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Grothendieck spaces

Here K , L always stand for compact Hausdorff spaces; by C (K ) we
denote the Banach space of all real-valued continuous functions on
K .
A Banach space X is Grothendieck if every weak∗ converging
sequence in X ∗ converges weakly.

For the zero-dimensional space K :

The space C (K ) is Grothendieck iff for every bounded sequence of
(signed regular Borel measures of finite variation) measures µn(
∀A ∈ clop(K )

)
lim
n

µn(A) = 0 =⇒
(
∀B ∈ Bor(K )

)
lim
n

µn(B) = 0.



Grothendieck spaces

Here K , L always stand for compact Hausdorff spaces; by C (K ) we
denote the Banach space of all real-valued continuous functions on
K .

A Banach space X is Grothendieck if every weak∗ converging
sequence in X ∗ converges weakly.

For the zero-dimensional space K :

The space C (K ) is Grothendieck iff for every bounded sequence of
(signed regular Borel measures of finite variation) measures µn(
∀A ∈ clop(K )

)
lim
n

µn(A) = 0 =⇒
(
∀B ∈ Bor(K )

)
lim
n

µn(B) = 0.



Grothendieck spaces

Here K , L always stand for compact Hausdorff spaces; by C (K ) we
denote the Banach space of all real-valued continuous functions on
K .
A Banach space X is Grothendieck if every weak∗ converging
sequence in X ∗ converges weakly.

For the zero-dimensional space K :

The space C (K ) is Grothendieck iff for every bounded sequence of
(signed regular Borel measures of finite variation) measures µn(
∀A ∈ clop(K )

)
lim
n

µn(A) = 0 =⇒
(
∀B ∈ Bor(K )

)
lim
n

µn(B) = 0.



Grothendieck spaces

Here K , L always stand for compact Hausdorff spaces; by C (K ) we
denote the Banach space of all real-valued continuous functions on
K .
A Banach space X is Grothendieck if every weak∗ converging
sequence in X ∗ converges weakly.

For the zero-dimensional space K :

The space C (K ) is Grothendieck iff for every bounded sequence of
(signed regular Borel measures of finite variation) measures µn(
∀A ∈ clop(K )

)
lim
n

µn(A) = 0 =⇒
(
∀B ∈ Bor(K )

)
lim
n

µn(B) = 0.



c0 and Grothendieck C (K ) spaces

Fact

C (K ) is Grothendieck iff C (K ) does not contain a complemented
copy of c0.

Theorem

C (βω) ≃ ℓ∞ is a Grothendieck space.

Typical examples of C (K ) Grothenideck spaces are C (K ) where K
is zero-dimensional and the algebra clop(K ) has some weak
‘sequential completeness property’, see Koszmider & Shelah (2013)
and González & Kania (2021).
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The space c0 inside C (K × L)

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space C (K × L) contains a
complemented copy of c0.
In particular, C (βω × βω) is not Grothendieck, it contains a
complemented copy of c0.

Alspach and Galego (2011):

Does C (βω × βω) contain complemented copies of other separable
(infinite-dimensional) Banach spaces?
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Complemented subspaces of C (βω × βω)?

Corollary

C (βω × βω) contains a complemented copy of C
(
[0, 1]c

)
.

so, in particular,

1 a complemented copy of C
(
[0, 1]

)
;

2 a complemented copy of C (L) for every metrizable
compactum L.

3 C (βω × βω) is not separably injective (Peter Scholze,
unpublished).

Recall that

C (L) is isomorphic to C [0, 1] whenever L is uncountable
compact metrizable space;

there are uncountably many pairwise non-isomorphic C (L)
spaces where L is compact and countable.
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Our result

Theorem

If K contains a homeomorphic copy of K1 ×K2, where, for some κ,
K1 and K2 admit continuous surjection onto [0, 1]κ, then C (K )
contains a complemented copy of C

(
[0, 1]κ

)
.

Main Theorem

Suppose that compact spaces K1,K2 can be continuously mapped
onto some compact topological group G .
Then C (K1 × K2) contains a complemented isometric copy of the
space C (G ).
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Two ingredients (1)

Lemma (Pe lczyński)

Suppose that φ : K → L is a continuous surjection; then
C (L) ∋ g 7→ g ◦ φ ∈ C (K ) is an isometric embedding.
If there is a continuous mapping L ∋ y 7→ µy ∈ P(K ) such that
µy (φ−1(y)) = 1 for every y ∈ L then C (L) is embedded onto a
complemented subspace of C (K ).

