
ON FIRST ORDER AMENABILITY

EHUD HRUSHOVSKI, KRZYSZTOF KRUPI�SKI, AND ANAND PILLAY

Abstract. We introduce the notion of �rst order amenability, as a property of
a �rst order theory T : every complete type over ∅, in possibly in�nitely many
variables, extends to an automorphism-invariant global Keisler measure in the
same variables. Amenability of T follows from amenability of the (topological)
group Aut(M) for all su�ciently large ℵ0-homogeneous countable models M of
T (assuming T to be countable), but is radically less restrictive.

First, we study basic properties of amenable theories, giving many equivalent
conditions. Then, applying a version of the stabilizer theorem from [13], we prove
that if T is amenable, then T is G-compact, namely Lascar strong types and
Kim-Pillay strong types over ∅ coincide. This extends and essentially generalizes
a similar result proved via di�erent methods for ω-categorical theories in [24].
In the special case when amenability is witnessed by ∅-de�nable global Keisler
measures (which is for example the case for amenable ω-categorical theories),
we also give a di�erent proof, based on stability in continuous logic.

Parallel (but easier) results hold for the notion of extreme amenability.

0. Introduction

We introduce the notions of amenable and extremely amenable �rst order the-
ory. This is part of our attempt to extract the model-theoretic content of the
circle of ideas around [extreme] amenability of automorphism groups of countable
structures, which we discuss further below. We say that T is amenable if for every
p ∈ Sx̄(∅), in any (possibly in�nite) tuple of variables x̄, there exists an Aut(C)-
invariant, Borel probability measure on Sp(C) := {q ∈ Sx̄(C) : p ⊆ q}, where C is a
monster model of T . Extreme amenability of T means that the invariant measure
above can be chosen to be a Dirac, namely: every p ∈ Sx̄(∅) extends to a global
Aut(C)-invariant complete type. We study properties of [extreme] amenability,
showing for example that they are indeed properties of the theory (i.e. do not
depend on C) and providing several equivalent de�nitions. We will discuss here
amenability, leaving the extreme version to further paragraphs. One of the equiva-
lent de�nitions of amenability of T is that Aut(C) is relatively amenable (i.e. there
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is an Aut(C)-invariant, �nitely additive, probability measure on the Boolean alge-
bra of relatively de�nable subsets of Aut(C) treated as a subset of CC). Relative
amenability of Aut(C) (or, more generally, of the group of automorphisms of any
model) is a natural counterpart of de�nable amenability of a de�nable group. The
above observations work for any ℵ0-saturated and strongly ℵ0-homogeneous model
M in place of C. For such an M , if Aut(M) is amenable as a topological group
(with the pointwise convergence topology), then T is amenable. We point out in
a similar fashion that (for countable T ) if Aut(M) is amenable for all su�ciently
large ℵ0-homogeneous countable models, then T is amenable. In the NIP context,
we get a full characterization of amenability of T in various terms, e.g. by saying
that ∅ is an extension base, which also yields a class of examples of amenable
theories, e.g. all stable or o-minimal or c-minimal theories are amenable. Also,
the theories of measurable structures in the sense of Elwes and Macpherson (e.g.
pseudo-�nite �elds) [7] are amenable.
This paper is concerned with the implications of [extreme] amenability of a

�rst order theory T for the Galois group GalL(T ). So let us discuss brie�y those
Galois groups as well as the notions of G-compactness and G-triviality and why
they should be considered important. Formal de�nitions will be given in Section
1, but we give a rather more relaxed description now. See also the introduction
to [24]. At the centre are the key notions of strong types. Two tuples ā and b̄
from the monster model C, of the same (bounded) length, have the same Lascar
strong type if E(ā, b̄) whenever E is an Aut(C)-invariant equivalence relation with
boundedly many classes. If we instead consider only bounded equivalence relations
E which are type-de�nable over ∅, we obtain the notion of having the same Kim-
Pillay strong type (in short, KP-strong type). The group of permutations of all
Lascar strong types induced by Aut(C) is called the Lascar Galois group GalL(T );
GalKP (T ) is de�ned analogously. When Lascar strong types coincide with KP-
strong types, GalL(T ) has naturally the structure of a compact Hausdor� group,
and T is said to be G-compact. When Lascar strong types coincide with types
(over ∅), then GalL(T ) is trivial, and T is said to be G-trivial. Lascar strong types
present obstructions to various kinds of type amalgamation. Also in [26], where
the Lascar Galois group was �rst de�ned, they present obstacles to recovering
an ω-categorical theory T from its category of models. As KP-strong types are
much easier to handle than Lascar strong types, G-compactness is a desirable
property. In any case, GalL(T ) and GalKP (T ) are important invariants of an
arbitrary complete �rst order theory T and play important roles in model theory.
The main result of this paper (proved in Section 4) is the following

Theorem 0.1. Every amenable theory is G-compact.

This result is a wide generalization of Theorem 0.7 from [24] which says that
whenever M is a countable, ω-categorical structure and Aut(M) is amenable as a
topological group, then Th(M) is G-compact. Theorem 0.7 of [24] was deduced
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(by a non-trivial argument which is interesting in its own right) from [24, Theorem
0.5], more precisely, from the fact that amenability of a topological group implies
equality of certain model-theoretic/topological connected components. In [24],
this last fact was proved for groups possessing a basis of open neighborhoods of
the identity consisting of open subgroups, which was su�cient in the proof of
[24, Theorem 0.7], because Aut(M) has this property; later, this fact was proved
in full generality in [13, Corollary 2.37]. As to our very general Theorem 0.1,
we do not have an argument showing that it follows from [13, Corollary 2.37];
instead we give a direct proof working with relatively type-de�nable subsets of
the group of automorphisms of the monster model and using a version from [13]
of Massicot-Wagner stabilizer theorem [28]. Theorem 0.1 can be viewed as a
transposition of [28] from de�nable groups to theories. It might have followed
easier from an application of [28] to the automorphism group of the monster model,
if the �stabilizers� produced in [28] were quanti�er-free de�nable. But they are not,
and so we have to proceed di�erently.
In Section 3 (see Proposition 3.11), we give a completely di�erent proof of Theo-

rem 0.1 (with a better bound on the diameters of Lascar strong types than the one
obtained in Theorem 4.1) which is based on stability theory in continuous logic,
but under the stronger assumption of the existence of ∅-de�nable Keisler measures
on all ∅-de�nable sets (in which case we say that the theory is de�nably amenable).
This also includes the ω-categorical context from [24, Theorem 0.7], yielding yet
another proof of [24, Theorem 0.7]. The readers who do not feel comfortable with
continuous logic can skip Section 3 with no harm.
Let us note that the converse of Theorem 0.1 does not hold: for example, the

theory of a dense circular order is known to be G-compact, but it is not amenable,
because it has NIP and ∅ is not an extension base.
Extreme amenability of automorphism groups of (arbitrary) countable struc-

tures M was studied in detail by Kechris, Pestov, and Todor¢evi¢. Their paper
[18] inspired a whole school, connecting to structural Ramsey combinatorics and
dynamics. When Th(M) is ω-categorical, then extreme amenability of Aut(M) is
a property of this �rst order theory, so is a model-theoretic notion (in the sense of
model theory being the study of �rst order theories rather than arbitrary struc-
tures). Some of this extends to homogeneous models of arbitrary theories and to
continuous logic (thanks to Todor Tsankov for a conversation about this with one
of the authors).
Let us comment on the relation between extreme amenability of the automor-

phism group of an ω-categorical, countable structureM as considered in [18] (which
we call KPT-extreme amenability) and extreme amenability of Th(M) in our sense.
KPT-extreme amenability concerns all �ows of the topological group Aut(M) and
says that the universal �ow (or rather ambit) has a �xed point. Our �rst order ex-
treme amenability (of Th(M)) can also be read o� from �ows of Aut(M) and says
that a particular �ow Sm̄(M) has a �xed point (where m̄ is an enumeration of M
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and Sm̄(M) here denotes the space of complete extensions of tp(m̄) over M). The
class of KPT-extremely amenable, ω-categorical theories T is not at present explic-
itly classi�ed, but appears to be special (perhaps analogous to monadic stability
in the stable world). Note that for an (ω-categorical) KPT-extremely amenable
theory T , whenever L′ is a countable language extending the language L of T
and T ′ is a universal L′-theory consistent with T , then the countable model M
of T has an expansion to a model of T ′ in which the new symbols in L′ are in-
terpreted as certain ∅-de�nable sets in M . Indeed, such an expansion is just a
�xed point of the action of Aut(M) on the compact (and non-empty) space of the
expansions of M to the models of T ′. In particular, KPT-extreme amenability
of an ω-categorical structure M implies the existence of a ∅-de�nable linear or-
dering on M . By contrast, our �rst-order extreme amenability is a quite common
property: if the Fraïssé limit of a Fraïssé class with free (or, more generally, canon-
ical) amalgamation is ω-categorical, then its theory is extremely amenable (see the
discussion after Corollary 2.16); also, every theory T expanded by constants for
a model is extremely amenable (here, coheir extensions over this model are the
required invariant types); similarly, every stable T expanded by constants for an
algebraically closed set in T eq is extremely amenable (non forking extensions wit-
ness it by stationary of all types over acleq(∅)); there are also many NIP or simple
theories (e.g. the random graph) which are extremely amenable. Although not
explicitly named as extreme amenability, the property of extendibility of types to
invariant types has been frequently considered in the literature, and used notably
for the elimination of imaginaries; see e.g. [11].
Keisler measures play a big role in this paper (especially in the notion of �rst

order amenability) and we generally assume that the reader is familiar with them.
A Keisler measure on a sort (or de�nable set) X over a model M is simply a
�nitely additive (probability) measure on the Boolean algebra of de�nable (over
M) subsets of X. As such it is a natural generalization of a complete type over
M containing the formula de�ning X. As pointed out at the beginning of Section
4 of [15], a Keisler measure on X over M is the �same thing� as a regular Borel
probability measure on the space SX(M) of complete types over M containing the
formula de�ning X. Keisler measures are completely natural in model theory, but
it took some time for them to be studied systematically. They were introduced
in Keisler's seminal paper [19] mainly in a stable environment, and later played
an important role in [14] in the solution of some conjectures relating o-minimal
groups to compact Lie groups.

This paper contains the material in Section 4 of our preprint �Amenability and
de�nability�. Following the advice of editors and referees we have divided that
preprint into two papers, the current paper being the second.
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1. Preliminaries on G-compactness

We only recall a few basic de�nitions and facts about Lascar strong types and
Galois groups. For more details the reader is referred to [27], [4] or [32].
As usual, by a monster model of a given complete theory we mean a κ-saturated

and strongly κ-homogeneous model for a su�ciently large cardinal κ (typically,
κ > |T | is a strong limit cardinal). Where recall that the (standard) expression
�strongly κ-homogeneous� means that any partial elementary map between subsets
of the model of cardinality < κ extends to an automorphism of the model. A set
[tuple] is said to be small [short] if it is of bounded cardinality (i.e. < κ).
Let C be a monster model of a complete theory T .

De�nition 1.1.

i) The group of Lascar strong automorphisms, which is denoted by AutfL(C),
is the subgroup of Aut(C) which is generated by all automorphisms
�xing a small submodel of C pointwise, i.e. AutfL(C) = ⟨σ : σ ∈
Aut(C/M) for a small M ≺ C⟩.

ii) The Lascar Galois group of T , which is denoted by GalL(T ), is the quo-
tient group Aut(C)/AutfL(C) (which makes sense, as AutfL(C) is a normal
subgroup of Aut(C)). It turns out that GalL(T ) does not depend on the
choice of C (e.g. see [27, Fact 4.2]).

The orbit equivalence relation of AutfL(C) acting on any given product S of
boundedly (i.e. less than the degree of saturation of C) many sorts of C is usually
denoted by EL. It turns out that this is the �nest bounded (i.e. with boundedly
many classes), invariant equivalence relation on S (see [20, Proposition 5.4]); and
the same is true after the restriction to the set of realizations of any type in S(∅)
or even to any invariant set. The classes of EL are called Lascar strong types. It
turns out that AutfL(C) coincides with the the group of all automorphisms �xing
setwise all EL-classes on all (possibly in�nite) products of sorts. So we see that
GalL(T ) can be identi�ed with the group of elementary (i.e. induced by Aut(C))
permutations of all Lascar strong types (as written in the introduction).
For any small M ≺ C enumerated as m̄, we have a natural surjection from

Sm̄(M) := {p ∈ S(M) : tp(m̄/∅) ⊆ p} to GalL(T ) given by tp(σ(m̄)/M) 7→
σ/AutfL(C) for σ ∈ Aut(C). We can equip GalL(T ) with the quotient topology
induced by this surjection, and it is easy to check that this topology does not
depend on the choice of M . In this way, GalL(T ) becomes a quasi-compact (so
not necessarily Hausdor�) topological group (see [32] for a detailed exposition).

De�nition 1.2.

i) By Gal0(T ) we denote the closure of the identity in GalL(T ).
ii) The group of Kim-Pillay strong automorphisms, which is denoted by

AutfKP (C), is the preimage of Gal0(T ) under the quotient homomorphism
Aut(C)→ GalL(T ).
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iii) The Kim-Pillay Galois group of T , which is denoted by GalKP (T ), is the
quotient group GalL(T )/Gal0(T ) ∼= Aut(C)/AutfKP (C) equipped with the
quotient topology. It is a compact, Hausdor� topological group.

