

(2) The equivalence relations Ẽ′
NIP

∅ and ẼNIP
∅ are compatible.

Proof. Both items follow immediately from Proposition 4.1. �

From Corollary 4.2 and Theorem 3.2, we get the following corollary (note the
saturation assumption).

Corollary 4.3. (1) The Ellis group of SX(C)/Ẽst
∅ (treated as a semitopological

group with the τ -topology) does not depend on the choice of C as long as C
is at least ℵ0-saturated and strongly ℵ0-homogeneous.

(2) The Ellis group of SX(C)/ẼNIP
∅ (treated as a semitopological group with

the τ -topology) does not depend on the choice of C as long as C is at least
ℵ0-saturated and strongly ℵ0-homogeneous.

Next, we will show that the same is true for the equivalence relations F ′WAP and
FWAP described at the very end of Section 2.2. However, this time we will need
C and C′ to be at least (ℵ0 + λ)+-saturated and strongly (ℵ0 + λ)+-homogeneous
(where lambda is such that X ⊆ Cλ). In particular, if λ is finite, then ℵ1-saturation
and strong ℵ1-homogeneity is enough.
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Remark 4.4. For the proof of the next theorem, without loss of generality we will
assume that C is C′-small in the sense that the degree of saturation of C′ is bigger
than |C|. This is because if the theorem holds under this assumption, we can take
a monster model C′′ � C′ in which both C and C′ are small, and apply the result to
the pairs C′′ � C′ and C′′ � C. Namely, for r1 : SX(C′) → SX(C), r2 : SX(C′′) →
SX(C′), and r3 : SX(C′′) → SX(C) being the restriction maps, the theorem yields
r2[F ′′WAP] = F ′WAP and r3[F ′′WAP] = FWAP. As r1[r2[F ′′WAP]] = r3[F ′′WAP], we
conclude that r1[F ′WAP] = FWAP.

Theorem 4.5. The equivalence relations F ′WAP and FWAP are compatible as long
as C and C′ are at least (ℵ0 + λ)+-saturated and strongly (ℵ0 + λ)+-homogeneous.

Proof. We first prove that FWAP ⊆ r[F ′WAP]. It suffices to show that r[F ′WAP] is a
closed, Aut(C)-invariant equivalence relation on SX(C) with WAP quotient.

• Closedness is clear by continuity of r and compactness of type spaces.
• Equivalence relation: Take a = r(α), b = r(β) = r(β′) and c = r(γ)

where αF ′WAPβ and β′F ′WAPγ. Let (pi)i<µ be an enumeration of SX(C) and
(ai)i<µ be a sequence of realizations. Consider the type p := tp((ai)i<µ/C),
and let p′ := tp((a′i)i<µ/C

′) be a strong heir extension of p. For each i < µ
we denote tp(a′i/C

′) by p′i. Obviously, a = pi1 , b = pi2 , and c = pi3 for
some i1, i2, i3 < µ.

Claim. p′i1F
′
WAPp

′
i2
F ′WAPp

′
i3

.

Proof of claim. Clearly, r(p′i) = pi for all i < µ. Since p′ is a strong heir
extension of p, we have

c(p′i1 , p
′
i2) = c(pi1 , pi2) = c(r(α), r(β)) ⊆ c(α, β),

c(p′i2 , p
′
i3) = c(pi2 , pi3) = c(r(β′), r(γ)) ⊆ c(β′, γ).

Thus, by Fact 2.10,

∃η1 ∈ E(SX(C′))[η1(α, β) = (p′i1 , p
′
i2)],

∃η2 ∈ E(SX(C′))[η2(β′, γ) = (p′i2 , p
′
i3)].

Since the relation F ′WAP is Aut(C′)-invariant and closed, αF ′WAPβ, and
β′F ′WAPγ, we conclude that p′i1F

′
WAPp

′
i2
F ′WAPp

′
i3

. �

By the claim, p′i1F
′
WAPp

′
i3

, so a = r(p′i1)r[F ′WAP]r(p′i3) = c.
• Aut(C)-invariant: Take an arbitrary σ ∈ Aut(C) and extend it to σ′ ∈

Aut(C′). Consider any a, b ∈ SX(C) such that ar[F ′WAP]b and let α, β ∈
SX(C′) be such that r(α) = a, r(β) = b, and αF ′WAPβ. Then,

σ(a) = σ(r(α)) = r(σ′(α))r[F ′WAP]r(σ′(β)) = σ(r(β)) = σ(b).

• SX(C)/r[F ′WAP] is WAP: Assume for a contradiction that there is a function
f ∈ C(SX(C)/r[F ′WAP]) which is not WAP. That is, by Fact 2.13, there is
a net (σi)i∈I ⊆ Aut(C) such that the functions σif converge pointwise to
some function g /∈ C(SX(C)/r[F ′WAP]). Note that r−1[r[F ′WAP]] ⊇ F ′WAP

is a closed Aut(C′/{C})-invariant equivalence relation on SX(C′), and r
induces a homeomorphism

r̃ : SX(C′)/r−1[r[F ′WAP]]→ SX(C)/r[F ′WAP]
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satisfying

r̃
(
σ′
(
p/r−1[r[F ′WAP]]

))
= σ′�C

(
r(p)/r[F ′WAP]

)
for all σ′ ∈ Aut(C′/{C}).

