Dopełnialne podprzestrzenie $C(K \times L)$

Grzegorz Plebanek

Uniwersytet Wrocławski

współautorzy Jakub Rondoš and Damian Sobota (KGRC, Wien)

9KMP, sesja Przestrzenie Banacha (wrzesień 2024)

 Ω

Grothendieck spaces

 2990 Here K, L always stand for compact Hausdorff spaces; by $C(K)$ we denote the Banach space of all real-valued continuous functions on K.

 Ω

Here K, L always stand for compact Hausdorff spaces; by $C(K)$ we denote the Banach space of all real-valued continuous functions on K.

 Ω

A Banach space X is Grothendieck if every weak * converging sequence in X^* converges weakly.

Here K, L always stand for compact Hausdorff spaces; by $C(K)$ we denote the Banach space of all real-valued continuous functions on K.

A Banach space X is Grothendieck if every weak * converging sequence in X^* converges weakly.

For the zero-dimensional space K :

The space $C(K)$ is Grothendieck iff for every bounded sequence of (signed regular Borel measures of finite variation) measures μ_n

$$
(\forall A \in \mathrm{clop}(K)\right) \lim_n \mu_n(A) = 0 \Longrightarrow \left(\forall B \in \mathcal{B}or(K)\right) \lim_n \mu_n(B) = 0.
$$

c_0 and Grothendieck $C(K)$ spaces

K ロ X K 個 X K 至 X K 至 X 三 H X Q Q Q Q

c_0 and Grothendieck $C(K)$ spaces

Fact

K ロ X K 個 X X ミ X X ミ X ミ X の Q Q Q

c_0 and Grothendieck $C(K)$ spaces

Fact

 $C(K)$ is Grothendieck iff $C(K)$ does not contain a complemented copy of c_0 .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. ⊙ Q Q @

Fact

 $C(K)$ is Grothendieck iff $C(K)$ does not contain a complemented copy of c_0 .

Theorem

 $C(\beta\omega) \simeq \ell_{\infty}$ is a Grothendieck space.

Fact

 $C(K)$ is Grothendieck iff $C(K)$ does not contain a complemented copy of c_0 .

Theorem

 $C(\beta\omega) \simeq \ell_{\infty}$ is a Grothendieck space.

Typical examples of $C(K)$ Grothenideck spaces are $C(K)$ where K is zero-dimensional and the algebra $\text{clop}(K)$ has some weak 'sequential completeness property', see Koszmider & Shelah (2013) and González & Kania (2021).

The space c_0 inside $C(K \times L)$

K ロ X K 個 X K 至 X K 至 X 三 H X Q Q Q Q

The space c_0 inside $C(K \times L)$

Theorem (Cembranos, Freniche [1984])

メロメ メタメ メミメ メミメン 差

 Ω

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 .

メロトメ 御 トメ 君 トメ 君 トッ 君

 Ω

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 . In particular, $C(\beta\omega \times \beta\omega)$ is not Grothendieck, it contains a complemented copy of c_0 .

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 . In particular, $C(\beta\omega \times \beta\omega)$ is not Grothendieck, it contains a complemented copy of c_0 .

Alspach and Galego (2011):

Does $C(\beta\omega \times \beta\omega)$ contain complemented copies of other separable (infinite-dimensional) Banach spaces?

K ロ X K 個 X K ミ X K ミ X ミ X D V Q Q C

Corollary

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$.

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

メロメ メタメ メミメ メミメン 差

 Ω

 $\textbf{\textsf{D}}$ a complemented copy of $\mathcal{C}\left(\left[0,1\right] \right)$;

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- $\textbf{\textsf{D}}$ a complemented copy of $\mathcal{C}\left(\left[0,1\right] \right)$;
- \bullet a complemented copy of $C(L)$ for every metrizable compactum L.

メロメ メタメ メミメ メミメン ミ

 Ω

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- $\textbf{\textsf{D}}$ a complemented copy of $\mathcal{C}\left(\left[0,1\right] \right)$;
- \bullet a complemented copy of $C(L)$ for every metrizable compactum L.
- \bullet $C(\beta\omega\times\beta\omega)$ is not separably injective (Peter Scholze, unpublished).

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- $\textbf{\textsf{D}}$ a complemented copy of $\mathcal{C}\left(\left[0,1\right] \right)$;
- \bullet a complemented copy of $C(L)$ for every metrizable compactum L.
- \bullet $C(\beta\omega\times\beta\omega)$ is not separably injective (Peter Scholze, unpublished).

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- $\textbf{\textsf{D}}$ a complemented copy of $\mathcal{C}\left(\left[0,1\right] \right)$;
- \bullet a complemented copy of $C(L)$ for every metrizable compactum L.
- \bullet $C(\beta\omega\times\beta\omega)$ is not separably injective (Peter Scholze, unpublished).