The orbit equivalence relation of AutfKP (C) acting on any given product S of
(boundedly many) sorts of C is usually denoted by EKP . It turns out that this
is the �nest bounded (i.e. with boundedly many classes), type-de�nable over ∅
equivalence relation on S; and the same is true after the restriction to the set
of realizations of any type in S(∅) (see [27, Lemma 4.18]). The classes of EKP
are called Kim-Pillay strong types. It turns out that AutfKP (C) coincides with
the the group of all automorphisms �xing setwise all EKP -classes on all (possibly
in�nite) products of sorts. So we see that GalKP (T ) can be identi�ed with the
group of elementary permutations of all Kim-Pillay strong types (as written in the
introduction).
The theory T is said to be G-compact if the following equivalent conditions hold.

(1) AutfL(C) = AutfKP (C).
(2) GalL(T ) is Hausdor�.
(3) Lascar strong types coincide with Kim-Pillay strong types on any (possibly

in�nite) products of sorts.

Let us brie�y explain why the above conditions are equivalent. (1)↔ (2) follows
from De�nitions 1.1 and 1.2. (1)→ (3) follows from the above de�nitions of EL and
EKP as the orbit equivalence relations of AutfL(C) and AutfKP (C), respectively.
Finally, (3) → (1) holds, because AutfL(C) and AutfKP (C) are the kernels of the
actions of Aut(C) on the Lascar and Kim-Pillay strong types, respectively.
Lascar's de�nition of G-compactness from [26] corresponds in our terminology

to saying that T remains G-compact after naming any �nite set of parameters.
Example 2.20 yields a G-compact theory with a non G-compact expansion by a
single constant.
By the de�nition of EL, we see that ᾱ EL β̄ if and only if there are ᾱ0 =

ᾱ, ᾱ1, . . . , ᾱn = β̄ and models M0, . . . ,Mn−1 such that

ᾱ0 ≡M0 ᾱ1 ≡M1 . . . ᾱn−1 ≡Mn−1 ᾱn.

In this paper, by the Lascar distance from ᾱ to β̄ (denoted by dL(ᾱ, β̄)) we mean
the smallest natural number n as above. By the Lascar diameter of a Lascar strong
type [ᾱ]EL

we mean the supremum of dL(ᾱ, β̄) with β̄ ranging over [ᾱ]EL
. It is well

known (proved in [29]) that [ᾱ]EL
= [ᾱ]EKP

if and only if the Lascar diameter of
[ᾱ]EL

is �nite.
Throughout this paper, tuples of variables are often in�nite; in particular, φ(x̄)

means that the free variables of the formula φ are among those listed in x̄. It can
be convenient to allow x̄ to be in�nite, though of course φ has only �nitely many
free variables. By a �nitary type, we mean a type in �nitely many variables. We
generally have a �xed underlying complete theory T in the background; a partial
type for T can be assumed to include the sentences of T . In any case for partial
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types π1(x̄) and π2(x̄), π1(x̄) ⊢ π2(x̄) means by de�nition that T ∪ π1(x̄) logically
implies π2(x̄).

2. Amenable theories: definitions and basic results

As usual, C is a monster model of an arbitrary complete theory T . Let c̄ be an
enumeration of C and let Sc̄(C) = {tp(ā/C) ∈ S(C) : ā ≡ c̄}. More generally, for
a partial type π(x̄) over ∅, put Sπ(C) = {q(x̄) ∈ S(C) : π ⊆ q}. If p(x̄) ∈ S(∅)
and ᾱ |= p, then Sᾱ(C) := Sp(C) = {q(x̄) ∈ S(C) : p ⊆ q}. (Note that we allow
here tuples x̄ of unbounded length (i.e. greater than the degree of saturation of
C). Each Sπ(C) is naturally an Aut(C)-�ow, i.e. a compact space together with a
continuous action of the group Aut(C) equipped with the pointwise convergence
(equivalently, product) topology.
Let us start from the local version of amenability.

De�nition 2.1. A partial type π(x̄) over ∅ is amenable if there is an Aut(C)-
invariant, Borel probability measure on Sπ(C).

Let µ be a measure as in De�nition 2.1. Recall that the restriction of µ to
the Baire sets is regular [6, Theorem 7.1.5]. Next, this restriction extends to a
unique regular Borel probability measure ν (e.g. see [6, Theorem 7.3.1]). By the
construction in the proof of [6, Theorem 7.3.1] and Aut(C)-invariance of µ, we get
that ν is Aut(C)-invariant. Thus, in De�nition 2.1, we can equivalently require a
witnessing measure to be regular which we usually do.

Remark 2.2. The following conditions are equivalent for a type π(x̄) over ∅.
(1) π(x̄) is amenable.
(2) There is an Aut(C)-invariant, Borel (regular) probability measure µ on

Sx̄(C) concentrated on Sπ(C), i.e. for any formula φ(x̄, ā) inconsistent with
π(x̄), µ([φ(x̄, ā)]) = 0 (where [φ(x̄, ā)] is the subset of Sx̄(C) consisting of
all types containing φ(x̄, ā)).

(3) There is an Aut(C)-invariant, �nitely additive probability measure on rel-
atively C-de�nable subsets of π(x̄).

(4) There is an Aut(C)-invariant, �nitely additive probability measure on C-
de�nable sets in variables x̄, concentrated on π(x̄) (i.e. for any formula
φ(x̄, ā) inconsistent with π(x̄), µ(φ(x̄, ā)) = 0).

Proof. Follows easily using the fact (see [8, Proposition 416Q(a)] or [30, Chap-
ter 7.1]) that whenever G acts by homeomorphisms on a compact, Hausdor�,
0-dimensional space X, then each G-invariant, �nitely additive probability mea-
sure on the Boolean algebra of clopen subsets of X extends to a G-invariant, Borel
(regular) probability measure on X. □

Thus, by a global Aut(C)-invariant Keisler measure extending π(x̄) we mean a
measure from any of the items of Remark 2.2. And similarly working over any
model M in place of C.
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In order to emphasize that a Keisler measure µ is de�ned on a type space in
variables x̄, sometimes we will write µx̄.

Proposition 2.3. Amenability of a given type π(x̄) (over ∅) is absolute in the
sense that it does not depend on the choice of the monster model C. It is also
equivalent to the amenability of π(x̄) computed with respect to an ℵ0-saturated and
strongly ℵ0-homogeneous model M in place of C.

Proof. Let M and M ′ be two ℵ0-saturated and strongly ℵ0-homogeneous models.
Assume that there is an Aut(M)-invariant, Borel (regular) probability measure µ
on Sπ(M). We want to �nd such an Aut(M ′)-invariant measure µ′ on Sπ(M

′).
Consider any formula φ(x̄, ā′) with ā′ ∈M ′. Choose (using the ℵ0-saturation of

M) any ā ∈M such that ā′ ≡ ā, and de�ne

µ′([φ(x̄, ā′)] ∩ Sπ(M ′)) := µ([φ(x̄, ā)] ∩ Sπ(M)).

By the strong ℵ0-homogeneity of M and Aut(M)-invariance of µ, we see that µ′

is well-de�ned and Aut(M ′)-invariant. It is also clear that µ′(Sπ(M
′)) = 1. It

remains to check µ′ is �nitely additive on clopen subsets (as then µ′ extends to the
desired Borel measure). Take φ(x̄, ā′) and ψ(x̄, ā′) such that [φ(x̄, ā′)] ∩ Sπ(M ′)
is disjoint from [ψ(x̄, ā′)] ∩ Sπ(M ′). This just means that φ(x̄, ā′) ∧ ψ(x̄, ā′) is
inconsistent with π(x̄). Take ā ∈ M such that ā ≡ ā′. Then φ(x̄, ā) ∧ ψ(x̄, ā)
is still inconsistent with π(x̄), so the obvious computation using additivity of µ
yields: µ′(([φ(x̄, ā′)] ∩ Sπ(M ′)) ∪ ([ψ(x̄, ā′)] ∩ Sπ(M ′))) = µ′([φ(x̄, ā′)] ∩ Sπ(M ′)) +
µ′([ψ(x̄, ā′)] ∩ Sπ(M ′)). □

Proposition 2.4. Assume T to be countable, and let π(x̄) be a partial type.
Then π(x̄) is amenable if and only if for all [su�ciently large] countable, (ℵ0-
)homogeneous models M , π(x̄) has an extension to a Keisler measure µx̄ over
M which is Aut(M)-invariant. If T is uncountable, the same is true but with
�countable, ℵ0-homogeneous models� replaced by �strongly ℵ0-homogeneous models
of cardinality at most |T |�.

Before we prove it, let us explain a few terms from the formulation. By su�-
ciently large models we mean the models from some class M of models which is
closed under isomorphisms and such that for every �nitary type p ∈ Sn(∅) there
is a model M ∈ M with p(M) ̸= ∅. A model M is said to be homogeneous if
for every �nite tuples ā ≡ b̄ from M and c ∈ M there is d ∈ M with āc ≡ b̄d.
If M is countable, this is equivalent to strong ℵ0-homogeneity. For any A ⊂ C
of cardinality ≤ |T |, a standard back-and-forth construction produces a strongly
ℵ0-homogeneous model N of cardinality ≤ |T | and containing A.

Proof. For each [su�ciently large] countable homogeneous model M ≺ C, let µM
be an Aut(M)-invariant Keisler measure over M extending π(x̄), and let µ̄M be
an arbitrary global Keisler measure extending µM . Working in the compact space
of global Keisler measures in variables x̄, there is a subnet of the net {µ̄M}M (with
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the index set ordered by inclusion), which converges to some µ̄. But then µ̄ is
Aut(C)-invariant: Otherwise, for some formula ϕ(x̄, ȳ) and �nite tuples ā, b̄ in C
with the same type, we have µ̄(ϕ(x̄, ā)) = r and µ̄(ϕ(x̄, b̄)) = s for some r < s. But
then we can �nd some countable homogeneous model M containing ā, b̄ and such
that µ̄M(ϕ(x̄, ā)) < µ̄M(ϕ(x̄, b̄)), contradicting the Aut(M)-invariance of µM . □

Lemma 2.5. A type π(x̄) (over ∅) is amenable if and only if each formula φ(x̄)
(without parameters) implied by π(x̄) is amenable.

Proof. The implication (→) is obvious, as Sπ(C) ⊆ Sφ(C), and so for any formula
ψ(x̄, ā) we can de�ne µ′([ψ(x̄, ā)] ∩ Sφ(C)) := µ([ψ(x̄, ā)] ∩ Sπ(C)), where µ is an
Aut(C)-invariant, Borel probability measure on Sπ(C).

(←). Let Π be the set of formulas in variables x̄ which are implied by π(x̄). By
assumption, for every formula φ(x̄) ∈ Π we can choose an Aut(C)-invariant Keisler
measure µφ which is concentrated on φ(x̄). In the compact space of all Keisler
measures in variables x̄, there is a subnet of the net (µφ)φ∈Π (with Π ordered
by implication of formulas) which converges to some Keisler measure µ. Since
all µφ are Aut(C)-invariant, so is µ. In order to see that µ is concentrated on
π(x̄), consider any formula ψ(x̄, ā) inconsistent with π(x̄). Then there is a formula
φ(x̄) ∈ Π inconsistent with ψ(x̄, ā). Then every θ ∈ Π which is implied by φ(x̄) is
also inconsistent with ψ(x̄, ā), whence µθ(ψ(x̄, ā)) = 0. Thus, µ(ψ(x̄, ā)) = 0. □

Lemma 2.6. All types in S(∅) (possibly in unboundedly many variables) are
amenable if and only if all �nitary (i.e. in �nitely many variables) types in S(∅)
are amenable.

Proof. The implication (→) is trivial. For the other implication, take p(x̄) ∈ Sx̄(∅).
Consider the compact space X := [0, 1]{φ(x̄,ā): φ(x̄,ȳ) a formula, ā∈C} with the pointwise
convergence topology (where x̄ is the �xed tuple of variables). Then the Aut(C)-
invariant, �nitely additive probability measures on C-de�nable sets in variables x̄
concentrated on p(x̄) form a closed subset M of X. We can present M as the
intersection of a directed family of closed subsets of X each of which witnessing
a �nite portion of information of being in M. But each such �nite portion of
information involves only �nitely many variables, so the corresponding closed set
is nonempty by the assumption that all �nitary types are amenable and Remark
2.2. By the compactness of X, we conclude thatM is nonempty. □

Corollary 2.7. The following conditions are equivalent.

(1) All partial types (possibly in unboundedly many variables) over ∅ are
amenable.

(2) All complete types (possibly in unboundedly many variables) over ∅ are
amenable.

(3) All �nitary complete types over ∅ are amenable.
(4) All consistent formulas (in �nitely many variables x̄) over ∅ are amenable.
(5) tp(c̄/∅) is amenable (where recall that c̄ is an enumeration of C).
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(6) tp(m̄/∅) is amenable for some tuple m̄ enumerating a model.