For every i ∈ I choose an extension σ′i ∈ Aut(C′/{C}) of σi. The above
homeomorphism r̃ together with f induce a function f ′ ∈ C(S(C′)/r−1[r[F ′WAP]])
given by

f ′
(
p/r−1[r[F ′WAP]]

)
:= f

(
r(p)/r[F ′WAP]

)
.

By construction, the net (σ′if
′)i∈I converges pointwise to a function

g′ /∈ C(S(C′)/r−1[r[F ′WAP]]).

Hence, the flow(
Aut(C′/{C}), SX(C′)/r−1[r[F ′WAP]]

)
is not WAP, which implies that (Aut(C′), SX(C′)/F ′WAP) is not WAP (be-
cause WAP is preserved under decreasing the acting group and under taking
quotients of flows, which follows by Remark 2.23), a contradiction.

Now, we prove FWAP ⊇ r[F ′WAP]. This is equivalent to r−1[FWAP] ⊇ F ′WAP.
Note that r−1[FWAP] is a closed equivalence relation on SX(C′) but it might not be
Aut(C′)-invariant. To solve it, we consider the equivalence relation

F :=
⋂

σ∈Aut(C′)

σ(r−1[FWAP]).

Then, it is enough to show that F ⊇ F ′WAP, which is equivalent to the flow

(Aut(C′), SX(C′)/F )

being WAP.
Assume for a contradiction that there is f ∈ C(SX(C′)/F ) which is not WAP.

Let f : SX(C′) → R be given by f = f ◦ πF , where πF : SX(C′) → SX(C′)/F is
the quotient map. Then, f ∈ C(SX(C′)) and it is not a WAP function by Remark
2.23. By Fact 2.13, there are (σn)n<ω ⊆ Aut(C′) and (c′m)m<ω ⊂ X(C′) such that

(1) lim
n

lim
m

(σnf)(tp(c′m/C
′)) 6= lim

m
lim
n

(σnf)(tp(c′m/C
′))

where both limits exist. Note that here we are using that the types over C′ of
the elements of X(C′) form a dense subset of SX(C′), which uses that X lives on
C′-small tuples.

Consider the set N := {c′m : m < ω} ∪ {σ−1
n (c′m) : m,n < ω}. By (ℵ0 + λ)-

saturation of C, we may assume that N ⊂ C (just find σ ∈ Aut(C′) such that
σ[N ] ⊂ C and replace N by σ[N ], c′m by σ(c′m), and σn by σ ◦ σn). Note that it
might happen that none of the restrictions σn�C is an automorphism of C. However,
for every n < ω, by strong (ℵ0+λ)+-homogeneity of C (and strong |C|+-homogeneity
of C′), we can replace σn by σ′n ∈ Aut(C′) so that σ′−1

n extends σ−1
n �{c′m:m<ω} and

the restriction of σ′n to C is in Aut(C), so we may assume that, for every n < ω,
the restriction σn�C=: τn is an element of Aut(C).

Let H := {p ∈ SX(C) : p is invariant over N}; we enumerate H as (pi)i<µ and
choose ai |= pi for every i < µ. Consider the type p := tp((ai)i<µ/C) and let
p′ := tp((a′i)i<µ/C

′) be a strong heir extension of p in the language LN (i.e., L
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expanded by constants from N). (p′ exists by ℵ0-saturation of C in the language
LN which follows from (ℵ0 + λ)+-saturation of C in the language L.) We denote
tp(a′i/C

′) by p′i for each i < µ. Since tp(ai/C) is N -invariant, p′i is the unique
N -invariant extension of pi to C′. Hence, the set H′ := {p′i}i<µ is precisely the set
of all types in SX(C′) invariant over N , so it is closed in SX(C′).

Now, we define h : H → R by h(pi) := f(p′i). The function h belongs to C(H)

since for each closed interval I ⊆ R we have that h−1[I] = r[f
−1

[I]∩H′] is a closed
subset of SX(C). Note that for each c′ ∈ N and i < µ such that pi = tp(c′/C) we
have p′i = tp(c′/C′), and so

(σnf)(tp(c′m/C
′)) = f(tp(σ−1

n (c′m)/C′)) =

= h(tp(σ−1
n (c′m)/C)) = (τnh)(tp(c′m/C)).

(2)

Using (1) and (2), we have

(3) lim
n

lim
m

(τnh)(tp(c′m/C)) 6= lim
m

lim
n

(τnh)(tp(c′m/C))

where both limits exist.

Claim. For pi, pj ∈ H, if piFWAPpj, then h(pi) = h(pj).

Proof of claim. We show that p′iFp
′
j . Choose an arbitrary σ ∈ Aut(C′). We have

that

c(pi, pj) = c(p′i, p
′
j) = c(σ(p′i), σ(p′j)) ⊇ c(r(σ(p′i)), r(σ(p′j))).

Hence, there is η ∈ E(SX(C)) such that η(pi, pj) = (r(σ(p′i)), r(σ(p′j))), which
implies that r(σ(p′i))FWAPr(σ(p′j)) (because FWAP is Aut(C)-invariant and closed).