Recall that

• $C(L)$ is isomorphic to $C[0, 1]$ whenever L is uncountable compact metrizable space;

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- $\textbf{\textsf{D}}$ a complemented copy of $\mathcal{C}\left(\left[0,1\right] \right)$;
- \bullet a complemented copy of $C(L)$ for every metrizable compactum L.
- \bullet $C(\beta\omega \times \beta\omega)$ is not separably injective (Peter Scholze, unpublished).

Recall that

- $C(L)$ is isomorphic to $C[0, 1]$ whenever L is uncountable compact metrizable space;
- there are uncountably many pairwise non-isomorphic $C(L)$ spaces where L is compact and countable.

Our result

KOXK@XXEXXEX E DAQ

KORK@RKERKER E 1990

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0,1]^{\kappa}$, then $C(K)$ contains a complemented copy of $C\big([0,1]^{\kappa}\big).$

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0,1]^{\kappa}$, then $C(K)$ contains a complemented copy of $C\big([0,1]^{\kappa}\big).$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君

Main Theorem

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0,1]^{\kappa}$, then $C(K)$ contains a complemented copy of $C\big([0,1]^{\kappa}\big).$

Main Theorem

Suppose that compact spaces K_1, K_2 can be continuously mapped onto some compact topological group G.

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0,1]^{\kappa}$, then $C(K)$ contains a complemented copy of $C\big([0,1]^{\kappa}\big).$

Main Theorem

Suppose that compact spaces K_1, K_2 can be continuously mapped onto some compact topological group G. Then $C(K_1 \times K_2)$ contains a complemented **isometric** copy of the

space $C(G)$.

KOKK@KKEKKEK E 1990

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding.

 $2Q$

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y))=1$ for every $y\in L$ then $\mathcal{C}(L)$ is embedded onto a complemented subspace of $C(K)$.

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y))=1$ for every $y\in L$ then $\mathcal{C}(L)$ is embedded onto a complemented subspace of $C(K)$.

Proof.

$$
T: C(K) \to C(L), \quad Tf(y) = \int_K f \, \mathrm{d}\mu_y,
$$

$$
P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.
$$

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y))=1$ for every $y\in L$ then $\mathcal{C}(L)$ is embedded onto a complemented subspace of $C(K)$.

Proof.

$$
T: C(K) \to C(L), \quad Tf(y) = \int_K f \, d\mu_y,
$$

$$
P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.
$$

Then P is a projection onto (the copy of) $C(L)$ because

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y))=1$ for every $y\in L$ then $\mathcal{C}(L)$ is embedded onto a complemented subspace of $C(K)$.

Proof.

$$
T: C(K) \to C(L), \quad Tf(y) = \int_K f \, d\mu_y,
$$

\n
$$
P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.
$$

Then P is a projection onto (the copy of) $C(L)$ because

$$
T(g\circ\varphi)(y)=\int_K g\circ\varphi\,\mathrm{d}\mu_y=g(y).
$$
Two ingredients (2)

KOKK@KKEKKEK E 1990

Two ingredients (2)

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from $P(K)$ onto $P(L)$.

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from $P(K)$ onto $P(L)$. For every $\nu \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = \nu$ and the σ -algebra

$$
\Sigma = \{\varphi^{-1}[A] : A \in \mathit{Bor}(L)\}
$$

メロメ メタメ メミメ メミメン 毛

is \triangle -dense in $Bor(K)$ with respect to μ .

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from $P(K)$ onto $P(L)$. For every $\nu \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = \nu$ and the σ -algebra

$$
\Sigma = \{\varphi^{-1}[A] : A \in \mathit{Bor}(L)\}
$$

is \triangle -dense in $Bor(K)$ with respect to μ .

•
$$
\varphi[\mu](A) = \mu(\varphi^{-1}[A])
$$
 for $A \in Bor(L)$.

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from $P(K)$ onto $P(L)$. For every $\nu \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = \nu$ and the σ -algebra

 $\Sigma = \{ \varphi^{-1}[{\mathcal A}] : {\mathcal A} \in {\mathit Bor}(\mathcal L)\}$

is \triangle -dense in *Bor*(*K*) with respect to μ .

- $\varphi[\mu](A) = \mu(\varphi^{-1}[A])$ for $A \in Bor(L)$.
- \triangle -density: For every $B \in Bor(K)$ and $\varepsilon > 0$ there is $S \in \Sigma$ such that $\mu(V \triangle S) < \varepsilon$.

Basic idea

KOKK@KKEKKEK E DAG

KOXK@XXEXXEX E DAQ

 ν_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure.

 ν_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure.

