Dopełnialne podprzestrzenie $C(K \times L)$

Grzegorz Plebanek

Uniwersytet Wrocławski

współautorzy Jakub Rondoš and Damian Sobota (KGRC, Wien)

9KMP, sesja Przestrzenie Banacha (wrzesień 2024)

イロン イロン イヨン イヨン 三日

Grothendieck spaces

Here K, L always stand for compact Hausdorff spaces; by C(K) we denote the Banach space of all real-valued continuous functions on K.

イロト イヨト イヨト イヨト 三日

Here K, L always stand for compact Hausdorff spaces; by C(K) we denote the Banach space of all real-valued continuous functions on K.

A Banach space X is *Grothendieck* if every $weak^*$ converging sequence in X^* converges weakly.

Here K, L always stand for compact Hausdorff spaces; by C(K) we denote the Banach space of all real-valued continuous functions on K.

A Banach space X is *Grothendieck* if every $weak^*$ converging sequence in X^* converges weakly.

For the zero-dimensional space K:

The space C(K) is Grothendieck iff for every bounded sequence of (signed regular Borel measures of finite variation) measures μ_n

$$(\forall A \in \operatorname{clop}(K)) \lim_{n} \mu_n(A) = 0 \Longrightarrow (\forall B \in Bor(K)) \lim_{n} \mu_n(B) = 0.$$

イロト イヨト イヨト イヨト 三日

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Fact

Fact

C(K) is Grothendieck iff C(K) does not contain a complemented copy of c_0 .

イロト イヨト イヨト イヨト ヨー わらの

Fact

C(K) is Grothendieck iff C(K) does not contain a complemented copy of c_0 .

Theorem

 $C(\beta\omega) \simeq \ell_{\infty}$ is a Grothendieck space.

Fact

C(K) is Grothendieck iff C(K) does not contain a complemented copy of c_0 .

Theorem

 $C(\beta\omega) \simeq \ell_{\infty}$ is a Grothendieck space.

Typical examples of C(K) Grothenideck spaces are C(K) where K is zero-dimensional and the algebra clop(K) has some weak 'sequential completeness property', see Koszmider & Shelah (2013) and González & Kania (2021).

The space c_0 inside $C(K \times L)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The space c_0 inside $C(K \times L)$

Theorem (Cembranos, Freniche [1984])

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 .

イロト イヨト イヨト イヨト 三日

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 . In particular, $C(\beta \omega \times \beta \omega)$ is not Grothendieck, it contains a complemented copy of c_0 .

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 . In particular, $C(\beta \omega \times \beta \omega)$ is not Grothendieck, it contains a complemented copy of c_0 .

Alspach and Galego (2011):

Does $C(\beta\omega \times \beta\omega)$ contain complemented copies of other separable (infinite-dimensional) Banach spaces?

●●● ● ▲田● ▲田● ▲国● ▲日●

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Corollary

- < ロ > < 回 > < 三 > < 三 > 三 の < C

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^{c})$.

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^{c})$. so, in particular,

イロト イヨト イヨト イヨト 三日

• a complemented copy of C([0,1]);

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^{c})$. so, in particular,

- a complemented copy of C([0,1]);
- **2** a complemented copy of C(L) for every metrizable compactum *L*.

イロト イヨト イヨト イヨト 三日

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^{\mathfrak{c}})$. so, in particular,

- a complemented copy of C([0,1]);
- **2** a complemented copy of C(L) for every metrizable compactum *L*.
- $C(\beta\omega \times \beta\omega)$ is not separably injective (Peter Scholze, unpublished).

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^{\mathfrak{c}})$. so, in particular,

- a complemented copy of C([0,1]);
- **2** a complemented copy of C(L) for every metrizable compactum *L*.
- $C(\beta\omega \times \beta\omega)$ is not separably injective (Peter Scholze, unpublished).

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^{\mathfrak{c}})$. so, in particular,

- a complemented copy of C([0,1]);
- **2** a complemented copy of C(L) for every metrizable compactum L.
- $C(\beta\omega \times \beta\omega)$ is not separably injective (Peter Scholze, unpublished).

Recall that

• *C*(*L*) is isomorphic to *C*[0,1] whenever *L* is uncountable compact metrizable space;

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^{\mathfrak{c}})$. so, in particular,

- a complemented copy of C([0,1]);
- **a** complemented copy of C(L) for every metrizable compactum *L*.
- $C(\beta\omega \times \beta\omega)$ is not separably injective (Peter Scholze, unpublished).

Recall that

- *C*(*L*) is isomorphic to *C*[0,1] whenever *L* is uncountable compact metrizable space;
- there are uncountably many pairwise non-isomorphic C(L) spaces where L is compact and countable.

Our result

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0, 1]^{\kappa}$, then C(K) contains a complemented copy of $C([0, 1]^{\kappa})$.