Proof. The equivalence (1)↔ (2) is obvious (for (2)→ (1) use the argument as in
the proof of (→) in Lemma 2.5). The equivalence (2) ↔ (3) is Lemma 2.6. The
equivalence (3)↔ (4) follows from Lemma 2.5. The implications (1)→ (5)→ (6)
are trivial. Let us show (6) → (4). Extend m̄ to a tuple n̄ also consisting of the
elements of M but so that each element of M is repeated in�nitely many times.
Since the restriction map from Sn̄(C) to Sm̄(C) is an isomorphism of Aut(C)-�ows,
by (6), we get that tp(n̄/∅) is amenable. Hence, tp(n̄′/∅) is also amenable for
every subtuple n̄′ of n̄. Thus, using Lemma 2.5, we obtain (4), because taking all
possible �nite subtuples n̄′ of n̄ and φ(x̄′) ∈ tp(n̄′/∅), we will get all consistent
formulas over ∅ (up to permutations of variables). □

De�nition 2.8. The theory T is amenable if the equivalent conditions of Corollary
2.7 hold.

By Proposition 2.3, we see that amenability of T is really a property of T , i.e.
it does not depend on the choice of C.
Analogously, one can de�ne the stronger notion of an extremely amenable theory.

De�nition 2.9. A type π(x̄) over ∅ is extremely amenable if there is an Aut(C)-
invariant type in Sπ(C). The theory T is extremely amenable if every type (in any
number of variables) in S(∅) is extremely amenable.

As in the case of amenability, compactness arguments easily show that the
notions of extremely amenable types and extremely amenable theories are both
absolute (i.e. do not depend on the choice of C), and, in fact, they can be tested
on any ℵ0-saturated and strongly ℵ0-homogeneous model in place of C; moreover,
T is extremely amenable if and only if all �nitary types in S(∅) are extremely
amenable. Note that Proposition 2.4 specializes to extremely amenable partial
types, too. So for countable theories, both amenability and extreme amenability
can be seen at the level of countable models. It is also easy to see that in a stable
theory, a type in S(∅) is extremely amenable if and only if it is stationary.

Yet another equivalent approach to amenability of T is via Aut(C)-invariant,
�nitely additive probability measures on the algebra of so-called relatively de�nable
subsets of Aut(C). This will be the exact analogue of the de�nition of de�nable
amenability of de�nable groups (via the existence of an invariant Keisler measure).
We will use this approach in Section 4.
The idea of identifying Aut(C) with the subset {σ(c̄) : σ ∈ Aut(C)} of Cc̄ and

considering relatively de�nable subsets of Aut(C), i.e. subsets of the form {σ ∈
Aut(C) : C |= φ(σ(c̄), c̄)} for a formula φ(x̄, c̄), already appeared in [25, Appendix
A]. Here, we extend this notion of relative de�nability to the local context and
introduce an associated notion of amenability which is easily seen to be equivalent
to the amenability of T [or of a certain type in the extended local version].
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Let M be any model of T and let m̄ be its enumeration.

De�nition 2.10. i) By a relatively de�nable subset of Aut(M) we mean a subset
of the form {σ ∈ Aut(M) :M |= φ(σ(m̄), m̄)}, where φ(x̄, ȳ) is a formula without
parameters.
ii) If ᾱ is a tuple of some elements ofM , by relatively ᾱ-de�nable subset of Aut(M)
we mean a subset of the form {σ ∈ Aut(M) : M |= φ(σ(ᾱ), m̄)}, where φ(x̄, ȳ) is
a formula without parameters.

The above de�nition di�ers from the standard terminology in which �A-
de�nable� means �de�nable over A�; here, �relatively ᾱ-de�nable� has nothing to
do with the parameters over which the set is relatively de�nable. One should keep
this in mind from now on.
For a formula φ(x̄, ȳ) and tuples ā, b̄ from M corresponding to x̄ and ȳ, respec-

tively, we will use the following notation

Aφ,ā,b̄ = {σ ∈ Aut(M) :M |= φ(σ(ā), b̄)}.
When x̄ and ȳ are of the same length (by which we mean that they are also of the
same sorts) and ā = b̄, then this set will be denoted by Aφ,ā.
Note that for any tuple ᾱ in M , the relatively ᾱ-de�nable subsets of Aut(M)

form a Boolean Aut(M)-algebra (i.e. a Boolean algebra closed under the action of
Aut(M) by left translations).

De�nition 2.11. i) The group Aut(M) is said to be relatively amenable if there
exists a left Aut(M)-invariant, �nitely additive probability measure on the Boolean
algebra of relatively de�nable subsets of Aut(M).
ii) If ᾱ is a tuple of some elements ofM , the group Aut(M) is said to be ᾱ-relatively
amenable if there exists a left Aut(M)-invariant, �nitely additive probability mea-
sure on the Boolean algebra of relatively ᾱ-de�nable subsets of Aut(M).

In particular, Aut(M) being relatively amenable means exactly that it is m̄-
relatively amenable, where m̄ is an enumeration of M .
We will mostly focus on the case when M = C is a monster model. But often

one can work in the more general context whenM is ℵ0-saturated and strongly ℵ0-
homogeneous, including the case of the unique countable model of an ω-categorical
theory.

Proposition 2.12. Let M be ℵ0-saturated and strongly ℵ0-homogeneous enumer-
ated as m̄. Let ᾱ be a tuple of some elements of M . Then we have:

(1) The Boolean Aut(M)-algebra of clopen subsets of Sᾱ(M) is isomorphic to
the Boolean Aut(M)-algebra of relatively ᾱ-de�nable subsets of Aut(M).

(2) The group Aut(M) is ᾱ-relatively amenable if and only if there is an
Aut(M)-invariant, (regular) Borel probability measure on Sᾱ(M) (equiva-
lently, tp(ᾱ/∅) is amenable). In particular, Aut(M) is relatively amenable
if and only if there is an Aut(M)-invariant, (regular) Borel probability
measure on Sm̄(M) (equivalently, T is amenable).
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Proof. (1) The assignment [φ(x̄, m̄)] 7→ Aφ,ᾱ,m̄ clearly de�nes a homomorphism
between the two Boolean Aut(M)-algebras in question (and this does require any
assumptions on M). The fact that it is an isomorphism follows easily from ℵ0-
saturation and strongly ℵ0-homogeneity of M .
(2) By (1), Aut(M) is ᾱ-relatively amenable if and only if there is an Aut(M)-

invariant, �nitely additive probability measure on the algebra of clopen subsets
of Sᾱ(M) which in turn is equivalent to the existence of an Aut(M)-invariant,
(regular) Borel probability measure on Sᾱ(M). The fact that the existence of an
Aut(M)-invariant, (regular) Borel probability measure on Sᾱ(M) is equivalent to
amenability of tp(ᾱ/∅) follows from Proposition 2.3. And then, the fact that the
existence of an Aut(M)-invariant, (regular) Borel probability measure on Sm̄(M)
is equivalent to amenability of T follows from Corollary 2.7. □

So the terminologies �Aut(M) is [ᾱ-]relatively amenable� and �T [resp. tp(ᾱ/∅)]
is amenable� will be used interchangeably.

Corollary 2.13. [For a given tuple ᾱ, ᾱ-]relative amenability of Aut(M) for an
ℵ0-saturated and strongly ℵ0-homogeneous modelM [containing ᾱ] does not depend
on the choice of M .

The next corollary of Proposition 2.12 will play an essential role Section 4. To
state it, we need to extend De�nition 2.10 as follows.

De�nition 2.14. i) If ᾱ is a tuple of elements of C, by a relatively ᾱ-type-de�nable
subset of Aut(C), we mean a subset of the form {σ ∈ Aut(C) : C |= π(σ(ā), b̄))} for
some partial type π(x̄, ȳ) (without parameters), where x̄ and ȳ are short tuples of
variables, and ā, b̄ are tuples from C corresponding to x̄ and ȳ, respectively, such
that ā is a subtuple of ᾱ.
ii) By a relatively type-de�nable subset of Aut(C), we mean a relatively c̄-type
de�nable subset; equivalently, a subset of Aut(C) of the form {σ ∈ Aut(C) : C |=
π(σ(ā), b̄))} for some partial type π(x̄, ȳ) (without parameters), where x̄ and ȳ are
short tuples of variables, and ā, b̄ are corresponding tuples from C.

We will be using the Boolean algebra generated by all relatively ᾱ-type-de�nable
subsets of Aut(C). Observe that this algebra consists of all sets of the form {σ ∈
Aut(C) : tp(σ(ā)/A)) ∈ P}, where A ⊆ C is a (small) set, ā is a short subtuple of
ᾱ, and P is a �nite Boolean combination of closed subsets of Sā(A).

Corollary 2.15. Assume µ̃ is an Aut(C)-invariant, (regular) Borel probability
measure on Sᾱ(C). For a set X := {σ ∈ Aut(C) : tp(σ(ā)/A)) ∈ P} (where A ⊆ C
is a (small) set, ā is a short subtuple of ᾱ, and P is a �nite Boolean combination
of closed subsets of Sā(A)), put µ(X) := µ̃(π−1[P ]), where π : Sᾱ(C) → Sā(A) is
the restriction map. Then µ is a well-de�ned, Aut(C)-invariant, �nitely additive
probability measure on the Boolean algebra generated by relatively ᾱ-type-de�nable
subsets of Aut(C).
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In particular, if Aut(C) is relatively amenable, then there exists an Aut(C)-
invariant, �nitely additive probability measure on the Boolean algebra generated by
relatively type-de�nable subsets of Aut(C).

Proof. Easy exercise. □

In the rest of this subsection, we give many examples (or even classes of
examples) of amenable and extremely amenable theories.

Recall that a G-�ow (for a topological group G) is a pair (G,X), where X is
a compact, Hausdor� space on which G acts continuously; a G-ambit is a G-�ow
(G,X, x0) with a distinguished point x0 ∈ X with dense G-orbit (e.g. see p. 117-
118 of [2] for a discussion on universal ambits). The topological group G is said to
be [extremely] amenable if each G-�ow (equivalently, the universal G-ambit) has an
invariant, Borel probability measure [respectively, a �xed point]. (See [10, Chapter
III, Theorem 3.1] for several equivalent de�nitions of amenability for topological
groups.)

Corollary 2.16. Let M be ℵ0-saturated and strongly ℵ0-homogeneous. Then, if
Aut(M) is amenable as a topological group (with the pointwise convergence topol-
ogy), then it is relatively amenable, which in turn implies that it is ᾱ-relatively
amenable for any tuple ᾱ of elements M .
Similarly, extreme amenability of Aut(M) as a topological group implies extreme

amenability of T .

Proof. Amenability of Aut(M) implies that there is an Aut(M)-invariant, Borel
probability measure on Sm̄(M). By Proposition 2.12, this implies relative
amenability of Aut(M). Furthermore, since there is an obvious �ow homomor-
phism from Sm̄(M) to Sᾱ(M), a measure on Sm̄(M) induces a measure on Sᾱ(M),
and this is enough by Proposition 2.12. □

As in the introduction, we will call a countable ℵ0-categorical theory KPT-
[extremely] amenable if the automorphism group of its unique countable model is
[resp. extremely] amenable as a topological group.
So, by Corollary 2.16, KPT-[extreme] amenability of a countable, ℵ0-categorical

theory T implies [resp. extreme] amenability of T in the new sense of this paper.
In fact most, if not all, of the examples of not only KPT-extremely amenable the-
ories (such as dense linear orderings) but also KPT-amenable theories (such as the
random graph, [1, p. 2062]) come from Fraïssé classes with canonical amalgama-
tion, hence are extremely amenable in our sense. Only canonical amalgamation
over ∅ is needed here (see Proposition 2.17 below) which says that there is a map ⊗
taking pairs of �nite structures (A,B) from the Fraïssé class to an amalgam A⊗B
(also in the Fraïssé class) which is compatible with embeddings, i.e. if f : B → C
is an embedding of �nite structures from the Fraïssé class, then there exists an
embedding from A⊗B to A⊗C which commutes with f and with the embeddings:
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A → A ⊗ B, B → A ⊗ B, A → A ⊗ C, and C → A ⊗ C. A typical example is a
Fraïssé class with �free amalgamation�, namely adding no new relations.

Proposition 2.17. If M is an ω-categorical structure which is the Fraïssé limit
of a Fraïssé class of �nite structures in a relational language [or, more generally,
�nitely generated structures in any language] with canonical amalgamation over ∅,
then Th(M) is extremely amenable.

Proof. For simplicity we deal with the case of �nite relational structures. All the
structures below are from the Fraïssé class in question.

Claim 1: For any �nite tuples d̄, ā1, b̄1, . . . , ān, b̄n from M , if the structures āi and
b̄i are isomorphic (i.e. have the same quanti�er-free type), then we can amalgamate
structures d̄ and (āi, b̄i : i ≤ n) into a structure d̄′, ā′1, b̄

′
1, . . . , ā

′
n, b̄

′
n in such a way

that ā′i is isomorphic with b̄′i over d̄
′ for all i ≤ n.