K ロ X K 個 X K 至 X K 至 X 三 H X Q Q Q Q

 ν_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure. ν_2 s the normalized restriction of $\lambda \otimes \lambda$ to the gray figure.

 ν_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure. ν_2 s the normalized restriction of $\lambda \otimes \lambda$ to the gray figure.

Properties of ν_n 's

K ロ X K 個 X K 至 X K 至 X 三 H X Q Q Q Q

Properties of ν_n 's

Every ν_n has λ as the marginal distributions:

$$
\nu_n(A\times[0,1])=\nu_n([0,1]\times A)=\lambda(A)
$$

K ロ X K 個 X X ミ X X ミ X ミ X の Q Q Q

for every Borel $A \subseteq [0,1]$.

$$
\nu_n(A\times [0,1])=\nu_n([0,1]\times A)=\lambda(A)
$$

KOX KORKA EX KEX LE VOLO

for every Borel $A \subseteq [0,1]$. Consequently, if $\lambda(A_1 \triangle B_1) < \varepsilon$ and $\lambda(A_2 \triangle B_2) < \varepsilon$ then

$$
\nu_n(A\times [0,1])=\nu_n([0,1]\times A)=\lambda(A)
$$

for every Borel $A \subseteq [0,1]$. Consequently, if $\lambda(A_1 \triangle B_1) < \varepsilon$ and $\lambda(A_2 \triangle B_2) < \varepsilon$ then

$$
\nu_n\Big(\big(A_1\times A_2\big)\bigtriangleup \big(B_1\times B_2\big)\Big)\le
$$

$$
\leq \nu_n\Big(\big(A_1\bigtriangleup B_1\big)\times [0,1]\Big)+\nu_n\Big([0,1]\times \big(A_2\bigtriangleup B_2\big)\Big)\leq 2\varepsilon,
$$

for every *n*.

$$
\nu_n(A\times [0,1])=\nu_n([0,1]\times A)=\lambda(A)
$$

for every Borel $A \subseteq [0,1]$. Consequently, if $\lambda(A_1 \triangle B_1) < \varepsilon$ and $\lambda(A_2 \triangle B_2) < \varepsilon$ then

$$
\nu_n\Big(\big(A_1\times A_2\big)\bigtriangleup \big(B_1\times B_2\big)\Big)\leq
$$

$$
\leq \nu_n\Big(\big(A_1\bigtriangleup B_1\big)\times [0,1]\Big)+\nu_n\Big([0,1]\times \big(A_2\bigtriangleup B_2\big)\Big)\leq 2\varepsilon,
$$

for every *n*.

We have $\nu_n \to \nu$, where ν denotes λ put on the diagonal.

KOKK@KKEKKEK E 1990

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

メロトメ 御 トメ ミトメ ミトリ 毛

 $2Q$

the limit measure $\nu=\nu^0$ is on the diagonal.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

メロトメ 御 トメ ミトメ ミトリ 毛

 $2Q$

the limit measure $\nu=\nu^0$ is on the diagonal.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

the limit measure $\nu=\nu^0$ is on the diagonal. ν^{γ} is the limit measure on the shifted diagonal $\{(x, x \oplus y) : y \in G\}.$

Finally, ...

KORK (DRK ERK ERK) ER POLO

• Consider the Haar measure λ on G and the product group $G \times G$.

KOKK@KKEKKEK E DAG

• Consider the Haar measure λ on G and the product group $G \times G$.

KOX KORKA EX KEX LE VOLO

Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[{\mathcal A}] : {\mathcal A} \in {\mathit Bor}({\mathcal G})\}$ is $\triangle{\text{\rm -dense}}$ in ${\mathit Bor}({\mathcal K})$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[{\mathcal A}] : {\mathcal A} \in {\mathit Bor}({\mathcal G})\}$ is $\triangle{\text{\rm -dense}}$ in ${\mathit Bor}({\mathcal K})$.
- Mimick the construction of ν^y to get $\mu^y \in P(K \times K)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[{\mathcal A}] : {\mathcal A} \in {\mathit Bor}({\mathcal G})\}$ is $\triangle{\text{\rm -dense}}$ in ${\mathit Bor}({\mathcal K})$.
- Mimick the construction of ν^y to get $\mu^y \in P(K \times K)$.
- Consider $\theta : K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \oplus \varphi(x_1)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[{\mathcal A}] : {\mathcal A} \in {\mathit Bor}({\mathcal G})\}$ is $\triangle{\text{\rm -dense}}$ in ${\mathit Bor}({\mathcal K})$.
- Mimick the construction of ν^y to get $\mu^y \in P(K \times K)$.
- Consider $\theta : K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \oplus \varphi(x_1)$.
- Then $\{g \circ \theta : g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^y \in P(K \times K)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[{\mathcal A}] : {\mathcal A} \in {\mathit Bor}({\mathcal G})\}$ is $\triangle{\text{\rm -dense}}$ in ${\mathit Bor}({\mathcal K})$.
- Mimick the construction of ν^y to get $\mu^y \in P(K \times K)$.
- Consider $\theta : K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \oplus \varphi(x_1)$.
- Then $\{g \circ \theta : g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^y \in P(K \times K)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[{\mathcal A}] : {\mathcal A} \in {\mathit Bor}({\mathcal G})\}$ is $\triangle{\text{\rm -dense}}$ in ${\mathit Bor}({\mathcal K})$.
- Mimick the construction of ν^y to get $\mu^y \in P(K \times K)$.
- Consider $\theta : K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \oplus \varphi(x_1)$.
- Then $\{g \circ \theta : g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^y \in P(K \times K)$.