We then have σ(p′i)r
−1[FWAP]σ(p′j), and since σ was arbitrary, we conclude that

p′iFp
′
j . Therefore, since f = f ◦ πF , we obtain that f(p′i) = f(p′j), so h(pi) =

h(pj). �

Clearly, H/FWAP is a closed subset of SX(C)/FWAP and, by the claim, h = g ◦ ρ
for some g ∈ C(H/FWAP) where ρ : H → H/FWAP the quotient map. Tietze’s
extension theorem yields a function g ∈ C(SX(C)/FWAP) extending g. By con-
struction (in particular, using (3)), we get

(4) lim
n

lim
m

(τng)
(

tp(c′m/C)/FWAP

)
6= lim

m
lim
n

(τng)
(

tp(c′m/C)/FWAP

)
where both limits exist, which by Fact 2.13 implies that the flow (Aut(C), SX(C)/FWAP)
is not WAP, a contradiction. �

From the previous theorem and Theorem 3.2, the following corollary follows
immediately.

Corollary 4.6. The Ellis group of SX(C)/FWAP (treated as a semitopological group
with the τ -topology) does not depend on the choice of C as long as C is at least
(ℵ0 + λ)+-saturated and strongly (ℵ0 + λ)+-homogeneous.

Similarly, and under the same saturation assumptions, for the equivalence rela-
tions F ′Tame and FTame we have the following:

Theorem 4.7. The equivalence relations F ′Tame and FTame are compatible as long
as C and C′ are at least (ℵ0 + λ)+-saturated and strongly (ℵ0 + λ)+-homogeneous.
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Proof. By an obvious analog of Remark 4.4, without loos of generality we can
assume that C is C′-small.

We first prove that FTame ⊆ r[F ′Tame]. It suffices to show that r[F ′Tame] is a closed,
Aut(C)-invariant equivalence relation on SX(C) with tame quotient. The fact that
r[F ′Tame] is a closed, Aut(C)-invariant equivalence relation on SX(C) follows by the
same arguments as in the WAP context (see the proof Theorem 4.5).

To show that SX(C)/r[F ′Tame] is tame, suppose for a contradiction that there is
a function f ∈ C(SX(C)/r[F ′Tame]) which is not tame. That is, there is a sequence
(σi)i<ω ⊂ Aut(C) such that (σif)i<ω is an independent sequence. Then we apply
the corresponding part of the proof of Theorem 4.5, replacing “WAP” by “tame”
and noticing that by construction the sequence (σ′if

′)i<ω is independent, which
leads to a contradiction.

Now, we prove FTame ⊇ r[F ′Tame]. This is equivalent to r−1[FTame] ⊇ F ′Tame. We
define a closed, Aut(C′)-invariant equivalence relation

F :=
⋂

σ∈Aut(C′)

σ(r−1[FTame]).

Then, it is enough to show that F ⊇ F ′Tame, which is equivalent to the flow

(Aut(C′), SX(C′)/F )

being tame.
Assume for a contradiction that there is f ∈ C(SX(C′)/F ) which is not tame. Let

f : SX(C′)→ R be given by f = f ◦ πF . Then, f ∈ C(SX(C′)) and it is not a tame
function by Remark 2.23. That is, there exist r < s ∈ R, (σn)n<ω ⊂ Aut(C′) and
{c′P,M : P,M ⊂fin ω disjoint} ⊂ X(C′) such that for any finite disjoint P,M ⊂ ω

(5) (σnf)(tp(c′P,M/C
′)) < r if n ∈ P and (σnf)(tp(c′P,M/C

′)) > s if n ∈M.

The fact that we can choose c′P,M ∈ X(C′) follows from the fact that the types

over C′ of elements of X(C′) form a dense subset of SX(C′) and the second part of
Defnition 2.16.

Consider the set

N := {c′P,M : P,M ⊂fin ω disjoint} ∪ {σ−1
n (c′P,M ) : i < ω, P,M ⊂fin ω disjoint}.

As in the proof of Theorem 4.5, using (ℵ0 + λ)-saturation and strong (ℵ0 + λ)+-
homogeneity of C (together with strong |C|+-homogeneity of C′), we may assume
that N ⊂ C and, for every n < ω, τn := σn�C is an element of Aut(C).

Then we apply the corresponding part of the proof of Theorem 4.5, where the
formulas (2), (3), and (4) are replaced by:

(σnf)(tp(c′P,M/C
′)) = f(tp(σ−1

n (c′P,M )/C′)) =

h(tp(σ−1
n (c′P,M )/C)) = (τnh)(tp(c′P,M/C)),

(6)

for any finite disjoint P,M ⊂ ω
(7) (τnh)(tp(c′P,M/C)) < r if n ∈ P and (τnh)(tp(c′P,M/C)) > s if n ∈M,

(τng)
(

tp(c′P,M/C)/FTame

)
< r if n ∈ P, and

(τng)
(

tp(c′P,M/C)/FTame

)
> s if i ∈M,

(8)

respectively. The last property implies that the flow (Aut(C), SX(C)/FTame) is not
tame, a contradiction. �



MAXIMAL WAP AND TAME QUOTIENTS OF TYPE SPACES 23

Again, from the previous theorem and Theorem 3.2, the following corollary fol-
lows immediately.

Corollary 4.8. The Ellis group of SX(C)/FTame (treated as a semitopological group
with the τ -topology) does not depend on the choice of C as long as C is at least
(ℵ0 + λ)+-saturated and strongly (ℵ0 + λ)+-homogeneous.

5. Stable vs WAP, and NIP vs tame

In this section, we will study the relationship between the equivalence relations
FTame and FWAP and the finest ∅-type-definable equivalence relations on X with
NIP and stable quotients, respectively. Assume that C is (ℵ0 + λ)-saturated and
strongly (ℵ0 + λ)-homogeneous (where X ⊆ Cλ).