Proof. Let A be the substructure ofM consisting of the coordinates of the tuple d̄,
B the substructure ofM consisting of the coordinates of the tuples ā1, . . . , ān, and
C a substructure ofM containing the coordinates of the tuples ā1, . . . , ān, b̄1, . . . , b̄n
and such that for every i the isomorphism āi 7→ b̄i extends to an embedding
σi : B → C. Let D := C ⊗B.
We have the following collection of canonical embeddings:

A⊗D

A⊗B D = C ⊗B

A B C

f2
δ

β g1 h f1

Let f := f2 ◦ f1 : C → A⊗D and τi := f1 ◦ σi : B → D. Let s : B → D be the
embedding given by s(āi) := f1(āi) for all i.
By canonical amalgamation, we have the following commutative diagrams of

embeddings:

A

A⊗B A⊗D

B D

β

δ

Φi

g1

τi

f2

A

A⊗B A⊗D

B D

β

δ

Ψ

g1

s

f2
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We claim that ā′i := f(āi), b̄
′
i := f(b̄i), and d̄′ := δ(d̄) are as required. It is

clear that (āi, b̄i : i ≤ n) is isomorphic to (āi, b̄i : i ≤ n), and d̄ to d̄′. The fact

that ā′i ≡
qf

d̄′
b̄′i can be seen via the following computation based on the above di-

agrams: Φi(Ψ
−1(ā′i)) = Φi(Ψ

−1(f2(f1(āi)))) = Φi(Ψ
−1(f2(s(āi)))) = Φi(g1(āi)) =

f2(τi(āi)) = f2(f1(σi(āi))) = f(b̄i) = b̄′i, and Φi(Ψ
−1(d̄′)) = Φi(Ψ

−1(δ(d̄))) =
Φi(β(d̄)) = δ(d̄) = d̄′. □(claim)

By the claim, using ω-categoricity and quanti�er elimination, one concludes by
compactness that any �nitary type in S(∅) extends to an Aut(M)-invariant type
in S(M), so T is extremely amenable (since M is ω-categorical). □

In [24], we proved that both KPT-amenability and KPT-extreme amenability
are preserved by adding �nitely many parameters. This is not the case for our
notion of �rst order [extreme] amenability as shown by the following two examples.
Before that observe that if T is [extreme] amenability, then so is T eq.

Example 2.18. Let T be the theory of two equivalence relations E1, E2, where E1

has in�nitely many classes, all in�nite, and each E1-class is divided into two E2-
classes, both in�nite. Then T is extremely amenable, but adding an (imaginary)
parameter for an E1-class destroys extreme amenability.

Proof. Using a standard back-and-forth argument, one checks that T has quanti�er
elimination. To show extreme amenability of T , consider any type π(x̄) without
parameters. It is clear (using quanti�er elimination) that π(x̄) extends to p ∈
Sx̄(C) so that ¬E1(xi, c) ∈ p for all coordinates xi of x̄ and all c ∈ C. Then also
¬E2(xi, c) ∈ p for all xi and c as before. By quanti�er elimination, p is clearly
Aut(C)-invariant.
Now, add a constant for an E1-class C. Consider the formula (over ∅) φ(x) :=

(x ∈ C). Let p ∈ Sx(C) be any global type containing φ(x). Then p determines one
of the two E2-classes into which C is divided by E2. But, by quanti�er elimination,
there is an automorphism of C which swaps these two classes, so moves p, and hence
p is not Aut(C)-invariant. □

Example 2.19. Let T be the theory of an equivalence relation E with in�nitely
many in�nite classes and a ternary relation S(x, y, z) which is exactly the disjoint
union of dense circular orders on all the E-classes. Then T is extremely amenable,
but adding an (imaginary) parameter for an E-class destroys even amenability.

Proof. Again we have quanti�er elimination, and extremely amenability can be
seen as in the last example. Now, add a constant for an E-class C. Consider
the formula (over ∅) φ(x) := (x ∈ C). By quanti�er elimination, the structure
induced on C is interde�nable over ∅ with a monster model C′ of the theory of a
dense circular order, and after dividing by the kernels K and K ′ of the relevant
actions, the Aut(C)/K-�ow Sφ(C) is isomorphic to the Aut(C′)/K ′-�ow S1(C

′).
Since the latter �ow does not carry an invariant, Borel probability measure (by
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Remark 2.25 below, because the formula x = x forks over ∅ in dense circular
orders), neither does the former one. □

We take the opportunity and modify the above example to get a G-compact
theory whose expansion by an imaginary parameter is not G-compact.

Example 2.20. Let T0 be any single-sorted non G-compact theory (e.g. from
[4, Proposition 4.5]) in a language L0 without constants. Let T be the theory
of an equivalence relation E with in�nitely many classes, and each class has the
L0-structure of a model of T0 (and for any n-ary function symbol f and a tuple
ā = (a0, . . . , an−1) containing elements from at least 2 di�erent E-classes, we have
f(ā) = a0). Then T is G-compact (even G-trivial), but G-compactness is destroyed
by adding an (imaginary) parameter for an E-class.

Proof. By a back-and-forth argument, T has quanti�er elimination relative to the
Morleyization of T0. Recall that C |= T is a monster model. It is a disjoint union
of monster models of T0 on all E-classes. Note that any union of in�nitely many
E-classes is a model of T , in fact, an elementary substructure of C. Using this
observation, one easily gets that any two tuples of bounded length with the same
type over ∅ have the same type over a model, i.e. they are at Lascar distance at
most 1. Thus, T is G-trivial. On the other hand, take any tuple ā contained in
a single E-class C and such that [ā]EL

̸= [ā]EKP
in the sense of T0 (working in

C |= T0). Then [ā]EL
̸= [ā]EKP

in the sense of T expanded by a constant for the
class C, which follows from the obvious observation that AutT0(C) coincides with
Aut(C/(C \ C))|C and the result from [29] saying that [ā]EL

̸= [ā]EKP
if and only

if [ā]EL
has in�nite Lascar diameter. □

Let us look at Example 2.20 from the perspective of the main result of this
paper. By an argument as in Example 2.18, the theory T from Example 2.20 is
extremely amenable. Thus, G-triviality alternatively follows from Proposition 4.2.
On the other hand, since after adding a constant the theory is not G-compact, it
is also nonamenable by Theorem 0.1.

Example 2.21. LetMn be the unit circle equipped with the ternary relation Sn of
circular order and with the clockwise rotation gn of order n, and let Tn := Th(Mn)
(see [4, Section 4]); the language of Tn, consisting of Sn and gn, will be denoted by
Ln. Let T

− be the theory of an equivalence relation E and pairwise disjoint unary
predicates Pn, n ∈ ω, where each Pn is a union of in�nitely many E-classes, and
each E-class on Pn has the Ln-structure of a model of Tn (and gn(a) = a for a /∈ Pn).
Finally, let T be the theory T− canonically expanded by the additional sort of all
E-classes (but we do not add anything else from T eq). Then T is G-compact
after naming any �nitely many parameters, but is not G-compact after naming
countably many elements an/E, n < ω (where an ∈ Pn are chosen arbitrarily).

Proof. By a back-and-forth argument, T has quanti�er elimination. For the mon-
ster model C of T we have that each E-class on Pn is a monster model of Tn.
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Again, any union of E-classes which contains in�nitely many E-classes on each Pn
is an elementary substructure of C. Using this observation, the fact that T is G-
compact after naming any �nitely many parameters follows from the observation
that each theory Tn has this property (which we leave as an exercise).
Now, consider any tuple ā = (an)n∈ω with an ∈ Pn. Add constants for all the

classes an/E, n ∈ ω, and denote the resulting expansion of T by T c. Then [an]EL

in the sense of Tn (working in [an]E |= Tn) coincides with [an]EL
in the sense of T c,

and the Lascar diameters of [an]EL
in the sense of both theories also agree. By [4,

Corollary 4.4], this diameter is greater than n/2. Thus, the diameter of [ā]EL
(in

T c) is in�nite, so T c is not G-compact. □

The next fact follows easily from [15, Proposition 2.11].

Fact 2.22. In an NIP theory, for any global type p the following conditions are
equivalent:

(1) p does not fork over ∅.
(2) The Aut(C)-orbit of p is bounded.
(3) p is Kim-Pillay invariant (i.e. invariant under AutfKP (C)).
(4) p is Lascar invariant.

More importantly, Proposition 4.7 of [15] can be stated as:

Fact 2.23. In an NIP theory, a type p ∈ S(∅) is amenable if and only if it does
not fork over ∅ (equivalently, it has a global non-forking extension).

Although Fact 2.23 is proved in [15], let us give a sketch of the proof of (←) in
order to see how the desired measure is obtained. So assume that p(x̄) does not
fork over ∅, and take its global non-forking extension q(x̄) ∈ Sx̄(C). Take ᾱ |= p.
Consider any formula φ(x̄, b̄). Recall that

Aφ,ᾱ,b̄ = {σ ∈ Aut(C) : C |= φ(σ(ᾱ), b̄)}.
Let Sφ := {b̄′ : φ(x̄, b̄′) ∈ q}. By Fact 2.22, q is AutfKP (C)-invariant. So, by the
argument in Proposition 2.6 of [15] and NIP, there is N < ω such that

Sφ =
⋃
n<N

An ∩Bc
n,

where each An and Bn is type-de�nable and invariant under AutfKP (C). Let

S̃φ(x̄,b̄) := {σ/AutfKP (C) : φ(x̄, σ−1(b̄)) ∈ q} = {σ/AutfKP (C) : φ(x̄, b̄) ∈ σ(q)}.

Using the above formula for Sφ, one shows that S̃φ(x̄,b̄) is a Borel (even con-
structible) subset of GalKP (T ).
Let h be the unique (left invariant) normalized Haar measure on the compact

group GalKP (T ). By the last paragraph, S̃φ(x̄,b̄) is Borel, hence h(S̃φ(x̄,b̄)) is de�ned,
and so we can put

µ(Aφ,ᾱ,b̄) := h(S̃φ(x̄,b̄)).
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It is easy to check that µ is a well-de�ned (i.e. does not depend on the choice of
φ yielding the �xed set A = Aφ,ᾱ,b̄), Aut(C)-invariant, �nitely additive probability
measure on relatively ᾱ-de�nable subsets of Aut(C). Thus, Aut(C) is ᾱ-relatively
amenable; equivalently, p is amenable.
By Fact 2.23 and [15, Corollary 2.14], we have

Corollary 2.24. Assume T has NIP. Then, T is amenable if and only if ∅ is an
extension base (i.e. any type over ∅ does not fork over ∅). In particular, stable,
o-minimal, and c-minimal theories are all amenable (even after adding constants).

In the above proof of the implication (←) in Fact 2.23, NIP plays an essential
role to get that q is AutfKP (C)-invariant and that S̃φ is Borel. On the other hand,
the implication (→) in Fact 2.23 is completely general. Namely, we have

Remark 2.25. In an arbitrary theory, if a partial type π(x̄) over ∅ is amenable,
then it does not fork over ∅. In particular, in an arbitrary amenable theory, ∅ is
an extension base.

Proof. Let µ be a global, invariant Keisler measure extending π(x̄). Choose a µ-
wide type q(x̄) ∈ Sx̄(C) (i.e. any formula in q(x̄) is of positive measure). Then,
one easily checks that q(x̄) does not fork over ∅, so we are done. □

Thus, amenability of T is a strong form of saying that ∅ is an extension base;
and amenability after adding any constants is a strong form of saying that every
set is an extension base.
By [15, Corollary 2.10], the characterization from Corollary 2.24 gives us

Corollary 2.26. Assume T has NIP. Then amenability of T implies G-
compactness.

Theorem 0.1 is a generalization of the last corollary to arbitrary amenable the-
ories, but it requires completely di�erent methods compared with the NIP case.
It is worth mentioning that Theorem 7.7 of [23] yields several other conditions

equivalent (under NIP) to the existence of p ∈ Sc̄(C) with bounded Aut(C)-orbit
(and so to amenability of T ), for example: some (equivalently, every) minimal
left ideal of the Ellis semigroup of the Aut(C)-�ow Sc̄(C) is of bounded size. In
particular, a variant of Newelski's conjecture proved in [23, Theorem 0.7] can be
stated as follows: if T is an amenable theory with NIP, then a certain natural
epimorphism from the Ellis group of T to GalKP (T ) is an isomorphism. This also
implies G-compactness of amenable, NIP theories.
Let us mention in this section some relations between our notions of amenability

and extreme amenability of a theory T and the notion of a strongly determined
over ∅ theory from [16] (originating in work of Ivanov and Macpherson [17]).
Decoding the de�nition in [16], T is strongly determined over ∅ if any complete
type p(x̄) over ∅ has an extension to a complete type p′(x̄) over C which is acleq(∅)-
invariant. So clearly T extremely amenable implies T is strongly determined over
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∅. Moreover, by Corollary 2.24, assuming NIP, T strongly determined over ∅
implies amenability of T . In fact, if T is NIP and KP-strong types agree with
usual strong types (over ∅), then T is strongly determined over ∅ i� T is amenable.

We �nish this section with a list of some examples of classes of [extremely]
amenable theories.

