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Abstract

We investigate minimal first-order structures and consider interpretabil-
ity and definability of orderings on them. We also prove the minimality
of their canonical substructures.

The motivation for this work comes from several papers by Tanović concern-
ing the Pillay’s Conjecture [1], which states that every countable structure in
a countable language has infinitely many nonisomorphic, countable extensions.
Tanović proved the conjecture in [2], and the machinery of the proof relied
on the notion of C-sequences, introduced in [5]. Results on the C-sequences
emerged from analysis of particular orders defined in the original structure. In
[3, 4], the earlier papers, a related and more general analysis has been done
concerning minimal ordered structures. That analysis produced further results,
such as a partial answer to the Kueker’s Conjecture [6] and reduction of the
Podewski’s Conjecture to a simpler case [7]. The results from that analysis,
recalled and used throughout this paper, provided a partial characterization for
such structures, and left the following:

Question 1. Does every minimal, partially ordered structure with arbitrarily
long chains interpret a minimal infinite linear order?

The question is asked in a general context and its essentially identical vari-
ants have been repeated in [5] and [2]. It is the aim of this paper to elaborate
on the subject.

The main results of the paper are Theorem 7 and Theorem 8, explaining the
structure of a minimal structure (M,<).

We begin by setting up the notation and recalling the fundamental results
from [3, 4]. All structures in the paper are models of an arbitrary first-order
theory in a language extending the language {<} where < is interpreted as an
ordering.

Definition 2. Let (M,<) be a minimal ordered structure. Let p be the unique
non-algebraic type over M . We define

L<(M) = {m ∈M : (m < x) ∈ p},
U<(M) = {m ∈M : (m > x) ∈ p},
I<(M) = {m ∈M : (m ⊥ x) ∈ p}.
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The order relation in the subscript will be omitted if the context is clear.

The following result appears in [3, Proposition 1.1, Proposition 1.2] and [4,
Theorem 2].

Theorem 3. Let (M,<) be a minimal ordered structure with an infinite chain.
Then

(1) M is countable.

(2) I<(M) is finite.

(3) Assuming (M,<) has an increasing infinite chain, it falls into one of the
following two types:

Type(ω) where M = L<(M) ∪ a finite set;
Type(ω + ω∗) where M = L<(M) ∪ U<(M) ∪ a finite set

(here both L<(M) and U<(M) are infinite).

The theorem gives further description of the structure: if (M,<) is of
Type(ω) then (L<(M), <) has no maximal elements, is directed upwards and
does not contain chains of order type ω + 1. If (M,<) is of Type(ω + ω∗) then
(L<(M), <) has no maximal elements, is directed upwards and does not con-
tain chains of order type ω + 1 while (U<(M), <) has no minimal elements, is
directed downwards and does not contain chains of order type 1 +ω∗, where ω∗

is the ω with reverse order relation.
The last result shows that the type of a structure is well defined in a class

of interdefinable minimal orders with infinite, increasing chains:

Proposition 4 ([4], Theorem 3). Let M = (M, . . .) be a minimal structure.
The following are equivalent:

(1) There exists a definable < such that (M,<) is of Type(ω).

(2) M is ordered of Type(ω) with respect to any ordering with an infinite in-
creasing chain.

The following is easily proven (similarly to the König’s Lemma):

Fact 5. Let (M,<) be minimal. Then < has an infinite chain iff < has chains
of arbitrary length.

From now on, we assume that all considered structures (M,<) have an
infinite chain.

By Theorem 3(2), given a minimal (M,<) it is always possible to define
an order <′ such that I<′(M) = ∅. Thus for the remainder of this paper we
additionaly assume I<(M) = ∅.

Now assume that (M,<) is minimal of Type(ω). Then it is easy to see that
< is the transitive closure of the successor relation S induced by it: for every
a < b there are only finitely many elements c such that a < c < b. Given that
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every definable antichain must be finite, we can further modify < so it has the
smallest element. Now (M,<) can be described as a rooted, directed acyclic
graph: we put an egde between a and b whenever aSb.

Note that for any n ∈ ω the set Ln of elements that are (in the sense of the
graph) n edges away from the root is ∅-definable. This gives the following:

Fact 6. M ⊂ acl(∅).

It is easy to see that a similar description (as well as the fact) holds for
Type(ω+ω∗) structures as well, in which case < is the transitive closure of the
induced successor relation together with “x < y” for all x ∈ L(M), y ∈ U(M).

So at glance, a minimal (M,<) of Type(ω + ω∗) consists of two “halves”
that have no other obvious relations between them (other than L(M) < U(M)).
Given such a “half”, say L(M), it is natural to ask about the fashion in which
it (together with the order relation restricted to it) is embedded in the whole
structure. The main results of the paper are the following Theorem 7 and
Theorem 8.