Let E be a ∅-type-definable equivalence relation on X. In [KP22], we defined
FX/E as the family of all functions f : X×Cm → R which factor through X/E×Cm
and can be extended to a continuous logic formula Cλ × Cm → R over ∅, where m
ranges over ω. By [KP22, Corollary 2.2], we know that the quotient X/E is stable
if and only if every f ∈ FX/E is stable.

For f(x, y) ∈ FX/E and b ∈ C|y|, by fb we denote the function fb : SX/E(C)→ R
given by fb(p) := f(a, b) for any a/E′ |= p (where a ∈ C′ � C, E′ := E(C′),
and f , being a restriction of a continuous logic formula, is treated as a function
X(C′) × C′|y| → R). Since f is a restriction of a continuous logic formula, fb is
continuous.

As mentioned in the introduction, the connection between stability and WAP is
well-known (discovered in [BY14; BYT16]). This connection is still present for the
hyperdefinable set X/E.

Proposition 5.1. Let f(x, y) ∈ FX/E, and let b ∈ C|y|. Then the following are
equivalent:

(1) f(x, y) is stable.
(2) For all b ∈ C|y| the function fb is WAP (for the flow (Aut(C), SX/E(C))).

Proof. (1) ⇒ (2) If the function fb is not WAP, by Fact 2.13, there is a sequence
(an)n<ω ⊂ X and a sequence of automorphisms (σm)m<ω ⊂ Aut(C) such that

lim
m

lim
n
f(an, σm(b)) 6= lim

n
lim
m
f(an, σm(b)).

Note that we are using that the realized types are dense in SX(C). Assume that
limm limn f(an, σm(b)) > limn limm f(an, σm(b)). (The opposite case is analogous.)
Then for some real numbers r < s we have

lim
m

lim
n
f(an, σm(b)) > s and lim

n
lim
m
f(an, σm(b)) < r.

Let us denote σm(b) by bm. It is clear that we can choose a subsequence
(a′i, b

′
i)i<ω from (an, bn)n<ω such that f(a′i, b

′
j) > s whenever i > j and f(a′i, b

′
j) < r

whenever i < j. That is, the sequence (a′i, b
′
i)i<ω witnesses unstability of f(x, y).

(2)⇒ (1) If f(x, y) is unstable, we can find an indiscernible sequence (ai, bi)i<ω
with ai ∈ X and bi ∈ C|y| such that f(ai, bj) 6= f(aj , bi) for some/all i < j. By
indiscernibility, for each i < ω there is σi ∈ Aut(C) such that σi(b0) = bi and there
exist real numbers r < s such that: (f(ai, bj) = r < s = f(aj , bi) for all i < j) or
(f(ai, bj) = s > r = f(aj , bi) for all i < j). Hence, fb0 is not a WAP function by
Fact 2.13. �
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Corollary 5.2. The flow (Aut(C), SX/E(C)) is WAP if and only if X/E is stable.

Proof. (⇒) By assumption, for any f(x, y) ∈ FX/E and b ∈ C|y|, fb is WAP, so
f(x, y) is stable by Proposition 5.1. Hence, X/E is stable by [KP22, Corollary 2.2].

(⇐) By assumption and [KP22, Corollary 2.2], every function f(x, y) ∈ FX/E
is stable, so for any b ∈ C|y| the function fb is WAP by Proposition 5.1. Thus,
since by [KP22, Proposition 2.1] the family of functions {fb : f ∈ FX/E , b ∈ C|y|}
separates points in SX/E(C), we conclude that (Aut(C), SX/E(C)) is WAP by Fact
2.15. �

Similarly, by [PF24, Lemma 5.7], we know that the quotient X/E has NIP if
and only if every f ∈ FX/E has NIP (see [PF24, Definition 5.4] for n = 1). As
mentioned in the introduction, the connection between NIP and tameness flows
is well-known (first noticed independently in [CS18], [Iba16], and [Kha20]). This
connection is still present for the hyperdefinable set X/E.

Proposition 5.3. Let f(x, y) ∈ FX/E, and let b ∈ C|y|. Then the following are
equivalent:

(1) f(x, y) has NIP.
(2) For all b ∈ C|y| the function fb is tame.

Proof. (1) ⇒ (2) If fb is not tame for some b ∈ C|y|, then there is a sequence
(σi)i<ω ⊂ Aut(C) such that the sequence of functions (f(x, σi(b)))i<ω is indepen-
dent on X, so f has IP by compactness.

(2)⇒ (1) If f(x, y) has IP , then by Ramsey’s theorem and compactness, there
is an indiscernible sequence (bi)i<ω ⊂ C|y| for which the sequence (f(x, bi))i<ω is
independent on X. By indiscernibility, for each i < ω there is σi ∈ Aut(C) such
that σi(b0) = bi. Hence, fb0 is not a tame function, because the sequence (σifb0)i<ω
is independent. �

Corollary 5.4. The flow (Aut(C), SX/E(C)) is tame if and only if X/E is NIP.

Proof. (⇒) By assumption, for any f(x, y) ∈ FX/E and b ∈ C|y|, fb is tame, so
f(x, y) has NIP by Proposition 5.3. Hence, X/E has NIP by [PF24, Lemma 5.7].