• By Corollary 2.16, every countable, ω-categorical structure with [extremely]
amenable group of automorphisms has [extremely] amenable theory. Many
concrete examples of such structures were found in [18] and in later pa-
pers which further studied �KPT theory�. For example, the theory of any
ordered random hypergraph is extremely amenable.
• By Proposition 2.17, whenever a Fraïssé class with canonical amalgama-
tion over ∅ has ω-categorical Fraïssé limit, then the theory of this limit is
extremely amenable. For example, the theory of any random hypergraph
is extremely amenable.
• By Corollary 2.24, all NIP theories for which ∅ is an extension base are
amenable; in particular, all stable, o-minimal, and C-minimal theories
are amenable. But o-minimal theories are even extremely amenable, be-
cause any global non-forking extension of a given type over ∅ is AutfL(C)-
invariant by Fact 2.22, and, on the other hand, in o-minimal theories,
AutfL(C) = Aut(C) by [32, Lemma 24]. A stable theory is extremely
amenable if and only of all [�nitary] complete types over ∅ are stationary.
• The theories of all measurable structures in the sense of Elwes and
Macpherson (e.g. pseudo-�nite �elds, smoothly approximable structures)
are amenable by [7, Remark 3.8(5)] and Corollary 2.7(4). Those theories
are supersimple of �nite D-rank by Corollaries 3.6 and 3.7 of [7].
• Let C be a class of �nite structures of size at least 2 in a language L contain-
ing constants c1, c2 interpreted as distinct elements in all structures in C.
Then the structures A ∈ C can be canonically expanded to L′-structures A′

with Aut(A′) = Aut(A), such that letting C ′ := {A′ : A ∈ C}, T ′ := Th(C ′)
is amenable in the sense that all its completions are amenable; and remains
so over any �nite set. (It su�ces to close the language of C under cardinality
comparison quanti�ers Qx̄ȳ(ϕ(x̄, ū), ψ(ȳ, v̄)), asserting in �nite models that
there are at least as many tuples x̄ with ϕ(x̄, ū) as tuples ȳ with ψ(ȳ, v̄),
where x̄, ū, ȳ, v̄ are �nite tuples of variables; see the �rst page of [5, Section
8.3]. (Though the general quanti�ers referred to here are actually only
brie�y mentioned before passing to a more specialized and more e�ective
version appropriate there.) It is easy to see (using constants c1, c2) that
using these quanti�ers, one can also express the relation p|D(ā)| ≥ q|D′(b̄)|
as Rp,q,D,D′(ā, b̄) for some L′-formula Rp,q,D,D′(x̄, ȳ) (without extra param-
eters), where p, q are positive integers and D, D′ are de�nable families of
de�nable sets. Hence, for any ā-de�nable set D = D(ā) in a monster model
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C of any completion of T ′, we can de�ne an Aut(C/ā)-invariant Keisler mea-
sure on de�nable subsets of D by: µ(E(b̄)) := inf{p/q : C |= Rp,q,D,E(ā, b̄)}.
Thus, the theory T ′ is amenable. In fact, it is even de�nably amenable in
the sense of De�nition 3.1 below.)
• In [21] (which was written about a year after the original preprint con-
taining the material from this paper), Ramsey-theoretic characterizations
of [extreme] amenability as well as various other dynamical properties of
�rst order theories are established. Also, examples of amenable theories
illustrating some other important phenomena (which we will not mention
here) are given there. Let us only say that e.g. Examples 5.10 and 5.11
from that paper yield some amenable theories which are not extremely
amenable, not NIP, and supersimple of SU-rank 1. Expanding them by
an �independent� dense linear order, we get examples of amenable theories
which are not extremely amenable, not NIP, and not simple. Namely, one
can easily show the following.
Let T be the theory in a relational language {R,En,≤}n<ω (where all

symbols are binary) saying that R is irre�exive and symmetric, each En is
an equivalence relation with at least two classes and E0 has �nitely many
classes, ≤ is a dense linear order, and the relations R, {En}n<ω, ≤ are
�independent� in the sense that the intersection of
(1) any �nite collection of formulas of the form ±R(x, a) (with pairwise

distinct a's) with
(2) any �nite collection C0, . . . , Cn−1 of classes of the relations E0, . . . , En−1,

respectively, with
(3) any open ≤-interval
is non-empty. Then T is complete with quanti�er elimination, amenable (as
in the proof of amenability in [21, Example 5.10], and see also the next bul-
let), but not extremely amenable (because each global 1-type determines an
E0-class which can be moved to another E0-class by some automorphism),
not NIP (because the reduct to R is the random graph), and not simple
(because of the dense linear order ≤).
• One can extend the last example as follows. Let us start from any amenable
theory T0 for which acl(A) = A for every A (in place of the theory of inde-
pendent equivalence relations {En}n). Then add independently a random
graph and a dense linear order to obtain a new theory T (by �indepen-
dently� we mean that the intersection of any in�nite de�nable set with any
collection of �nitely many formulas of the form ±R(x, a) (with pairwise dis-
tinct a's) and with any open interval is non-empty). Then T is amenable,
non-NIP, and non-simple.
The idea of the proof is as follows. We may assume that T0 has q.e (by

taking Morleyzation), and then so does T (by a back-and-forth argument,
using randomness and the assumption that acl(A) = A). Take any �nitary
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type p(x̄) ∈ STx̄ (∅) (in the theory T ), where x̄ = (xi)i<m; let p0 ∈ ST0x̄ (∅) be
its restriction in the theory T0. Let C be a monster model of both T and
T0. Consider the partial type π(x̄) := {xi ≥ c : i < m, c ∈ C} ∪ {R(xi, a) :
i < m, a ∈ C} in T , and let X := [π(x̄)] be the induced closed subset
of STp (C). By randomness and the extra assumption on acl, X is non-

empty, so it is an AutT (C)-�ow. Let Φ: STp (C)→ ST0p0 (C) be the restriction
map. By q.e., randomness, and the assumption on acl, one easily checks
that Φ|X : X → ST0p0 (C) is a monomorphism of AutT (C)-�ows whose image

is the AutT0(C)-sub�ow Y of ST0p0 (C) given by {xi ̸= c : i < m, c ∈ C}.
Since T0 is amenable, Y carries an AutT0(C)-invariant, Borel probability
measure. The pullback of this measure under Φ|X is an AutT (C)-invariant,
Borel probability measure on X, which witnesses that p(x̄) is amenable.
Thus, T is amenable.

3. Amenability implies G-compactness: the case of definable

measures

Theorem 0.1 will be proved in full generality in Section 4. However, some special
cases have a relatively easy proof. One such is the NIP case above. Another case
is when T is extremely amenable, where the proof of Remark 4.21 of [24] shows
that in fact T is G-trivial (the Lascar group is trivial). This is made explicit in
Proposition 4.2 below. Ivanov's observation in [16] that if T is strongly determined
over ∅, then Lascar strong types coincide with (Shelah) strong types follows from
Proposition 4.2 by working over acleq(∅). However, deducing G-compactness of T
from amenability of T in general is more complicated, and the proof in Section 4
uses a version of the stabilizer theorem (i.e. Corollary 2.12 of [13]) and requires
adaptations of some ideas from Section 2 of [13] involving various computations
concerning relatively de�nable subsets of Aut(C). This section is devoted to a
proof of the main result in the special case when amenability of T is witnessed by
∅-de�nable, global Keisler measures, rather than just ∅-invariant Keisler measures
(see De�nition 3.1 below). We will make use of continuous logic stability as in
Section 3 of [13]. We want to clarify that we are not trying to give here an
introduction to continuous logic in the sense of the precise formalism of [3]. In
[13], we gave a self contained account of a certain approach to continuous logic in
the context of classical �rst order theories. Here, we discuss, among other things,
compatibilities of our approach in [13] with the speci�c formalism of [3], as we
want to make explicit use of results from [3].
Recall the standard notion of a de�nable function from a model to a compact,

Hausdor� space (the equivalent statements given below follow from [9, Lemma
3.2]). A function f : Mn → C (whereM is a model and C is a compact, Hausdor�
space) is called de�nable if the preimages under f of any two disjoint closed subsets
of C can be separated by a de�nable subset of Mn; equivalently, f is induced by
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a (unique) continuous map from Sn(M) to C. This is equivalent to the condition

that f has a (unique) extension to anM-de�nable function f̂ : Cn → C (where C is

a monster model), meaning that the preimages under f̂ of all closed subsets of C
are type-de�nable overM . A function from Cn to C is said to be A-de�nable, if the
preimages of all closed subsets are type-de�nable over A. In particular, a Keisler
measure µ(x̄) is said to be ∅-de�nable if for every formula φ(x̄, ȳ), the function
µ(φ(x̄, ȳ)) : Cȳ → [0, 1] is ∅-de�nable.

De�nition 3.1. A theory T is de�nably amenable if every formula φ(x̄) extends
to a ∅-de�nable, global Keisler measure.

We are aware that, while there is no formal clash, this is a di�erent use of the
adverb than in the case of de�nable groups; �de�nably� there refers to the measure
algebra, not to the measure . Thus �de�nably de�nably amenable� would express,
in addition, that the measure µ on Def(G) is itself de�nable. In the case of theories,
the inner quali�er is redundant.
We �rst discuss the relationship between our formalism from Section 3 of [13]

and that of [3]. Start with our (classical) complete �rst order theory T , which we
assume for convenience to be 1-sorted. This is a theory in continuous logic in the
sense of [3], but where the metric is discrete and all relation symbols are {0, 1}
valued, where 0 is treated as �true� and 1 as �false�. The type spaces Sn(T ) are of
course Stone spaces. Recall from De�nition 3.4 of [13] that by a continuous logic
(CL) formula over A we mean a continuous function ϕ : Sn(A) → R. If ϕ is such
a CL-formula, then for any b̄ ∈Mn (where M |= T ) by ϕ(b̄) we mean ϕ(tp(b̄/A)).
So CL-formulas over A can be thought of as A-de�nable maps from Cn to compact
subsets of R (note that the range of every CL-formula is compact). What are
called de�nable predicates, in �nitely many variables and without parameters, in
[3] are precisely CL-formulas over ∅ in our sense, but where the range is contained
in [0, 1]. Namely, a de�nable predicate in n variables is given by a continuous
function from Sn(T ) to [0, 1]. The CL-generalization of Morleyizing T consists
of adding all such de�nable predicates as new predicate symbols in the sense of
continuous logic. So ifM is a model of T and ϕ(x̄) is such a new predicate symbol,
then the interpretation ϕ(M) of ϕ inM is the function taking an n-tuple ā fromM
to ϕ(tp(ā)). Let us call this new theory TCL (a theory of continuous logic), to which
we can apply the results of [3]. By the discussion after Proposition 3.10 in [3], one
sees that TCL has quanti�er elimination [3, De�nition 4.14]. As just remarked, any
modelM of T expands uniquely to a model of TCL, but we will still call itM . Note
also that any saturation or homogeneity property of M is preserved under passing
to TCL (which follows from the observations that the group of automorphisms of
M is preserved and types in ST (A) determine types in STCL(A) for any A).
To understand imaginaries as in Section 5 of [3], we have to also consider de-

�nable predicates, without parameters, but in possibly in�nitely (yet countably)



ON FIRST ORDER AMENABILITY 23

many variables. As in Proposition 3.10 of [3], such a de�nable predicate in in-
�nitely many variables can be identi�ed with a continuous function from Sω(T )
to [0, 1], where Sω(T ) is the space of complete types of T in a �xed countable
sequence of variables. We feel free to call such a function (and the correspond-
ing function on ω-tuples in models of T to [0, 1]) a CL-formula in in�nitely many
variables. Let us now �x a de�nable predicate (so CL-formula) ϕ(x̄, ȳ), where x̄
is a �nite tuple of variables, and ȳ is a possibly in�nite (but countable) sequence
of variables. A �code� for the CL-formula (with parameters ā and �nite tuple x̄
of free variables) ϕ(x̄, ā) will then be a CL-imaginary in the sense of [3], and all
CL-imaginaries will arise in this way. The precise formalism (involving new sorts
with their own distance relation) is not so important, but the point is that the
code will be something �xed by precisely those automorphisms (of a saturated
model) which �x the formula ϕ(x̄, ā). More precisely, the code will be the equiva-
lence class of ā with respect to the obvious equivalence relation Eϕ(ȳ, z̄), on tuples
of the appropriate length. If ȳ is a �nite tuple of variables, then we will call a
corresponding imaginary (i.e. code for ϕ(x̄, ā)) a �nitary CL-imaginary. We will
work in the saturated model M̄ = C of T which will also be a saturated model of
TCL. When we speak about interde�nability of various objects, we mean a priori
in the sense of automorphisms of M̄ , i.e. two objects are interde�nable if they are
preserved by exactly the same automorphisms of M̄ .
The notion of hyperimaginaries is well-established in (usual, classical) model

theory [27]. A hyperimaginary is by de�nition ā/E, where ā is a possibly in�nite
(but small compared with the saturation) tuple and E a type-de�nable over ∅
equivalence relation on tuples of the relevant size. Up to interde�nability we may
restrict to tuples of length at most ω (see [31, Remark 3.1.8]). When the length
of ā is �nite, we call ā/E a �nitary hyperimaginary.

Remark 3.2. If E is a type-de�nable over ∅ equivalence relation and the Aut(M̄)-
orbit of ā/E is bounded, then there is a bounded type-de�nable over ∅ equivalence
relation F re�ning ≡ which agrees with E on [ā]≡.

Proof. By [27, Lemma 4.18], F := EKP ∪ (E ∩ ([ā]≡ × [ā]≡)) works, because
E ∩ ([ā]≡× [ā]≡) is ∅-type-de�nable and bounded by assumption. (More precisely,
[27, Lemma 4.18] is stated for �nite tuples but works the same for in�nite tuples,
too). □

The following is routine, but we sketch the proof.

Lemma 3.3. (i) Any [�nitary] CL-imaginary is interde�nable with a [�nitary]
hyperimaginary.
(ii) If E is a bounded, type-de�nable over ∅ equivalence relation, then each class
of E is interde�nable with a sequence of �nitary CL-imaginaries.