Proof.

T : C (K ) → C (L), Tf (y) =

∫
K
f dµy ,

P : C (K ) → C (K ), Pf = (Tf ) ◦ φ.

Then P is a projection onto (the copy of) C (L) because

T (g ◦ φ)(y) =

∫
K
g ◦ φ dµy = g(y).
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Two ingredients (2)

Proposition.

If φ : K → L is a continuous surjection then µ 7→ φ[µ] ∈ P(L) is a
continuous surjection from P(K ) onto P(L).
For every ν ∈ P(L) there is µ ∈ P(K ) such that φ[µ] = ν and the
σ-algebra

Σ = {φ−1[A] : A ∈ Bor(L)}

is △-dense in Bor(K ) with respect to µ.

φ[µ](A) = µ
(
φ−1[A]

)
for A ∈ Bor(L).

△-density: For every B ∈ Bor(K ) and ε > 0 there is S ∈ Σ
such that µ(V △ S) < ε.
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Basic idea

Consider the unit square with the two dimensional Lebesgue
measure ν0 = λ⊗ λ.

ν1 s the normalized restriction of λ⊗ λ to the lightgray figure.
ν2 s the normalized restriction of λ⊗ λ to the gray figure.
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Properties of νn’s

Every νn has λ as the marginal distributions:

νn(A× [0, 1]) = νn([0, 1] × A) = λ(A)

for every Borel A ⊆ [0, 1].
Consequently, if λ(A1 △ B1) < ε and λ(A2 △ B2) < ε then

νn

((
A1 × A2

)
△

(
B1 × B2

))
≤

≤ νn

((
A1 △ B1

)
× [0, 1]

)
+ νn

(
[0, 1] ×

(
A2 △ B2

))
≤ 2ε,

for every n.
We have νn → ν, where ν denotes λ put on the diagonal.
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Basic idea (2)

Consider a compact group (G ,⊕) with its Haar measure λ. We
work in G × G .

y

the limit measure ν = ν0 is on the diagonal.
νy is the limit measure on the shifted diagonal
{(x , x ⊕ y) : y ∈ G}.
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Finally, . . .

Suppose that K = K1 = K2 and φ : K → G is a continuous
surjection onto a group G .

Consider the Haar measure λ on G and the product group
G × G .

Find λ′ ∈ P(K ) such that φ[λ′] = λ and
Σ = {φ−1[A] : A ∈ Bor(G )} is △-dense in Bor(K ).

Mimick the construction of νy to get µy ∈ P(K × K ).

Consider θ : K × K → G × G , θ(x1, x2) = φ(x2) ⊖ φ(x1).

Then {g ◦ θ : g ∈ C (G )} is complemented in C (K × K )
because we have the mapping y 7→ µy ∈ P(K × K ).
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Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra clop(K ) admits a Boolean
homomorphism onto a free product A1 ⊗ A2 of nonatomic
Boolean algebras then C (K ) has a complemented subspace
isomorphic to C [0, 1].

Let K be the double arrow space
K =

(
(0, 1] × {0}

)
∪
(
[0, 1) × {1}

)
.

The projection φ : K → [0, 1] defines an isometric embedding of
C [0, 1] onto an uncomplemented subspace X of C (K ). In fact
there is no complemented separable superspace Y ⊇ X , see
Kalenda and Kubís (2012).
On the other hand, Marciszewski (2008) proved that
C (K ) = C [0, 1] ⊕ C (K ).
The above corollary does not work here: K does not contain a
product of two non-scattered compacta, see e.g. Mart́ınez
Cervantes and GP (2019).
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Problems

Question

Can we (reasonably) characterize nonmetrizable spaces K such
that C (K ) contains a complemented copy of C [0, 1]?

Question

Does C (βω × βω) contains a complemented copy of C (K ) for
every separable K?
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Measure-theoretic tool

Consider a continuous surjection φ : K → L and ν ∈ P(L). How
we find µ ∈ P(K ) such that φ[µ] = ν and the σ-algebra

Σ = {φ−1[A] : A ∈ Bor(L)}

is △-dense in Bor(K ) with respect to µ?
A quick way: the set M = {µ ∈ P(K ) : φ[µ] = ν} is closed and
convex and if µ is an extreme point of M then it is as required.
Alternatively, define µ0 on Σ by the required formula.
Then extend µ0 to a Borel measure preserving the density
condition.
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