(⇐) By assumption and [PF24, Lemma 5.7], every function f(x, y) ∈ FX/E has

NIP, so for any b ∈ C|y| the function fb is tame by Proposition 5.3. Thus, since by
[KP22, Proposition 2.1] the family of functions {fb : f ∈ FX/E , b ∈ C|y|} separates
points in SX/E(C), we conclude that (Aut(C), SX/E(C)) is tame by Fact 2.21. �

Below we will use the notation introduced in Proposition 2.3 and the comments
following it. Note that, while a ∅-type-definable equivalence relation on X induces
a closed, Aut(C)-invariant equivalence relation on SX(C), the converse is not true.
Namely, not every closed, Aut(C)-invariant equivalence relation on SX(C) is created

this way. In the case of ẼWAP
∅ and ẼNIP

∅ , by Corollaries 5.2 and 5.4, we get that

SX(C)/Ẽst
∅ is a WAP flow and SX(C)/ẼNIP

∅ is a tame flow. However, the next

proposition shows that Ẽst
∅ may not be equal to FWAP and ẼNIP

∅ may not be equal
to FTame.

Proposition 5.5. Assume that X is a ∅-type-definable subset of Cλ, and C is
(ℵ0 + λ)-saturated and strongly (ℵ0 + λ)-homogeneous.

(1) If X is unstable, then FWAP ( Ẽst
∅ .
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(2) If X has IP, then FTame ( ẼNIP
∅ .

Proof. The inclusions follow from the above observations that SX(C)/Ẽst
∅ is WAP

and SX(C)/ẼNIP
∅ is tame. It remains to show that FWAP 6= Ẽst

∅ and FTame 6= ẼNIP
∅ .

We will prove the first thing; the proof of the second one is analogous.
Since X is unstable, Est

∅ 6= =, so Ẽst
∅ glues some types in SX(C) which are

realized in C.
On the other hand, define a closed equivalence relation E on SX(C) by

pEq ⇐⇒ p= = q=,

where p= and q= denote the restrictions of p and q to the empty language (so we
allow only the equality relation). Let S=

X(C) be the collection of all global types
in the empty language of the elements from X(C′), where C′ � C is a monster
model of the original theory in which C is small. Then S=

X(C) = {tp(a/C)= : a ∈
X} ∪ {the unique non-realized type} is a closed subset of S=

C (C) invariant under
Aut(C). We also see that SX(C)/E ∼= S=

X(C) as Aut(C)-flows. As the theory of C in
the empty language is stable, by Corollary 5.2, we get that (Sym(C), S=

C (C)) is WAP.
Hence, since WAP is closed under decreasing the acting group and under taking
subflows, (Aut(C), S=

X(C)) is also WAP, and so is (Aut(C), SX(C)/E). Therefore,
FWAP ⊆ E. Thus, since E does not glue any realized types in SX(C), neither does
FWAP.

By the conclusions of the last two paragraphs, we conclude that FWAP 6= Ẽst
∅ . �

Although FWAP and FTame are almost always strictly finer than Ẽst
∅ and ẼNIP

∅ ,
the following question and its analog for the tame case remain open:

Question 5.6. Are the Ellis groups of the flows

(Aut(C), SX(C)/FWAP)

and

(Aut(C), SX(C)/Ẽst
∅ )

isomorphic?

Proposition 5.5 justifies our interest in FWAP and FTame, because it suggests that
the quotients by these equivalence relations should capture more information about
the theory in question than the quotients by Ẽst

∅ and ẼNIP
∅ while maintaining similar

good properties (having in mind that WAP is a dynamical version of stability and
tameness a dynamical version of NIP).

Appendix A. A proof of Proposition 2.32

To prove Proposition 2.32, we need Lemma 3.11 from the first arXiv version of
[KLM19]. The proof is repeated in [CGK24, Fact 5.15].

Lemma A.1. For any flow (G,X) and A ⊆ uM, the τ -closure clτ (A) can be
described as the set of all limits contained in uM of the nets ηiai such that ηi ∈M,
ai ∈ A, and limi ηi = u

Proof of Proposition 2.32. We first show that δ is continuous. Consider an ar-
bitrary subbasic closed set Fϕ̄,p̄,q̄,r (see Definition 2.31) and take η ∈ clτ (δ−1[Fϕ̄,p̄,q̄,r]).
Choose some nets (σi) in Aut(C) and (ηi) in δ−1[Fϕ̄,p̄,q̄,r] such that limσi = u and
limσiηi = η.
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Suppose for a contradiction that η /∈ δ−1[Fϕ̄,p̄,q̄,r], i.e. ¬Rϕ̄,r(η(p̄), q̄). Then
there is b |= r(y) such that

ϕ1(x, b) ∈ η(p1), . . . , ϕm(x, b) ∈ η(pm)

and

ϕm+1(x, b) ∈ q1, . . . , ϕm+n(x, b) ∈ qn.
Then there exists i0 such that for all i > i0 and j ≤ m we have ϕi(x, b) ∈ σiηi(pj),
i.e., ϕi(x, σ

−1
i (b)) ∈ ηi(pj). On the other hand, since limσi = u, δ(u) = IdJ̄ , qj ∈ J̄ ,

and ϕm+j(x, b) ∈ qj for j ≤ n, we get that there exists i1 such that for all i > i1
and j ≤ n we have ϕm+j(x, b) ∈ σi(qj), i.e., ϕm+j(x, σ