Proof. (i) If ϕ(x̄, ȳ) is a CL-formula where ȳ is a possibly countably in�nite tu-
ple, then the equivalence relation E(ȳ, z̄) which says of (b̄, c̄) that the functions
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ϕ(x̄, b̄) and ϕ(x̄, c̄) are the same is a type-de�nable over ∅ equivalence relation
in T . (Indeed, consider any b̄, c̄ such that E(b̄, c̄) does not hold, i.e. for some
ā, ϕ(ā, b̄) ̸= ϕ(ā, c̄). Then there are formulas φ(x̄, ȳ) ∈ tp(āb̄/∅) and ψ(x̄, ȳ) ∈
tp(āc̄/∅) such that whenever |= φ(ā′, b̄′) ∧ ψ(ā′, c̄′), then ϕ(ā′, b̄′) ̸= ϕ(ā′, c̄′). Put
θ(ȳ, z̄) := ∃x̄φ(x̄, ȳ) ∧ ψ(x̄, z̄). Then |= θ(b̄, c̄) and whenever |= θ(b̄′, c̄′), then
ϕ(ā′, b̄′) ̸= ϕ(ā′, c̄′) for some/any ā′ such that |= φ(ā′, b̄′) ∧ ψ(ā′, c̄′). So we have
shown that the complement of E is

∨
-de�nable over ∅.)

(ii) By [27, Theorem 4.15, Corollary 1.5] and Remark 3.2, without loss of generality
E lives on �nite tuples. It is well-known that E is equivalent to a conjunction of
equivalence relations each of which is de�ned by a countable collection of formulas
over ∅ and is also bounded (see [31, Lemma 3.1.3]). So we may assume that E
is de�ned by a countable collection of formulas. Then C/E is a compact space,
metrizable via an Aut(C)-invariant metric d (see [22, Section 3, p. 237]). De�ne
dE(x̄, ȳ) := d(x̄/E, ȳ/E). This is clearly a CL-formula, and we see that each ā/E
is interde�nable with the code of dE(x̄, ā). □

Let acleqCL(∅) denote the collection of CL-imaginaries which have a bounded
number of conjugates under Aut(M̄). Likewise bddheq(∅) is the collection of hy-
perimaginaries with a bounded number of conjugates under Aut(M̄). By Lemma
3.3 and Remark 3.2, we get

Corollary 3.4. (i) Up to interde�nability, acleqCL(∅) coincides with bddheq(∅).
(ii) Moreover, acleqCL(∅) is interde�nable with the collection of �nitary CL-
imaginaries with a bounded number of conjugates under Aut(M̄).

We now appeal to the local stability results in [3] (which go somewhat beyond
what we deduced purely from Grothendieck in Section 3 of [13]). Fix a �nite tuple
x̄ of variables and consider ∆st(x̄), the collection of all stable formulas (without
parameters) ϕ(x̄, ȳ) of TCL, where ȳ varies and where stability of ϕ(x̄, ȳ) means
that for all ϵ > 0 there do not exist āi, b̄i for i < ω (in the monster model)
such that for all i < j, |ϕ(āi, b̄j) − ϕ(āj, b̄i)| ≥ ϵ. (By Ramsey theorem and
compactness, ϕ(x̄, ȳ) is stable if and only if whenever (āi, b̄i)i<ω is indiscernible,
then ϕ(āi, b̄j) = ϕ(āj, b̄i) for i < j.) For an n-tuple b̄ and set A of parameters
(including possibly CL-imaginaries), tp∆st

(b̄/A) is the function taking the formula
ϕ(x̄, ā) to ϕ(b̄, ā), where ϕ(x̄, ȳ) ∈ ∆st and ϕ(x̄, ā) is over A (i.e invariant under
Aut(M̄/A)). By de�nition, a complete ∆st-type over A is something of the form
tp∆st

(b̄/A) (and b̄ is a realization of it).

Remark 3.5. For any b̄, tp(b̄/ bddheq(∅)) (in the classical case) coincides with
tp∆st

(b̄/ acleqCL(∅)) in the continuous framework, meaning that tp(b̄/ bddheq(∅)) =
tp(b̄′/ bddheq(∅)) if and only if tp∆st

(b̄/ acleqCL(∅)) = tp∆st
(b̄′/ acleqCL(∅)).

Proof. Using Corollary 3.4, the left hand side always implies the right hand
side. For the other direction, since x̄ ≡bddheq(∅) ȳ is a bounded, type-de�nable
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over ∅ equivalence relation (in fact, it is exactly EKP ), it is enough to show
that for any bounded, type-de�nable over ∅ equivalence relation E, whenever
tp∆st

(b̄/ acleqCL(∅)) = tp∆st
(b̄′/ acleqCL(∅)), then E(b̄, b̄′). Without loss of generality

we may assume that E is de�ned by countably many formulas. Let dE(x̄, ȳ) be
the CL-formula from the proof of Lemma 3.3(ii). As E is bounded, dE(x̄, ȳ) is
stable (because for every indiscernible sequence (āi, b̄i)i<ω all āi's are in a single
E-class and all b̄i's are in a single E-class, and so dE(āi, b̄j) = d(āi/E, b̄j/E) is
constant for all i, j < ω). The code of dE(x̄, b̄) is interde�nable with b̄/E, hence
it is in acleqCL(∅), and so dE(x̄, b̄) is over acleqCL(∅). Since clearly dE(b̄, b̄) = 0, we
conclude that dE(b̄

′, b̄) = 0 which means that E(b̄, b̄′). □

If M is a model, then p = tp∆st
(b̄/M) can be identi�ed with the collection of

functions fϕ : M
n → R taking ā ∈ Mn to ϕ(b̄, ā), for ϕ(x̄, ȳ) ∈ ∆st. The type

tp∆st
(b̄/M) is said to be de�nable (over M) if the functions fϕ are induced by

CL-formulas over M ; it is de�nable over A if the fϕ's are induced by CL-formulas
over A. A φ(x̄, ȳ)-de�nition of p is a CL-formula χ(ȳ) such that φ(b̄, ā) = χ(ā) for
all ā from M .
The following is a consequence of the local theory developed in Section 7 of [3]

and the discussion around gluing in Section 8 of the same paper (see the proof of
[3, Proposition 8.7]). We restrict ourselves to the case needed, i.e. over ∅.

Fact 3.6. Let p(x̄) be a (CL-)complete ∆st-type over acl
eq
CL(∅). Then for any model

M (which note contains acleqCL(∅)) there is a unique complete ∆st-type q(x̄) over
M such that q(x̄) extends p(x̄) and q is de�nable over acleqCL(∅). We say q = p|M .
In particular, if M ≺ N , then p|M is precisely the restriction of p|N to M .

De�nition 3.7. We say that b̄ is stably independent from B (or that b̄ and B are
stably independent) if tp∆st

(b̄/B) equals the restriction of p|M to B, where M is
some model containing B and p = tp∆st

(b̄/ acleqCL(∅)).

Stable independence is clearly invariant under automorphisms. The usual Erdös-
Rado arguments, together with Fact 3.6 give:

Corollary 3.8. Let q be a complete ∆st-type over acleqCL(∅). Then there is an
in�nite sequence (b̄i : i < ω) of realizations of q which is indiscernible and such
that b̄i is stably independent from {b̄j : j < i} for all i.

The following consequence of Fact 3.6 will also be important for us.

Corollary 3.9. Suppose we have �nite tuples ā and b̄ from the (classical) model
C. Suppose that ā is stably independent from b̄. Then for any stable CL-formula
ψ(x̄, ȳ) (over ∅), the value of ψ(ā, b̄) depends only on tp(ā/ bddheq(∅)) and
tp(b̄/ bddheq(∅)) (in the sense of the classical structure C).

Proof. Let p(x̄) := tp∆st
(ā/ acleqCL(∅)). The ψ(x̄, ȳ)-type of p|C is by Fact 3.6 de-

�nable by a CL-formula χ(ȳ) over acleqCL(∅). So assuming the stable independence
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of ā and b̄, by de�nition and Fact 3.6, the value of ψ(ā, b̄) is equal to χ(b̄), which
by Remark 3.5 depends only on tp(b̄/ bddheq(∅)). If ā is replaced by another
realization ā′ of p (equivalently, ā′ |= tp(ā/ bddheq(∅))) which is stably indepen-
dent from another realization b̄′ of tp(b̄/ bddheq(∅)), then the above shows that
ψ(ā′, b̄′) = χ(b̄′) = χ(b̄) = ψ(ā, b̄). □

Proposition 3.10. Let µ = µx̄ be a global, ∅-de�nable Keisler measure. Let ā
and b̄ be tuples of the same length from C, with the same type over bddheq(∅),
and stably independent. Let p(x̄, ā) be a complete type over ā which is �µ-wide� in
the sense that every formula in p(x̄, ā) gets µ-measure > 0. Then the partial type
p(x̄, ā)∪ p(x̄, b̄) is also µ-wide (again in the sense that every formula implied by it
has µ-measure > 0).

Proof. By de�nition, we have to show that if ϕ(x̄, ā) is a formula with µ-measure
> 0, then ϕ(x̄, ā)∧ ϕ(x̄, b̄) has µ-measure > 0. By ∅-de�nability of µ, the function
ψ(ȳ, z̄) de�ned to be µ(ϕ(x̄, ȳ) ∧ ϕ(x̄, z̄)) is de�nable over ∅, i.e. is a CL-formula
without parameters. Moreover, by Proposition 2.25 of [12], ψ(ȳ, z̄) is stable. Bear-
ing in mind Remark 3.5, let, by Corollary 3.8, (āi : i < ω) be an indiscernible
sequence of realizations of q := tp(ā/ bddheq(∅)) such that āj and āi are stably in-
dependent for all i < j (equivalently for some i < j). Since µ is Aut(C)-invariant,
we see that µ(ϕ(x̄, āi)) is positive and constant for all i, and µ(ϕ(x̄, āi) ∧ ϕ(x̄, āj))
is positive (and constant) for i ̸= j. In particular, ψ(ā0, ā1) > 0. By Corollary 3.9,
ψ(ā, b̄) > 0, which is what we had to prove. □

Proposition 3.11. Suppose that (the classical, �rst order theory) T is de�nably
amenable. Then T is G-compact. In fact, the diameter of each Lascar strong type
(over ∅) is bounded by 2.

Proof. We have to show that if ā, b̄ are tuples of the same (but possibly in�nite)
length and with the same type over bddheq(∅), then they have the same Lascar
strong type; more precisely, the Lascar distance between them is ≤ 2.
Observe that, by compactness, without loss of generality, we can and do assume

that ā and b̄ are �nite tuples (this is because if we show that all corresponding
�nite subtuples of ā and b̄ are at Lascar distance at most 2, then so are ā and b̄).
Assume �rst that ā and b̄ are stably independent in the sense of De�nition

3.7. Fix a model M0 and enumerate it. We will �nd a copy M of M0 such that
tp(ā/M) = tp(b̄/M) (which immediately yields that ā and b̄ have the same Lascar
strong type; in fact, dL(ā, b̄) ≤ 1). By compactness, given a consistent formula
ϕ(ȳ) in �nitely many variables, it su�ces to �nd some realization m̄ of ϕ(ȳ) such
that tp(ā/m̄) = tp(b̄/m̄). By assumption, let µȳ be a ∅-de�nable, global Keisler
measure concentrating on ϕ(ȳ). Let p(ȳ, ā) be a complete type over ā which is µ-
wide. By Proposition 3.10, p(ȳ, ā)∪ p(ȳ, b̄) is also µ-wide, in particular consistent.
So let m̄ realize it.
In general, given �nite tuples ā, b̄ with the same type over bddheq(∅), let d̄ have

the same type over bddheq(∅) and be stably independent from {ā, b̄} (by Remark
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3.5 and Fact 3.6). By what we have just shown, dL(ā, d̄) ≤ 1 and dL(b̄, d̄) ≤ 1. So
dL(ā, b̄) ≤ 2. □

4. Amenability implies G-compactness: the general case

Let T be an arbitrary theory, C |= T a monster model, and c̄ an enumeration
of C. The goal of this section is to prove Theorem 0.1; in fact, we will get more
precise information:

Theorem 4.1. If T is amenable, then T is G-compact. In fact, the diameter of
each Lascar strong type (over ∅) is bounded by 4.

Before we start our analysis towards the proof of Theorem 4.1, let us �rst note
the analogous statement for extreme amenability, which is much easier to prove.

Proposition 4.2. If p(x̄) ∈ S(∅) is extremely amenable, then p(x̄) is a single
Lascar strong type. Moreover, the Lascar diameter of p(x̄) is at most 2.
In particular, if T is extremely amenable, then the Lascar strong types coincide

with complete types (over ∅), i.e. the Lascar Galois group GalL(T ) is trivial.
Furthermore, if T is extremely amenable, the Lascar distance between any two
elements which have the same type is at most 1.