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0, 1]^{\kappa}$, then C(K) contains a complemented copy of $C([0, 1]^{\kappa})$.

イロト イヨト イヨト イヨト 三日

Main Theorem

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0, 1]^{\kappa}$, then C(K) contains a complemented copy of $C([0, 1]^{\kappa})$.

Main Theorem

Suppose that compact spaces K_1, K_2 can be continuously mapped onto some compact topological group G.

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0, 1]^{\kappa}$, then C(K) contains a complemented copy of $C([0, 1]^{\kappa})$.

Main Theorem

Suppose that compact spaces K_1 , K_2 can be continuously mapped onto some compact topological group G. Then $C(K_1 \times K_2)$ contains a complemented **isometric** copy of the space C(G).

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding.

イロト イヨト イヨト イヨト 三日

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y)) = 1$ for every $y \in L$ then C(L) is embedded onto a complemented subspace of C(K).

イロン イロン イヨン イヨン 三日

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y)) = 1$ for every $y \in L$ then C(L) is embedded onto a complemented subspace of C(K).

Proof.

$$T: C(K) \to C(L), \quad Tf(y) = \int_{K} f \, \mathrm{d}\mu_{y},$$
$$P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.$$

イロン イロン イヨン イヨン 三日

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y)) = 1$ for every $y \in L$ then C(L) is embedded onto a complemented subspace of C(K).

Proof.

$$T: C(K) \to C(L), \quad Tf(y) = \int_{K} f \, \mathrm{d}\mu_{y},$$
$$P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.$$

Then P is a projection onto (the copy of) C(L) because

Lemma (Pełczyński)

Suppose that $\varphi : K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y)) = 1$ for every $y \in L$ then C(L) is embedded onto a complemented subspace of C(K).

Proof.

$$T: C(K) \to C(L), \quad Tf(y) = \int_{K} f \, \mathrm{d}\mu_{y},$$
$$P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.$$

Then P is a projection onto (the copy of) C(L) because

$$T(g \circ \varphi)(y) = \int_{\mathcal{K}} g \circ \varphi \, \mathrm{d}\mu_y = g(y).$$
Two ingredients (2)

▲□▶▲□▶▲≣▶▲≣▶ ■ のQ@

Two ingredients (2)

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from P(K) onto P(L).

イロン イロン イヨン イヨン 三日

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from P(K) onto P(L). For every $\nu \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = \nu$ and the σ -algebra

$$\Sigma = \{\varphi^{-1}[A] : A \in Bor(L)\}$$

is \triangle -dense in Bor(K) with respect to μ .

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from P(K) onto P(L). For every $\nu \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = \nu$ and the σ -algebra

$$\Sigma = \{\varphi^{-1}[A] : A \in Bor(L)\}$$

イロン イロン イヨン イヨン 三日

is \triangle -dense in Bor(K) with respect to μ .

•
$$\varphi[\mu](A) = \mu(\varphi^{-1}[A])$$
 for $A \in Bor(L)$.

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from P(K) onto P(L). For every $\nu \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = \nu$ and the σ -algebra

$$\Sigma = \{\varphi^{-1}[A] : A \in Bor(L)\}$$

is \triangle -dense in Bor(K) with respect to μ .

- $\varphi[\mu](A) = \mu(\varphi^{-1}[A])$ for $A \in Bor(L)$.
- \triangle -density: For every $B \in Bor(K)$ and $\varepsilon > 0$ there is $S \in \Sigma$ such that $\mu(V \triangle S) < \varepsilon$.

イロト イヨト イヨト イヨト ヨー わらの

Basic idea

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ● ● ● ●

・ロト・日本・ヨト・ヨー シック

•	~

 ν_1 s the normalized restriction of $\lambda\otimes\lambda$ to the lightgray figure.

 ν_1 s the normalized restriction of $\lambda\otimes\lambda$ to the lightgray figure.

イロト イロト イヨト イヨト ヨー わへの

 ν_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure. ν_2 s the normalized restriction of $\lambda \otimes \lambda$ to the gray figure.

 ν_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure. ν_2 s the normalized restriction of $\lambda \otimes \lambda$ to the gray figure.

Properties of ν_n 's

Properties of ν_n 's

Every ν_n has λ as the marginal distributions:

Properties of ν_n 's

Every ν_n has λ as the marginal distributions:

$$\nu_n(A \times [0,1]) = \nu_n([0,1] \times A) = \lambda(A)$$

・ロト ・回ト ・ヨト ・ヨト 三日

for every Borel $A \subseteq [0, 1]$.