Theorem 7. Let M = (M,<) be of Type(ω + ω∗) and L = (L(M), <�L(M)).
Then

(1) L is minimal,

(2) For any A ⊂Mn definable in M, the set A ∩ L(M)n is definable in L,

(3) For any B ⊂ L(M)n definable in L, there is an A ⊂ Mn definable in M
such that A ∩ L(M)n = B.

In particular the theorem asserts that L is “stably embedded” in M.
In the context of interpretable orderings, having established Theorem 7(1),

we will also prove:

Theorem 8. Let M = (M,<) be of Type(ω+ ω∗) and L = (L(M), <�L(M)). If
M interprets an infinite order, then L interprets an infinite suborder of it.

Note that we do not assume the minimality or linearity of the interpreted
order.

In order to prove the theorems, we begin with a crucial lemma. Before we
state it, we need to set up some additional notation.

Definition 9. (i) Given an n ∈ ω and any A ⊂ M , an (n,A)-type is a
complete type over A restricted to the formulas of quantifier rank ≤ n.

(ii) With n,A as above and ā, b̄ ∈ Mm, we write ā ≡n,A b̄ whenever ā and b̄
satisfy the same (n,A)-type.

Note that for any n and any finite A, the set of all (n,A)-types is finite.

Lemma 10. Let (M,<) be minimal of Type(ω + ω∗). We write L for L(M)
and U for U(M). For any n ∈ ω,
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Fn) For each k, l ∈ ω, ā ∈ Lk and φ(x, ȳ, z̄) ∈ L(U) with qr(φ) ≤ n, |ȳ| =
k, |z̄| = l, there is a finite S ⊂ L such that for each b̄ ∈ U l,

φM (M, ā, b̄) ⊂ L⇒ φM (M, ā, b̄) ⊂ S.

Sn) For each k, l ∈ ω there is a finite Sn,k,l ⊂ L such that for each b̄1, b̄2 ∈ U l
and ā ∈ Lk,

b̄1 ≡n,Sn,k,l
b̄2 ⇒ b̄1ā ≡n b̄2ā.

Proof. First, we note that it is enough to prove the Lemma with φ(x, ȳ, z̄) ∈ L
in the statement of Fn as the full statement follows from it. So we replace
L(U) there with L for the remainder of the proof. We proceed by simultaneous
induction, proving the following:

(1) S0 holds,

(2) Sn implies Fn,

(3) Sn + Fn imply Sn+1.

(1) Let S0,k,l = ∅. Assume b̄1 ≡0,∅ b̄2. For any b1 ∈ b̄1, b2 ∈ b̄2, a ∈ ā we have
a < b1, a < b2. So b̄1ā ≡0,∅ b̄2ā.
(2) Assume Sn and fix φ(x, ȳ, z̄) and ā ∈ Lk. By Sn there is a finite Sn,k+1,l

such that for each a ∈ L and b̄1, b̄2 ∈ U l with b̄1 ≡n,Sn,k+1,l
b̄2 we have

|= φ(a, ā, b̄1) ⇐⇒ φ(a, ā, b̄2).

So whenever the set φ(M, ā, b̄) is contained in L (and therefore is finite), that set
depends only on the (n, Sn,k+1,l)-type of b̄. Since there are only finitely many
of such types, we conclude that⋃

{φ(M, ā, b̄) : b̄ ∈ U l, φ(M, ā, b̄) ⊂ L}

is a finite union of finite sets. We define S to be this union.
(3) We construct Sn+1,k,l, stipulating that it contains the already defined sets
Sn,k+1,l ∪ Sn,k,l+1 and enlarging it as needed. We aim to show

b̄1 ≡n+1,Sn+1,k,l
b̄2 ⇒ b̄1ā ≡n+1 b̄2ā.

We prove that for each c ∈ M there is a c′ ∈ M such that b̄1āc ≡n b̄2āc′. We
distinguish three cases.

Case 1. c ∈ L. Assume b̄1 ≡n+1,Sn+1,k,l
b̄2. In particular, b̄1 ≡n,Sn,k+1,l

b̄2 and
by the induction hypothesis, b̄1cā ≡n b̄2cā.

Case 2. c ∈ U and there is a d ∈ U such that b̄1c ≡n,Sn+1,k,l
b̄2d. Then, as

Sn+1,k,l ⊃ Sn,k,l+1, by the induction hypothesis again we get āb̄1c ≡n āb̄2d.
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Case 3. c ∈ U and for each d ∈M ,

b̄1c ≡n,Sn+1,k,l
b̄2d⇒ d ∈ L.