Proof. Choose C so that x̄ is short in C. Let q ∈ Sp(C) be invariant under Aut(C).
Fix ᾱ |= q (in a bigger model). Take a small M ≺ C and choose β̄ ∈ C such that
β̄ |= q|M . Then ᾱ EL β̄. But also, for any σ ∈ Aut(C), σ(β̄) |= σ(q)|σ[M ] = q|σ[M ],
and so σ(β̄)EL ᾱ. Therefore, σ(β̄)EL β̄ for any σ ∈ Aut(C), which shows that
p(x̄) is a single Lascar strong type.
For the �moreover part� notice that, in the above argument, both dL(ᾱ, β̄) and

dL(σ(β̄), ᾱ) are bounded by 1.
The �in particular part� follows immediately from the �rst part, but we also give

a shorter proof suggested by the referee which yields additionally Lascar distance
at most 1. Consider any ā ≡ b̄. By assumption, there exists a modelM enumerated
as m̄ such that tp(m̄/C) is invariant. Then ā ≡M b̄, so dL(ā, b̄) ≤ 1. □

Recall from De�nition 2.14 that by a relatively type-de�nable subset of Aut(C)
we mean a subset of the form

Aπ,ā,b̄ := {σ ∈ Aut(C) : C |= π(σ(ā), b̄))}
for some partial type π(x̄, ȳ) (without parameters), where x̄ and ȳ are short tuples
of variables and ā, b̄ are from C. Without loss x̄ is of the same length as ȳ and
ā = b̄, and then we write Aπ,ā. In fact, the following remark is very easy.

Remark 4.3. For any partial types π1(x̄1, ȳ1) and π2(x̄2, ȳ2) and tuples ā1, ā2, b̄1, b̄2
in C corresponding to x̄1, x̄2, ȳ1, ȳ2, one can �nd partial types π′

1(x̄, ȳ) and π
′
2(x̄, ȳ)

with x̄ of the same length (by which we also mean of the same sorts) as ȳ and a
tuple ā in C corresponding to x̄ such that Aπ1,ā1,b̄1 = Aπ′

1,ā
and Aπ2,ā2,b̄2 = Aπ′

2,ā
.
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For a short tuple ᾱ and a short tuple of parameters b̄, a subset of Aut(C) is
called relatively ᾱ-type-de�nable over b̄ if it is of the form Aπ,ᾱ,b̄ for some partial
type π(x̄, ȳ).
The next fact was observed in [23].

Fact 4.4 (Proposition 5.2 of [23]). If G is a closed, bounded index subgroup
of Aut(C) (with Aut(C) equipped with the pointwise convergence topology), then
AutfL(C) ≤ G.

Using an argument similar to the proof of Fact 4.4, we will �rst show

Proposition 4.5. If G is a relatively type-de�nable, bounded index subgroup of
Aut(C), then AutfKP (C) ≤ G.

Proof. Let σi, i < λ, be a set of representatives of the left cosets of G in Aut(C)
(so λ is bounded). Then

G′ :=
⋂

σ∈Aut(C)

Gσ =
⋂
i<λ

Gσi

is a normal, bounded index subgroup of Aut(C) (where Gσ := σGσ−1).
Let us show now that G′ is relatively type-de�nable. We have G = Aπ,ā = {σ ∈

Aut(C) : C |= π(σ(ā), ā)} for some type π(x̄, ȳ) (with short x̄, ȳ) and tuple ā in
C. Then Gσi = {σ ∈ Aut(C) : C |= π(σ(σi(ā)), σi(ā))}, so putting ā′ = ⟨σi(ā)⟩i<λ,
x̄′ = ⟨x̄i⟩i<λ, ȳ′ = ⟨ȳi⟩i<λ (where x̄i and ȳi are copies of x̄ and ȳ, respectively) and
π′(x̄′, ȳ′) =

⋃
i<λ π(x̄i, ȳi) (as a set of formulas), we see that

(∗) G′ = Aπ′,ā′ = {σ ∈ Aut(C) : C |= π′(σ(ā′), ā′)},

which is clearly relatively type-de�nable.
The orbit equivalence relation E of the action of G′ on the set of realizations of

tp(ā′/∅) is a bounded equivalence relation. This relation is type-de�nable, because

ᾱ E β̄ ⇐⇒ (∃g ∈ G′)(g(ᾱ) = β̄) ⇐⇒ (∃b̄′)(π′(b̄′, ā′) ∧ ā′ᾱ ≡ b̄′β̄).

But E is also invariant (as G′ is a normal subgroup of Aut(C)), so E is type-
de�nable over ∅. Therefore, E is re�ned by EKP .
Now, take any σ ∈ AutfKP (C). By the last conclusion, there is τ ∈ G′ such

that σ(ā′) = τ(ā′). Then τ−1σ(ā′) = ā′ and σ = τ(τ−1σ). Since (∗) implies that
G′ · Fix(ā′) = G′, we get σ ∈ G′. Thus, AutfKP (C) ≤ G′ ≤ G. □

Recall that a subset C of a group is called (left) generic if �nitely many left
translates of it covers the whole group; C is called symmetric if it contains the
neutral element and C−1 = C.

Corollary 4.6. If {Ci : i ∈ ω} is a family of relatively de�nable, generic, symmet-
ric subsets of Aut(C) such that C2

i+1 ⊆ Ci for all i ∈ ω, then
⋂
i∈ω Ci is a subgroup

of Aut(C) containing AutfKP (C).
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Proof. It is clear that
⋂
i∈ω Ci is a subgroup of Aut(C), and it is easy to show that it

has bounded index (at most 2ℵ0). Moreover, it is clearly relatively type-de�nable.
Thus, the fact that it contains AutfKP (C) follows from Proposition 4.5. □

Lemma 4.7. i) Let π(x̄, ȳ) be a partial type (over ∅) and ā, b̄ short tuples from
C corresponding to x̄ and ȳ, respectively. Then A−1

π,ā,b̄
= Aπ′,b̄,ā, where π

′(ȳ, x̄) :=

π(x̄, ȳ) (i.e. the type π with the exchanged roles of variables).
ii) Let n ≥ 2 be a natural number. Let x̄, ȳ and x̄1, . . . , x̄n be disjoint, short tuples
of variables of the same length. Then there exists a partial type Φn(x̄, ȳ, x̄1, . . . , x̄n)
such that for every partial types π1(x̄1, ȳ), . . . , πn(x̄n, ȳ) and tuple ā corresponding
to x̄ one has

Aπ1,ā · . . . · Aπn,ā = Aπ,ā,

where

π(x̄, ȳ) := (∃x̄1, . . . , x̄n)(π1(x̄1, ȳ) ∧ · · · ∧ πn(x̄n, ȳ) ∧ Φn(x̄, ȳ, x̄1, . . . , x̄n)).

Proof. (i) follows immediately from the fact that for any σ ∈ Aut(C)

C |= π(σ(ā), b̄) ⇐⇒ C |= π(ā, σ−1(b̄)) ⇐⇒ C |= π′(σ−1(b̄), ā).

(ii) We will show that for n = 2 the type Φ2(x̄, ȳ, x̄1, x̄2) := (x̄x̄1 ≡ x̄2ȳ) and for
n ≥ 3 the type Φn(x̄, ȳ, x̄1, . . . , x̄n) de�ned as

(∃z̄1, . . . , z̄n−2)(x̄z̄n−2 ≡ x̄nȳ ∧ z̄n−2z̄n−3 ≡ x̄n−1ȳ ∧ · · · ∧ z̄2z̄1 ≡ x̄3ȳ ∧ z̄1x̄1 ≡ x̄2ȳ)

is as required.
First, let us see that Aπ1,ā · . . . ·Aπn,ā ⊆ Aπ,ā. Take σ from the left hand side, i.e.

σ = σ1 . . . σn, where |= πi(σi(ā), ā). Then |= π(σ(ā), ā) is witnessed by x̄i := σi(ā)
for i = 1, . . . , n and z̄i := (σ1 . . . σi+1)(ā) for i = 1, . . . , n− 2. So σ ∈ Aπ,ā.
Finally, we will justify that Aπ1,ā · . . . · Aπn,ā ⊇ Aπ,ā. Consider the case n ≥ 3.

Take any σ such that |= π(σ(ā), ā). Let ā1, . . . , ān be witnesses for x̄1, . . . , x̄n, and
b̄1, . . . , b̄n−2 be witnesses for z̄1, . . . , z̄n−2, i.e.:

(1) |= πi(āi, ā) for i = 1, . . . , n, and
(2) σ(ā)b̄n−2 ≡ ānā ∧ b̄n−2b̄n−3 ≡ ān−1ā ∧ · · · ∧ b̄2b̄1 ≡ ā3ā ∧ b̄1ā1 ≡ ā2ā.

By (2), there are τ1, . . . , τn−1 ∈ Aut(C) mapping the right hand sides of the equiv-
alences in (2) to the left hand sides. Then τ1(ān) = σ(ā), so τ−1

1 σ(ā) = ān,
so τ−1

1 σ ∈ Aπn,ā by (1). Next, τ1(ā) = b̄n−2 = τ2(ān−1), so τ−1
2 τ1(ā) = ān−1,

so τ−1
2 τ1 ∈ Aπn−1,ā by (1). We continue in this way, obtaining in the last step:

τn−1(ā) = ā1, so τn−1 ∈ Aπ1,ā by (1). Therefore,

σ = τn−1(τ
−1
n−1τn−2) . . . (τ

−1
2 τ1)(τ

−1
1 σ) ∈ Aπ1,ā · . . . · Aπn,ā.

For n = 2, in (2), we just have σ(ā)ā1 ≡ ā2ā, so taking τ1 ∈ Aut(C) which maps
ā2ā to σ(ā)ā1, we get τ

−1
1 σ ∈ Aπ2,ā and τ1 ∈ Aπ1,ā , hence σ ∈ Aπ1,ā · Aπ2,ā. □
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Corollary 4.8. Let π1(x̄, ȳ), . . . , πn(x̄, ȳ) be partial types, ā a tuple corresponding
to x̄ and ȳ, and ϵ1, . . . , ϵn ∈ {−1, 1}.
(i) Then

Aϵ1π1,ā · . . . · A
ϵn
πn,ā =

⋂{
Aϵ1φ1,ā

· . . . · Aϵnφn,ā : π1 ⊢ φ1, . . . , πn ⊢ φn
}
.

ii) If Aϵ1π1,ā · . . . ·A
ϵn
πn,ā is contained in a relatively de�nable subset A of Aut(C), then

there are φi(x̄, ȳ) implied by πi(x̄, ȳ) for i = 1, . . . , n, such that Aϵ1φ1,ā·. . .·A
ϵn
φn,ā ⊆ A.

Proof. This follows from Lemma 4.7, using compactness and the fact that C is a
monster model. But let us give some details.
By Lemma 4.7(i), we can clearly assume that ϵi = 1 for all i. Then item (i)

follows directly from Lemma 4.7(ii). So it remains to show item (ii).
Take a formula ψ(x̄′, ȳ′) (where x̄′ and ȳ′ are of the same length and are disjoint

from both x̄ and ȳ) and ā′ such that A = Aψ,ā′ . We can also treat ψ as ψ(x̄x̄′, ȳȳ′),
and then A = Aψ,āā′ . Similarly, πi can be treated as πi(x̄x̄

′, ȳȳ′), and then the
original product Aπ1,ā · . . . ·Aπn,ā can be written as Aπ1,āā′ · . . . ·Aπn,āā′ . By Lemma
4.7(ii) and strong κ-homogeneity of C, we get that the type

(∃x̄1x̄′1, . . . , x̄nx̄′n)(π1(x̄1x′1, āā′)∧ · · · ∧ πn(x̄nx̄′n, āā′)∧Φn(x̄x̄
′, āā′, x̄1x̄

′
1, . . . , x̄nx̄

′
n))

in conjunction with x̄x̄′ ≡ āā′ implies the type ψ(x̄x̄′, āā′). Hence, by compact-
ness, each type πi(x̄x̄

′, ȳȳ′) can be replaced by a formula φi(x̄x̄
′, ȳȳ′) implied by

πi(x̄x̄
′, ȳȳ′) so that the above implication is still valid. Since the types πi use only

variables x̄, ȳ, the formulas φi can also be chosen only in variables x̄, ȳ. Then, by
the above implication (with the πi's replaced by φi's) and Lemma 4.7(ii), we get
that Aφ1,ā · . . . · Aφn,ā = Aφ1,āā′ · . . . · Aφn,āā′ ⊆ A. □

Lemma 4.9. Let p(x̄) ∈ S(∅) with x̄ short, q ∈ Sp(C),M ≺ C small, and ᾱ |= q|M .
Then Aq|ᾱ,ᾱAq|ᾱ,ᾱA

−1
q|ᾱ,ᾱA

−1
q|ᾱ,ᾱᾱ ⊆ {β̄ ⊂ C : dL(ᾱ, β̄) ≤ 4} ⊆ [ᾱ]EL

.

Proof. Let us start from the following

Claim 1: For any β̄ |= q|ᾱ, dL(β̄, ᾱ) ≤ 1.