−1
i (b)) ∈ qj . Then for every

i > max(i0, i1) we have ¬Rϕ̄,r(ηi(p̄), q̄), a contradictions with the choice of ηi.
Next, we show the continuity of δ−1. Consider an arbitrary η ∈ uM and all

open neighborhoods of δ(η) of the form Uϕ̄,p̄,q̄,r, where Uϕ̄,p̄,q̄,r is the complement
of Fϕ̄,p̄,q̄,r. (This is a basis of open neighborhoods of δ(η), but we will not use
it.) Let I consist of all tuples (ϕ̄, p̄, q̄, r, b), where the tuples (ϕ̄, p̄, q̄, r) are as in
Definition 2.31 and b is any tuple realizing r and such that

ϕ1(x, b) ∈ δ(η)(p1), . . . , ϕm(x, b) ∈ δ(η)(pm), ϕm+1(x, b) ∈ q1, . . . , ϕm+n(x, b) ∈ qn.
Order I by: (ϕ̄(x, y), p̄, q̄, r(y), b) ≤ (ϕ̄′(x, z), p̄′, q̄′, r′(z), b′) if y ⊆ z, r′|y = r,

b′|y = b, m := |p̄| ≤ |p̄′| =: m′ and n := |q̄| ≤ |q̄′| =: n′, and there exists an injection

σ : {1, . . . ,m+ n} → {1, . . . ,m′ + n′}
such that σ[{1, . . . ,m}] ⊆ {1, . . . ,m′}, σ[{m+1, . . . ,m+n}] ⊆ {m′+1, . . . ,m′+n′},
and:

(1) ϕj = ϕ′σ(j) for all j ≤ m+ n,

(2) pj = p′σ(j) for all j ≤ m,

(3) qm+j = q′σ(m+j) for all j ≤ n.

It is easy to check that (I,≤) is a directed set. For i = (ϕ̄, p̄, q̄, r, b) ∈ I by Ui we
mean Uϕ̄,p̄,q̄,r. Clearly i ≤ i′ implies Ui′ ⊆ Ui.

It suffices to show that for any net (ηk)k∈K in uM such that ipp-limk δ(ηk) = δ(η)
we have τ -limk ηk = η. For that it is enough to show that for any subnet (ρj)j∈J
of (ηk)k∈K we have that η is in the τ -closure of (ρj)j∈J .

Since ipp-limj δ(ρj) = δ(η), for every i ∈ I there exists ji ∈ J such that δ(ρji) ∈
Ui. Writing i = (ϕ̄, p̄, q̄, r, b), we can find bi |= r such that

ϕ1(x, bi) ∈ δ(ρji)(p1), . . . , ϕm(x, bi) ∈ δ(ρji)(pm),

ϕm+1(x, bi) ∈ q1, . . . , ϕm+n(x, bi) ∈ qn.
(?)

For each i ∈ I, choose σi ∈ Aut(C) such that σ(bi) = b. Then, by (?), we have
ϕm+1(x, b) ∈ σi(q1), . . . , ϕm+n(x, b) ∈ σi(qn).

Since for varying i ∈ I the tuples (q1, . . . , qn) range over all finite tuples from
J̄ and the tuples (ϕm+1(x, b), . . . , ϕm+n(x, b)) over all possible tuples of formulas
belonging, respectively, to q1, . . . , qn, we see that limi σi|J̄ = IdJ̄ . So limi σiu = u
and clearly σiu ∈M.

Also by (?), ϕ1(x, b) ∈ σi(ρji(p1)), . . . , ϕm(x, b) ∈ σi(ρji(pm)). Again, since
for varying i ∈ I the tuples (p1, . . . , pm) range over all finite tuples from J̄ and
the tuples (ϕ1(x, b), . . . , ϕm(x, b)) over all possible tuples of formulas belonging,
respectively, to η(p1), . . . , η(pm), we see that limi(σiρji)|J̄ = η|J̄ . Since ρji =
ρjiu = uρji and η = ηu, we get limi σiuρji = η.
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Hence, by the previous two paragraphs and Lemma A.1, we conclude that η is
in the τ -closure of (ρj)j∈J as required. �

Appendix B. Products of stable and NIP hyperdefinable sets

We will prove that the properties of stability and NIP for hyperdefinable sets are
both preserved under (possibly infinite) Cartesian products. They are also clearly
closed under taking type-definable subsets. This yields the following:

Corollary B.1. An arbitrary intersection of ∅-type-definable equivalence relations
(Ei)i<µ with stable [resp. NIP] quotients on a ∅-type-definable set X is an equiv-
alence relation with stable [resp. NIP] quotient on X. Moreover, a finest ∅-type-
definable equivalence relation on X with stable [resp. NIP] quotient always exists.

Proof. The first part follows from the fact that stability and NIP are preserved
under (possibly infinite) Cartesian products and taking type-definable subsets, and
the observation that the hyperdefinable set

X/
⋂
i<µEi

can be naturally identified with a type-definable subset of∏
i<µ

X/Ei.

For the moreover part, consider the ∅-type-definable equivalence relation on X
defined as the intersection of all ∅-type-definable equivalence relations on X with
stable [resp. NIP] quotient, and use the first part. �

First of all, note that directly from Definitions 2.1 and 2.2 and compactness, it
follows that in order to get preservation of stability and NIP under possibly infinite
Cartesian products, it is enough to show preservation of stability and NIP under
products of two hyperdefinable sets. Thus, for the remainder of the appendix, we
consider two hyperdefinable sets X/E and Y/F with X,Y ⊆ Cλ, where λ is smaller
than the degree of saturation of C (note here that without loss of generality we can
assume that X and Y leave on tuples of the same length λ, as if X ⊆ Cα, then for
any β we can replace X by X × Cβ ⊆ Cα+β and E by the relation which is just E
on the first α coordinates).