Here, we prove that for a sufficiently large (yet finite) Sn+1,k,l, this case leads
to a contradiction. So, observe that the assumption implies that db̄2 satisfies
some (m,Sn,k,l+1)-type p.
Take any φ(x, ȳ) ∈ p such that φ(M, b̄2) ⊂ L. By Fn there is a finite S = Sφ
such that whenever φ(M, b̄) ⊂ L for some b̄ ∈ U l, we also have φ(M, b̄) ⊂ S.
There are only finitely many formulas in p, so let Sn+1,k,l ⊃

⋃
φ Sφ, where the

union ranges over all formulas φ ∈ p with realizations contained in L. The union
depends only on Sn,k,l+1, so Sn+1,k,l is well-defined. As d certainly belongs to
this union, d ∈ Sn+1,k,l and b̄1c 6≡n,Sn+1,k,l

b̄2d, a contradiction.

Proof of Theorem 7. (1) Follows from the statement of Lemma 10.
(2) Write L for L(M) and U for U(M). Let Σ ⊂ L(M) be the set of formulas
φ(x̄) such that there is φ′(ȳ) ∈ L(L) with φM(Ln) = φ′L(Ln). It is easy to see
that Σ contains all atomic formulas (recall that a < b whenever a ∈ L, b ∈M).
It is clearly closed under taking disjunctions and negations. We prove that
Σ = L(M) by induction on quantifier rank of formulas. So let

φ(x̄) = ∃yψ(x̄, y),

with |x̄| = n and ψ(x̄, y) belonging to Σ along with all formulas of the same
quantifier rank. In particular, all instances of ψ belong to Σ.

Consider all tuples l̄ ∈ Ln such that ψ(l̄,M) ⊂ U . By Lemma 10 (with U
and L swapped), there is a finite U0 such that ψ(l̄,M) ⊂ U ⇒ ψ(l̄,M) ⊂ U0.
Let

χ(x̄, y) =
∨
u∈U0

ψ(x̄, u) ∨ ψ(x̄, y).

One checks that for any l̄ ∈ Ln,

M |= φ(l̄) ⇐⇒ ∃a ∈ L M |= χ(l̄, a).

As χ(x̄, y) is a disjunction of formulas from Σ, there is χ′(x̄, y) ∈ L(L) such that
χM(Ln, L) = χ′L(Ln, L). Now clearly ∃yχ′(x̄, y) defines in L the set φM(Ln).
(3) Again, write L for L(M) and U for U(M). We proceed in a similar manner
as before. So let Σ ⊂ L(L) be the set of formulas such that their realizations
in L are traces of sets definable in M. Again it is easy to see that Σ contains
atomic formulas and is closed under boolean combinations. Let

φ(x̄) = ∃yψ(x̄, y),

with |x̄| = n and ψ(x̄, y) belonging to Σ. So there is ψ′(x̄, y) ∈ L(M) such that
ψ′M(Ln, L) = ψL(Ln, L). By Lemma 10 there is a finite U0 such that for each
l̄ ∈ Ln we have ψ′M(l̄,M) ⊂ U ⇒ ψ′M(l̄,M) ⊂ U0. Let

χ′(x̄, y) = ψ′(x̄, y) ∧
∧
u∈U0

y 6= u.

Then ∃yχ′(x̄, y) witnesses φ(x̄) ∈ Σ.
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Turning attention to Theorem 8, consider any order interpretable in M,
that is a definable equivalence relation on Mn and a definable ordering on its
classes. By Theorem 7, their restrictions to L(M)n are definable in L, giving an
interpretable order in L. The following lemma guarantees that this order has
infinitely many elements, proving Theorem 8.

Lemma 11. Let (M,<) be minimal of Type(ω + ω∗) and E be a definable
equivalence relation on Mn with infinitely many classes. Write U for U(M)
and L for L(M). Then at least one of the following holds:

(1) E�U2n and E�L2n have infinitely many classes.

(2) There is an a ∈M and i < n such that E restricted to

(M × . . .×M × {a} ×M × . . .×M︸ ︷︷ ︸
n times

)2,

where {a} is on the i-th axis, has infinitely many classes.

Proof. Assume that 2) does not hold and (aiming for a contradiction) that E�U2n

has finitely many classes. We will show that E also has finitely many classes.
Mn is the union of sets of the form H0× . . .×Hn−1 where each of Hi’s is either
U or L. For a set X of this form, let |X| be number of L’s that appear in the
product. We show the following by induction on k:

(∗k) Let X be of the form as above and |X| = k. Then E �X2 has finitely
many classes.