Proof. Take γ̄ |= q|Mᾱ. Then dL(γ̄, ᾱ) ≤ 1, so the conclusion follows from the fact
that β̄ ≡ᾱ γ̄. □(claim)

Now, consider any σ1, σ2, σ3, σ4 ∈ Aq|ᾱ,ᾱ. Then σi(ᾱ) |= q|ᾱ, so, by the claim, we
get dL(σi(ᾱ), ᾱ) ≤ 1. Therefore, dL(σ

−1
4 (ᾱ), ᾱ) ≤ 1, so dL(σ

−1
3 σ−1

4 (ᾱ), σ−1
3 (ᾱ)) ≤ 1,

so dL(σ
−1
3 σ−1

4 (ᾱ), ᾱ) ≤ 2, so dL(σ2σ
−1
3 σ−1

4 (ᾱ), σ2(ᾱ)) ≤ 2, so dL(σ2σ
−1
3 σ−1

4 (ᾱ), ᾱ) ≤
3, so dL(σ1σ2σ

−1
3 σ−1

4 (ᾱ), σ1(ᾱ)) ≤ 3, so dL(σ1σ2σ
−1
3 σ−1

4 (ᾱ), ᾱ) ≤ 4. □

The proof of the next lemma uses a version of the stabilizer theorem obtained
in [13, Corollary 2.12]. We will not recall here all the terminology involved in
[13, Corollary 2.12]; the reader may consult Subsections 2.1, 2.2, and 2.3 of [13].
Let us recall here the main things. Lgen

k , k ∈ ω, is a recursively de�ned notion
of largeness of

∨
-de�nable sets concentrated on a de�nable group G, which is
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invariant under left translations. Passing to a su�ciently saturated extension Ḡ of
G, for any

∨
-de�nable subset Y , Lgen

0 (Y ) means that Y ̸= ∅ and Lgen
k (Y ) means

precisely that {g ∈ Ḡ : Lgen
k−1(gY ∩ Y )} is generic (i.e. �nitely many left translates

of it cover Ḡ). Next, StLk
(Y ) := {g : Lk(gY ∩ Y )} is an operator from the class

of
∨
-de�nable sets concentrated on G to itself (see the paragraphs after Remark

2.3 in [13]). We would like to emphasize that StLk
(Y ) need not be a subgroup of

G. (In [13], we are more precise and consider the class of
∨
-positively de�nable

sets, which is essential in the applications in [13], but here we do not care about
positive de�nability). We will need the following basic remark.

Remark 4.10. If a
∨
-de�nable set Y is invariant under left translations by the

elements of some subgroup H of G, then StLk
(Y ) is invariant under both left and

right translations by the elements of H.

Instead of stating [13, Corollary 2.12] in full generality and with the full power,
we give a particular case, which is su�cient for our application.

Fact 4.11. Let G be a group, and A ⊆ G. Let A be a Boolean algebra of subsets of
G which is invariant under left translations and includes A and all sets of the form
(g1A∩· · ·∩gkA)A (with k ≥ 1 and g1, . . . , gk ∈ G). Let µ be a left-invariant, �nitely
additive measure on A with µ(A) > 0. Then there exist l ∈ N>0 and g1, . . . , gn ∈ G
such that for A′ := A ∩ g1A ∩ · · · ∩ gnA, the set S := StLgenl−1

(A′) (computed with

respect to Th(G, ·, A)) is generic, symmetric, and satis�es S16 ⊆ AAA−1A−1.

Proof. Apply [13, Corollary 2.12] for B := {A}, N := 16, D := A, and m := µ. As
a result we obtain l ∈ N>0 and g1, . . . , gn ∈ G such that for A′ := A∩g1A∩· · ·∩gnA,
S := StLgen

l−1
(A′) is generic as a

∨
-de�nable set in (G, ·, A), symmetric, and satis�es

S16 ⊆ AAA−1A−1. In particular, S is a generic subset of G, i.e. �nitely many left
translates of S cover G. □

Lemma 4.12. Assume Aut(C) is relatively amenable which is witnessed by an
Aut(C)-invariant, regular, Borel probability measure µ̃ on Sc̄(C). Let µ be the
induced Aut(C)-invariant, �nitely additive, probability measure on the Boolean al-
gebra A generated by relatively type-de�nable subsets of Aut(C), as described in
Corollary 2.15. Suppose A ⊆ Aut(C) is relatively type-de�nable with µ(A) > 0
and AAA−1A−1 ⊆ A′ for some relatively de�nable A′ ⊆ Aut(C). Then there exists
a relatively type-de�nable, generic, symmetric Y ⊆ Aut(C) such that Y 8 ⊆ A′.

Proof. By Lemma 4.7, relatively type-de�nable sets are closed under taking
products and inversions, and one can easily check that also under left translations.

Claim 1: There exists a generic and symmetric set S ⊆ Aut(C) such that:

(1) S16 ⊆ AAA−1A−1,
(2) S = {σ ∈ Aut(C) : tp(σ(ā)/ā) ∈ P} for some P ⊆ Sā(ā), where ā is a short

tuple (more precisely, a tuple of �nitely many conjugates by elements of
Aut(C) of the tuple over which A is relatively type-de�nable).
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Proof. We apply Fact 4.11 for G := Aut(C) and A, µ from the statement of Lemma
4.12. As a result, we obtain a set B = A∩σ1[A]∩· · ·∩σn[A] for some σi's in Aut(C)
such that for some l ∈ N>0, S := StLl−1

(B) is generic, symmetric, and satis�es
S16 ⊆ AAA−1A−1. Since A is relatively type-de�nable over some short tuple ᾱ,
so is B, but over ā := ᾱσ1(ᾱ) . . . σn(ᾱ). Hence, Aut(C/ā) · B = B. Therefore, by
Remark 4.10, we get that

Aut(C/ā) · S · Aut(C/ā) = S,

which means that S = {σ ∈ Aut(C) : tp(σ(ā)/ā) ∈ P} for some P ⊆ Sā(ā).
To see the last thing, consider any σ ∈ S. We need to show that every τ ∈
Aut(C) satisfying tp(τ(ā)/ā) = tp(σ(ā)/ā) belongs to S. For this note that there
is τ ′ ∈ Aut(C/ā) with τ(ā) = τ ′σ(ā). Then σ−1τ ′−1τ ∈ Aut(C/ā) and clearly
τ = τ ′σ(σ−1τ ′−1τ). Hence, τ ∈ S. □(claim)

Take any p ∈ P . We can write p = p(x̄, ā) for the obvious complete type p(x̄, ȳ)
over ∅. Then (Ap,ā · A−1

p,ā)
8 ⊆ (SS−1)8 = S16 ⊆ AAA−1A−1 ⊆ A′. Hence, by

Corollary 4.8(ii), there is ψp(x̄, ȳ) ∈ p(x̄, ȳ) for which (Aψp,ā · A−1
ψp,ā

)8 ⊆ A′.

Now, the complement of
⋃
p∈P Aψp,ā equals

⋂
p∈P A¬ψp,ā which is clearly relatively

type-de�nable. Thus,
⋃
p∈P Aψp,ā ∈ A. On the other hand, S ⊆

⋃
p∈P Aψp,ā and S

being generic implies that
⋃
p∈P Aψp,ā is generic. Therefore, µ(

⋃
p∈P Aψp,ā) > 0.

Recall that µ̃ is the Aut(C)-invariant, regular, Borel probability measure on
Sc̄(C) from which µ is induced. Then µ̃(

⋃
p∈P [ψp]) > 0, so, by regularity, there is

a compact K ⊆
⋃
p∈P [ψp] of positive measure. But K is covered by �nitely many

clopen sets [ψp] one of which must be of positive measure, i.e. µ̃([ψp]) > 0 for
some p ∈ P . Then µ(Aψp,ā) > 0. This implies that Y := Aψp,ā ·A−1

ψp,ā
is generic (as

otherwise there would exist an in�nite family of pairwise disjoint left translates
of Aψp,ā which would contradict the fact that µ is a left invariant probability
measure), and it is clearly symmetric. By Lemma 4.7, it is also relatively type-
de�nable. Moreover, by the choice of ψp, Y

8 ⊆ A′, so we are done. □

Corollary 4.13. Assume Aut(C) is relatively amenable. By Corollary 2.15,
take the induced Aut(C)-invariant, �nitely additive, probability measure µ
on the Boolean algebra A generated by relatively type-de�nable subsets of
Aut(C). Suppose A ⊆ Aut(C) is relatively type-de�nable and µ(A) > 0. Then
AutfKP (C) ⊆ AAA−1A−1.

Proof. Take any A′ relatively de�nable, symmetric, and such that AAA−1A−1 ⊆
A′. Put C0 := A′.
By Lemma 4.12, we obtain a relatively type-de�nable, generic, symmetric Y such

that (Y 4)2 ⊆ A′. So, by Corollary 4.8, there is a relatively de�nable, symmetric
Y ′ satisfying Y 4 ⊆ Y ′ and Y ′2 ⊆ A′. Put C1 := Y ′.
Next, we apply Lemma 4.12 to Y in place of A and Y ′ in place of A′, and we

obtain a relatively type-de�nable, generic, symmetric Z such that (Z4)2 ⊆ Y ′. So,
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by Corollary 4.8, there is a relatively de�nable, symmetric Z ′ satisfying Z4 ⊆ Z ′

and Z ′2 ⊆ Y ′. Put C2 := Z ′.
Continuing in this way, we obtain a family {Ci : i ∈ ω} of relatively de�nable,

generic, symmetric subsets of Aut(C) such that C2
i+1 ⊆ Ci for every i ∈ ω. By

Corollary 4.6, AutfKP (C) ⊆
⋂
i∈ω Ci ⊆ A′. Since A′ was an arbitrary relatively

de�nable, symmetric set containing AAA−1A−1, we get AutfKP (C) ⊆ AAA−1A−1.
□

We have now all the ingredients to prove Theorem 4.1. Our goal will be to show
that for any short tuple ᾱ, [ᾱ]EKP

⊆ [ᾱ]EL
(which just means that the AutfKP (C)-

orbit of ᾱ is contained in [ᾱ]EL
).

Proof of Theorem 4.1. Recall that T being amenable means that there exists an
Aut(C)-invariant, regular, Borel probability measure µ̃ on Sc̄(C). By Corollary
2.15, µ̃ induces an Aut(C)-invariant, �nitely additive, probability measure µ on
the Boolean algebra A generated by relatively type-de�nable subsets of Aut(C).
Consider any p(x̄) = tp(ᾱ/∅) ∈ S(∅) with a short subtuple ᾱ of c̄. Choose a

µ-wide type q ∈ Sp(C), i.e. µ̃([φ(x̄′, b̄)]) > 0 (equivalently, µ(Aφ,ᾱ,b̄) > 0) for any

φ(x̄, b̄) ∈ q (where x̄′ ⊃ x̄ is the tuple of variables corresponding to c̄). Take a small
modelM ≺ C. Replacing ᾱ by a realization ᾱ′ of q|M , we can assume that ᾱ |= q|M
(because ᾱ ≡ ᾱ′ implies that [ᾱ]EKP

= [ᾱ]EL
is equivalent to [ᾱ′]EKP

= [ᾱ′]EL
).

Consider any φ(x̄, ᾱ) ∈ q|ᾱ. Then µ(Aφ,ᾱ) > 0, so, by Corollary 4.13, we
conclude that AutfKP (C) ⊆ Aφ,ᾱAφ,ᾱA

−1
φ,ᾱA

−1
φ,ᾱ. Therefore, by Corollary 4.8(i), we

get

AutfKP (C) ⊆
⋂

φ(x̄,ᾱ)∈q|ᾱ

Aφ,ᾱAφ,ᾱA
−1
φ,ᾱA

−1
φ,ᾱ = Aq|ᾱ,ᾱAq|ᾱ,ᾱA

−1
q|ᾱ,ᾱA

−1
q|ᾱ,ᾱ.

On the other hand, Lemma 4.9 tells us that

Aq|ᾱ,ᾱAq|ᾱ,ᾱA
−1
q|ᾱ,ᾱA

−1
q|ᾱ,ᾱᾱ ⊆ {β̄ : dL(ᾱ, β̄) ≤ 4} ⊆ [ᾱ]EL

.

Therefore, [ᾱ]EKP
= [ᾱ]EL

has Lascar diameter at most 4. □

Theorem 4.1 is a global result. It is natural to ask whether we can extend it to
a local version (as in Proposition 4.2).

Question 4.14. Is it true that if p(x̄) ∈ S(∅) is amenable, then the Lascar strong
types on p(x̄) coincide with Kim-Pillay strong types? Does amenability of p(x̄)
imply that the Lascar diameter of p(x̄) is at most 4?

One could think that the above arguments should yield the positive answer to
these questions. The problem is that, assuming only amenability of p(x̄), we have
the induced measure µ but de�ned only on the Boolean algebra of relatively ᾱ-
type-de�nable subsets of Aut(C), for a �xed ᾱ |= p. So, for the recursive proof of
Corollary 4.13 to go through, starting from a set A ⊆ Aut(C) relatively ᾱ-type-
de�nable [where for the purpose of answering Question 4.14 via an argument as
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in the proof of Theorem 4.1, we can additionally assume that A is de�ned over
ᾱ] of positive measure, we need to produce the desired Y also relatively ᾱ-type-
de�nable [over ᾱ] (in order be able to continue our recursion). But this requires a
strengthening of Lemma 4.12 to the version where for A relatively ᾱ-type-de�nable
of positive measure one wants to obtain the desired Y which is also relatively ᾱ-
type-de�nable; the variant with A and Y de�ned over ᾱ would also be su�cient.
Trying to follow the lines of the proof of Lemma 4.12, even if A is de�ned over
ᾱ, Claim 1 requires a longer tuple ā which produces the desired set Y which
is relatively ā-type-de�nable, and this is the only obstacle to answer positively
Question 4.14 via the above arguments.
Another question is whether the bound 4 on the Lascar diameters of Lascar

strong types in Theorem 4.1 could be decreased. Proposition 3.11 tells us that it
can be decreased to 2 under the stronger assumption of de�nable amenability of
T .
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