Zero-dimensional case

KO KKOKKEKKEK E KORO

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\text{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0, 1]$.

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\text{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0, 1]$.

Let K be the double arrow space $\mathcal{K} = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$
Corollary

If K is zero-dimensional and the algebra $\text{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0, 1]$.

Let K be the double arrow space $\mathcal{K} = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$ The projection $\varphi : K \to [0,1]$ defines an isometric embedding of $C[0, 1]$ onto an uncomplemented subspace X of $C(K)$.

Corollary

If K is zero-dimensional and the algebra $\text{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0, 1]$.

Let K be the double arrow space $\mathcal{K} = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$ The projection $\varphi : K \to [0,1]$ defines an isometric embedding of $C[0, 1]$ onto an uncomplemented subspace X of $C(K)$. In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012).

Corollary

If K is zero-dimensional and the algebra $\text{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0, 1]$.

Let K be the double arrow space $\mathcal{K} = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$ The projection $\varphi : K \to [0,1]$ defines an isometric embedding of $C[0, 1]$ onto an uncomplemented subspace X of $C(K)$. In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012). On the other hand, Marciszewski (2008) proved that $C(K) = C[0,1] \oplus C(K).$

Corollary

If K is zero-dimensional and the algebra $\text{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0, 1]$.

Let K be the double arrow space $\mathcal{K} = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$ The projection $\varphi : K \to [0,1]$ defines an isometric embedding of $C[0, 1]$ onto an uncomplemented subspace X of $C(K)$. In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012).

On the other hand, Marciszewski (2008) proved that $C(K) = C[0,1] \oplus C(K).$

The above corollary does not work here: K does not contain a product of two non-scattered compacta, see e.g. Martínez Cervantes and GP (2019).

Problems

KOXK@XXEXXEX E DAQ

Question

Can we (reasonably) characterize nonmetrizable spaces K such that $C(K)$ contains a complemented copy of $C[0, 1]$?

KOKK@KKEKKEK E DAQ

Question

Can we (reasonably) characterize nonmetrizable spaces K such that $C(K)$ contains a complemented copy of $C[0, 1]$?

Question

Does $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C(K)$ for every separable K?

KO KO K E K K E K D K Y K K K K K K K K K

Measure-theoretic tool

KO KKOKKEKKEK E KORO

Consider a continuous surjection $\varphi : K \to L$ and $\nu \in P(L)$.

KOKK@KKEKKEK E 1990

$$
\Sigma = \{ \varphi^{-1}[A] : A \in \mathit{Bor}(L) \}
$$

K ロ X x 何 X x を X x を X を → つんぐ

is \triangle -dense in *Bor*(*K*) with respect to μ ?

$$
\Sigma = \{ \varphi^{-1}[A] : A \in \mathit{Bor}(L) \}
$$

◆ロト→ 伊ト→ ミト→ ミト ニヨー

is \triangle -dense in $Bor(K)$ with respect to μ ? A quick way: the set $M = \{ \mu \in P(K) : \varphi[\mu] = \nu \}$ is closed and convex and if μ is an extreme point of M then it is as required.

$$
\Sigma = \{ \varphi^{-1}[A] : A \in \mathit{Bor}(L) \}
$$

is \triangle -dense in $Bor(K)$ with respect to μ ? A quick way: the set $M = \{ \mu \in P(K) : \varphi[\mu] = \nu \}$ is closed and convex and if μ is an extreme point of M then it is as required. Alternatively, define μ_0 on Σ by the required formula.

$$
\Sigma = \{ \varphi^{-1}[A] : A \in \mathit{Bor}(L) \}
$$

is \triangle -dense in $Bor(K)$ with respect to μ ? A quick way: the set $M = \{ \mu \in P(K) : \varphi[\mu] = \nu \}$ is closed and convex and if μ is an extreme point of M then it is as required. Alternatively, define μ_0 on Σ by the required formula. Then extend μ_0 to a Borel measure preserving the density condition.