We assumed ∗0. Now take any X with |X| = k and assume ∗k′ for all k′ < k.
Without loss of generality X = Un−k ×Lk. There is a single formula φ(x̄) with
|x̄| = n saying “x̄ is not E-equivalent to any m̄ ∈ X with |X| < k”. Consider
the formula

ψ(x, ȳ) = ∃xn−k, xn−k+1, . . . , xn−1φ(ȳ, x, xn−k, . . . xn−1).

Whenever we consider an instance ψ(x, ū) for some ū ∈ Un−k−1, all x’s satisfying
this instance must belong to L, since the tuples satisfying φ(x̄) have at most
n− k− 1 elements of U . So we can apply Lemma 10 to ψ(x, ȳ): there is a finite
S ⊂ L such that for any ū ∈ Un−k−1, φ(M, ū) ⊂ S. Unrolling the definition
of ψ we have that all elements of Un−k × (L \ S) × Lk−1 satisfy φ, i.e. they
are contained in finitely many of the E-classes. By the assumption that 2) does
not hold, for each a ∈ S the set Un−k × {a} ×Lk−1 is also contained in a finite
union of E-classes. But

X =
⋃
a∈S

Un−k × {a} × Lk−1 ∪ Un−k × (L \ S)× Lk−1,

and we are done.
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Theorem 8 should be viewed as an attempt to deal with Question 1. In
dealing with Podewski’s conjecture, only structures of Type(ω) are concerned
[7]. In both Podewski’s and Kueker’s conjectures, only definable orders are of
the matter [6, 7]. It would be beneficial to have equivalences of the kind “no
order definable in L iff no order interpretable in M” which would restrict the
area in which any counterexample has to be found, or provide a way to produce
definable orders having only an interpretable one in a structure of different
type. An example of such equivalence can be proven (here we do not make any
assumptions on M other than stated in the Proposition):

Proposition 12. Let M be a minimal ordered structure that interprets (ω,≤).
Then there exists a definable equivalence relation E on M and a definable order
� on M/E such that (M/E,�) ∼= (ω,≤).

Proof. Let n ∈ N be the least such that there is a definable equivalence relation
E′ on Mn and a definable order ≤′ on Mn/E′ with (Mn/E′,≤′) ∼= (ω,≤).
Assume that n > 1. We head for a contradiction. For each m ∈M let

C(m) = {(m,m2,m3, . . . ,mn)E′ ∈Mn/E′ : m2,m3, . . . ,mn ∈M}.

Under the isomorphism (Mn/E′,≤′) ∼= (ω,≤) the set C(m) corresponds to a
subset of ω.
Case 1 For each m ∈M , C(m) is finite. Let km be the greatest element of such
a subset. We show that a desired definable relation and a definable ordering on
classes can be found in the M itself.

Let � be defined on M by

a � b ⇐⇒ ∃ȳ∀x̄∀ȳ′ ((a, x̄)E′ ≤′ (b, ȳ)E′ ∧ (b, ȳ′)E′ ≤′ (b, ȳ))E′ ,

and let E be defined by

aE b ⇐⇒ ∃ȳ∃x̄∀ȳ′ ((a, x̄)E′ (b, ȳ) ∧ (b, ȳ′) ≤′ (b, ȳ) ∧ (a, ȳ′) ≤′ (a, x̄)).

Immediately from the definitions, we have a � b iff the greatest element of C(b)
is larger than any element of C(a) and we have aEb iff the greatest elements of
C(a) and C(b) are equal. We have

a � b ⇐⇒ ka ≤ kb,
aE b ⇐⇒ ka = kb.

It is now sufficient to prove that {km ∈ ω : m ∈ M} is an infinite subset of ω.
But this follows from the fact that

⋃
{C(m) : m ∈ M} = Mn/E: there can be

no uniform bound on the greatest element of C(m).

Case 2 There is m0 ∈M such that C(m0) is infinite. We construct the desired
relations on Mn−1, contradicting the minimality of n.

Let � be defined on Mn−1 by

ā � b̄ ⇐⇒ (m0, ā) ≤′ (m0, b̄),
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and let E be defined by

ā E b̄ ⇐⇒ (m0, ā)E′ (m0, b̄).

It is easy to see that (Mn−1/E,�) ∼= (ω,≤).

We conclude the paper with a remark regarding minimal structures of SOP
theories. Given an SOP theory T and a formula φ(x̄) (without parameters) with
the strict order property, it is natural to ask whether any minimal M |= T can
be ordered with infinite chains in a definable way, involving the formula φ(x̄).
It is true when |x| = 1: φ(x) defines an order on M and since it has chains of
arbitrary length in a monster, it also has chains of arbitrary length in M . Thus
it has an infinite chain there.
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