First, we prove preservation of stability. This was stated in [HP18, Remark 1.4],
and the proof we present was suggested by Anand Pillay.

Proposition B.2. Let X/E and Y/F by stable hyperdefinable sets. Then, X/E ×
Y/F is a stable hyperdefinable set.

Proof. Suppose the conclusion does not hold. Let (ai, bi, ci)i<ω be an indiscernible
sequence witnessing unstability of X/E × Y/F . That is, for all i, j < ω ai ∈ X/E,
bi ∈ Y/F , and tp(ai, bi, cj) 6= tp(aj , bj , ci) for all i 6= j. By compactness, without
loss of generality we may replace ω by Q.

Claim. (cj)j 6=0 is indiscernible over a0.

Proof. Note that it is enough to show that for any i1 < · · · < in < 0 < i′ < j1 <
· · · < jm

ci1 , . . . cin , cj1 , . . . , cjm ≡a0 ci1 , . . . cin−1
, ci′ , cj1 , . . . , cjm .
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Suppose that the conclusion does not hold. This implies that for some setting as
above we have

(cin , a0) 6≡K (ci′ , a0),

where

K := {cik : k = 1, . . . , n− 1} ∪ {cjk : k = 1, . . . ,m}.
On the other hand, by the indicernibility of (ai, bi, ci)i∈Q, we get that (ai, ci)i∈(in−1,j1)

is indiscernible over K; in particular, (cin , a0) ≡K (c0, ai′). Hence,

(ci′ , a0) 6≡K (c0, ai′).

Therefore, the sequence (ai, ciK)i∈(in−1,j1) contradicts the stability of X/E. �

Claim. tp(a0, b0, cj) is constant for j > 0, tp(a0, b0, cj) is constant for j < 0, and
tp(a0, b0, c1) 6= tp(a0, b0, c−1).

Proof. The fact that it is constant follows from the indiscernibility of the original
sequence (ai, bi, ci)i∈Q. Moreover, we have

tp(a0, b0, c−1) 6= tp(a−1, b−1, c0) = tp(a0, b0, c1).

�

From the claims, it follows that for any rational numbers k and i1 < · · · < in <
k < j1 < · · · < jn all distinct from 0, there exists b′

k,̄i,j̄
∈ Y/F (where ī = (i1, . . . , in)

and j̄ = (j1, . . . , jn)) such that

b′k,̄i,j̄ci1 ≡a0 · · · ≡a0 b
′
k,̄i,j̄cin ≡a0 b0c−1

b′k,̄i,j̄cj1 ≡a0 · · · ≡a0 b
′
k,̄i,j̄cjn ≡a0 b0c1.

Thus, by compactness, there exists a sequence (b′k)k∈Q\{0} in Y/F such that for
i ∈ Q \ {0} we have: b′kci ≡a0 b0c−1 when i < k, and b′kci ≡a0 b0c1 when i > k.
Hence, by compactness and Ramsey’s theorem, there is a sequence (b′′i , c

′
i)i<ω with

b′′i ∈ Y/F , which is indiscernible over a0 and

tp(b′′i , c
′
j/a0) 6= tp(b′′j , c

′
i/a0)

for all i < j, contradicting stability of Y/F . �

Now, we turn to the NIP case. See Section 5 for the definition of the family
FX/E and references concerning it. The next characterization of the functions of
the family FX/E with NIP follows by compactness and Ramsey’s theorem.

Lemma B.3. For any f(x, y) ∈ FX/E the following are equivalent:

(1) f has IP.
(2) There exists an indiscernible sequence (bi)i<ω, a ∈ X, and real numbers

r < s such that

f(a, bi) ≤ r ⇐⇒ i is even,

f(a, bi) ≥ s ⇐⇒ i is odd.

Proposition B.4. For every f(x, y) ∈ FX/E and for every limit ordinal γ ≤ κ
(where κ is the degree of saturation of C), f(x, y) has NIP if and only if for every
indiscernible sequence (bi)i<γ and a ∈ X the sequence (f(a, bi))i<γ is convergent.
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Proof. (⇐) Suppose f(x, y) has IP. By Lemma B.3, there exist an indiscernible
sequence (bi)i<ω, an element a ∈ X, and r < s such that

f(a, bi) ≤ r ⇐⇒ i is even,

f(a, bi) ≥ s ⇐⇒ i is odd.

By compactness, we may extend the indiscernible sequence (bi)i<ω to a new
indiscernible sequence (b′i)i<γ such that for any i < γ: f(a, b′i) ≤ r if i is even,
and f(a, b′i) ≥ s if i is odd (where i is even if it is an even natural number or
an ordinal of the from δ + n for some limit ordinal δ and even natural number n;
odd ordinals are defined analogously). This contradicts the assumption that the
sequence (f(a, b′i))i<γ is convergent.

(⇒) Suppose the conclusion does not hold for an indiscernible sequence (bi)i<γ
and a ∈ X. That is, for every L there is some ε > 0 such that for cofinally many
i < γ we have |f (a, bi)− L| > ε (formally this means that for every β < γ there is
i ∈ (β, γ) such that |f (a, bi)− L| > ε).

