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denote the Banach space of all real-valued continuous functions on
K.

A Banach space X is Grothendieck if every weak™ converging
sequence in X* converges weakly.

For the zero-dimensional space K:

The space C(K) is Grothendieck iff for every bounded sequence of
(signed regular Borel measures of finite variation) measures p,

(VA€ clop(K)) im f1p(A) = 0 = (vs € Bor(K)) im 110(B) = 0.
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co and Grothendieck C(K) spaces

C(K) is Grothendieck iff C(K) does not contain a complemented
copy of ¢p.

C(Pw) ~ £~ is a Grothendieck space.

Typical examples of C(K) Grothenideck spaces are C(K) where K
is zero-dimensional and the algebra clop(K) has some weak
‘sequential completeness property’, see Koszmider & Shelah (2013)
and Gonzilez & Kania (2021).
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The space ¢ inside C(K x L)

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space C(K x L) contains a
complemented copy of ¢g.

In particular, C(Bw x Bw) is not Grothendieck, it contains a
complemented copy of ¢.

Alspach and Galego (2011):

Does C(fw x fw) contain complemented copies of other separable
(infinite-dimensional) Banach spaces?
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Complemented subspaces of C(fw X fw)?

C(Bw x Bw) contains a complemented copy of C([0,1]).
so, in particular,

O a complemented copy of C([O, 1]);

@ a complemented copy of C(L) for every metrizable
compactum L.

@ C(Bw x pw) is not separably injective (Peter Scholze,
unpublished).

€

Recall that

e C(L) is isomorphic to C[0, 1] whenever L is uncountable
compact metrizable space;

@ there are uncountably many pairwise non-isomorphic C(L)
spaces where L is compact and countable.
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Our result

If K contains a homeomorphic copy of K x Ka, where, for some &,
K1 and K> admit continuous surjection onto [0, 1]%, then C(K)
contains a complemented copy of C([0,1]%).

Main Theorem

Suppose that compact spaces Ki, K> can be continuously mapped
onto some compact topological group G.

Then C(Ki1 x K2) contains a complemented isometric copy of the
space C(G).
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Lemma (Petczyriski)

Suppose that ¢ : K — L is a continuous surjection; then

C(L) > g+ goy e C(K) is an isometric embedding.

If there is a continuous mapping L 3 y — u, € P(K) such that
py(p~1(y)) = 1 for every y € L then C(L) is embedded onto a
complemented subspace of C(K).

Proof.

T:C(K)— C(L), Tf(y):/deuy,

P:C(K)— C(K), Pf=(Tf)oy.

Then P is a projection onto (the copy of) C(L) because

T(gow)(y)z/Kgosoduyzg(y)-
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Two ingredients (2)

Proposition.

If o : K — L is a continuous surjection then u — ¢[u] € P(L) is a
continuous surjection from P(K) onto P(L).
For every v € P(L) there is u € P(K) such that ¢[u] = v and the
o-algebra

Y = {o YA]: A€ Bor(L)}

is A-dense in Bor(K) with respect to u.

.

o ¢[u](A) = p(p[A]) for A€ Bor(L).
o A-density: For every B € Bor(K) and € > 0 there is S € &
such that u(V A S) < e.
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Consider the unit square with the two dimensional Lebesgue
measure /g = A ® A.

v1 s the normalized restriction of A ® A to the lightgray figure.
V2 s the normalized restriction of A ® A to the gray figure.
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Properties of v,'s

Every v, has A as the marginal distributions:
vn(A % [0,1]) = vn([0, 1] x A) = A(A)

for every Borel A C [0, 1].
Consequently, if A(A1 A B1) < € and A(A2 A By) < ¢ then

z/,,((Al x Ag) A (By x 32)) <

< va((A10 BY) x[0,1]) +vn([0.1] % (A2 A Br) ) < 22,

for every n.
We have v, — v, where v denotes A put on the diagonal.
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Basic idea (2)

Consider a compact group (G, @) with its Haar measure A. We
work in G x G.

the limit measure v = 10 is on the diagonal.

VY is the limit measure on the shifted diagonal
{(x,x®y):yeG}
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Zero-dimensional case

If K is zero-dimensional and the algebra clop(K) admits a Boolean
homomorphism onto a free product 201 ® 2> of nonatomic
Boolean algebras then C(K) has a complemented subspace
isomorphic to CJ0, 1].

Let K be the double arrow space

K = ((0,1] x {0}) U ([0,1) x {1}).

The projection ¢ : K — [0, 1] defines an isometric embedding of
C[0,1] onto an uncomplemented subspace X of C(K). In fact
there is no complemented separable superspace Y D X, see
Kalenda and Kubi$ (2012).

On the other hand, Marciszewski (2008) proved that

C(K) = C[0,1] ® C(K).

The above corollary does not work here: K does not contain a
product of two non-scattered compacta, see e.g. Martinez
Cervantes and GP (2019).
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v

Does C(fBw x fw) contains a complemented copy of C(K) for
every separable K7
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Consider a continuous surjection ¢ : K — L and v € P(L). How
we find u € P(K) such that ¢[u] = v and the o-algebra

Y ={¢ Al : A€ Bor(L)}

is /A-dense in Bor(K) with respect to p?

A quick way: the set M = {u € P(K) : p[u] = v} is closed and
convex and if y is an extreme point of M then it is as required.
Alternatively, define pg on X by the required formula.

Then extend g to a Borel measure preserving the density
condition.