Since {f (a, bi) | i < γ} ⊂ [r1, r2] for some real numbers r1 < r2, the sequence
(f (a, bi))i<γ must have some accumulation point L0. That is, for any ε > 0, for
cofinally many i < γ we have |f (a, bi)− L0| ≤ ε.

Since (f (a, bi))i<γ does not converge, there is ε > 0 such that for cofinally many

j < γ we have |f (a, bj)− L0| > ε, and since L0 is an accumulation point, there are
cofinally many i < γ for which | f (a, bi)− L0

∣∣≤ ε
2 .

Thus, there must be either cofinally many j < γ such that f (a, bj) > L0 + ε or
cofinally many j < γ such that f (a, bj) < L0 − ε. Consider the former case (the
latter is analogous). Let r = L0 + ε

2 and s = L0 + ε.
We now construct an indiscernible sequence (ci)i<ω which, together with a, will

witness that f(x, y) has IP. Let c0 = bi for some bi such that f(a, bi) ≤ r. This
is possible since there are cofinally many i < γ with f(a, bi) within ε

2 of L0. Let
c1 = bj with j > i be such that f(a, bj) ≥ s. Similarly, this is possible since there are
cofinally many j < γ with f (a, bj)− L0 > ε. Iterating this process infinitely many
times, we get a subsequence (ci)i<ω of (bi)i<γ which is indiscernible, f (a, ci) ≤ r if
and only if i is even, and f (a, ci) ≥ s if and only if i is odd. Thus, this sequence is
as required (by Lemma B.3). �

Proposition B.5. Let X/E be a hyperdefinable set with X ⊆ Cλ. If X/E has NIP,
for any indiscernible sequence (bi)i<(|T |+λ)+ of tuples from C of length at most λ

and any a/E ∈ X/E there exists α < (|T | + λ)+ such that (bi)α<i<(|T |+λ)+ is
indiscernible over a/E.

Proof. Let z be the tuple of variables corresponding to some/each bi. For a subtuple
y of z, by byi we will denote the subtuple of bi corresponding to the variables y.

Assume the conclusion does not hold. Then for every α < (|T | + λ)+ there is
a finite subtuple yα of z, natural number kα, and two tuples of indices α < iα1 <
· · · < iαkα < (|T |+ λ)+ and α < jα1 < · · · < jαkα < (|T |+ λ)+ such that

tp(a/E, byαiα1 , . . . , b
yα
iαkα

) 6= tp(a/E, byαjα1 , . . . , b
yα
jαkα

).

Thus, by [KP22, Proposition 2.1], there exists a function fα : Cλ × Ckα|yα| → R
from the family FX/E and rationals rα < sα satisfying

fα(a, byαiα1 , . . . , b
yα
iαkα

) ≤ rα ∧ fα(a, byαjα1 , . . . , b
yα
jαkα

) ≥ sα.
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On the other hand, as explained in the proof of [KP22, Corollary 2.4], for every
m ∈ ω the space of all functions Cλ × Cm → R from the family FX/E with respect
to the supremum norm has a dense subset Fm of cardinality |T | + λ. It is then
clear that for every α < (|T | + λ)+ the function fα above can be chosen from the
family Fkα|yα|.

Therefore, there is a finite subtuple y of z, natural number k, function f : Cλ ×
Ck|y| → R from the family FX/E , and rationals r < s such that kα = k, yα = y,

fα = f , rα = r, and sα = s for cofinally many α < (|T | + λ)+. Then, we can

construct inductively a sequence I = (il1, . . . , i
l
k)l<ω such that il1 < · · · < ilk < il+1

1

for all l < ω and:

• f(a, by
il1
, . . . , by

ilk
) ≤ r ⇐⇒ l is even,

• f(a, by
il1
, . . . , by

ilk
) ≥ s ⇐⇒ l is odd.

As the sequence (by
il1
, . . . , by

ilk
)l<ω is indiscernible, this implies (by Lemma B.3) that

the function f has IP. By [PF24, Lemma 5.7], this is a contradiction with the
assumption that X/E has NIP. �

Corollary B.6. Let X/E and Y/F be hyperdefinable sets with NIP . Then X/E×
Y/F has NIP.

Proof. Recall that without loss of generality, X,Y ⊆ Cλ. Let (ci)i<(|T |+λ)+ be an
arbitrary indiscernible sequence of finite tuples from C, and (a/E, b/F ) an arbitrary
pair from X/E × Y/F .

By Proposition B.5, there is α < (|T |+ λ)+ such that (ci)α<i<(|T |+λ)+ is indis-
cernible over a/E. Hence, by compactness and Ramsey’s theorem, we can find a′Ea
for which (cia

′)α<i<(|T |+λ)+ is indiscernible. Applying Proposition B.5 again, but

this time to the sequence (cia
′)α<i<(|T |+λ)+ , we get that there exists β < (|T |+λ)+

such that (cia
′)β<i<(|T |+λ)+ is indiscernible over b/F . Then (ci)β<i<(|T |+λ)+ is in-

discernible over (a/E, b/F ). Hence, for every f(x, y, z) ∈ FX/E×Y/F with |z| = |ci|,
the sequence (f(a, b, ci))β<i<(|T |+λ)+ is constant. Therefore, since a/E, b/F , and
the sequence (ci)i<(|T |+λ)+ were arbitrary, using Proposition B.4, we conclude that
every f(x, y, z) ∈ FX/E×Y/F has NIP. Therefore, X/E × Y/F has NIP by [PF24,
Lemma 5.7].

�
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