Every ν_n has λ as the marginal distributions:

$$\nu_n(A \times [0,1]) = \nu_n([0,1] \times A) = \lambda(A)$$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

for every Borel $A \subseteq [0,1]$. Consequently, if $\lambda(A_1 \bigtriangleup B_1) < \varepsilon$ and $\lambda(A_2 \bigtriangleup B_2) < \varepsilon$ then Every ν_n has λ as the marginal distributions:

$$\nu_n(A \times [0,1]) = \nu_n([0,1] \times A) = \lambda(A)$$

for every Borel $A \subseteq [0, 1]$. Consequently, if $\lambda(A_1 \bigtriangleup B_1) < \varepsilon$ and $\lambda(A_2 \bigtriangleup B_2) < \varepsilon$ then

$$egin{aligned} &
u_n\Bigl(ig(A_1 imes A_2ig)igtriangle & (B_1 imes B_2ig)\Bigr) \leq \ & \leq
u_n\Bigl(ig(A_1igtriangle B_1ig) imes [0,1]\Bigr) +
u_n\Bigl([0,1] imesig(A_2igtriangle B_2ig)\Bigr) \leq 2arepsilon, \end{aligned}$$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

for every *n*.

Every ν_n has λ as the marginal distributions:

$$\nu_n(A\times[0,1])=\nu_n([0,1]\times A)=\lambda(A)$$

for every Borel $A \subseteq [0, 1]$. Consequently, if $\lambda(A_1 \bigtriangleup B_1) < \varepsilon$ and $\lambda(A_2 \bigtriangleup B_2) < \varepsilon$ then

$$u_n \Big((A_1 \times A_2) \bigtriangleup (B_1 \times B_2) \Big) \le$$

 $\le \nu_n \Big((A_1 \bigtriangleup B_1) \times [0, 1] \Big) + \nu_n \Big([0, 1] \times (A_2 \bigtriangleup B_2) \Big) \le 2\varepsilon,$

for every *n*.

We have $\nu_n \rightarrow \nu$, where ν denotes λ put on the diagonal.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

イロト イヨト イヨト イヨト 二日

the limit measure $\nu = \nu^0$ is on the diagonal.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

・ロト ・回 ト ・ ヨト ・ ヨト ・ ヨ

the limit measure $\nu = \nu^0$ is on the diagonal.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

the limit measure $\nu = \nu^0$ is on the diagonal. ν^y is the limit measure on the shifted diagonal $\{(x, x \oplus y) : y \in G\}.$

Finally, ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Consider the Haar measure λ on G and the product group $G \times G$.

• Consider the Haar measure λ on G and the product group $G \times G$.

イロト イロト イヨト イヨト ヨー わへの

• Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of ν^{y} to get $\mu^{y} \in P(K \times K)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of ν^{y} to get $\mu^{y} \in P(K \times K)$.
- Consider $\theta: K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \ominus \varphi(x_1)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of ν^{y} to get $\mu^{y} \in P(K \times K)$.
- Consider $\theta: K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \ominus \varphi(x_1)$.
- Then {g ∘ θ : g ∈ C(G)} is complemented in C(K × K) because we have the mapping y → μ^y ∈ P(K × K).

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of ν^{y} to get $\mu^{y} \in P(K \times K)$.
- Consider $\theta: K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \ominus \varphi(x_1)$.
- Then {g ∘ θ : g ∈ C(G)} is complemented in C(K × K) because we have the mapping y → μ^y ∈ P(K × K).

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of ν^{y} to get $\mu^{y} \in P(K \times K)$.
- Consider $\theta: K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \ominus \varphi(x_1)$.
- Then {g ∘ θ : g ∈ C(G)} is complemented in C(K × K) because we have the mapping y → μ^y ∈ P(K × K).

Zero-dimensional case

・ロト・日本・モト・モー・ しょうくや

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0, 1].

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0, 1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$
Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0, 1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$ The projection $\varphi : K \to [0,1]$ defines an isometric embedding of C[0,1] onto an uncomplemented subspace X of C(K).

イロト イヨト イヨト イヨト ヨー わらの

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0, 1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$ The projection $\varphi : K \to [0,1]$ defines an isometric embedding of C[0,1] onto an uncomplemented subspace X of C(K). In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012).

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0, 1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\}).$ The projection $\varphi : K \to [0,1]$ defines an isometric embedding of C[0,1] onto an uncomplemented subspace X of C(K). In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012). On the other hand, Marciszewski (2008) proved that $C(K) = C[0,1] \oplus C(K).$

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0, 1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1] \times \{1\}).$ The projection $\varphi: \mathcal{K} \to [0,1]$ defines an isometric embedding of C[0,1] onto an uncomplemented subspace X of C(K). In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012). On the other hand, Marciszewski (2008) proved that $C(K) = C[0,1] \oplus C(K).$ The above corollary does not work here: K does not contain a product of two non-scattered compacta, see e.g. Martínez

Cervantes and GP (2019).

Problems

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Question

Can we (reasonably) characterize nonmetrizable spaces K such that C(K) contains a complemented copy of C[0, 1]?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question

Can we (reasonably) characterize nonmetrizable spaces K such that C(K) contains a complemented copy of C[0, 1]?

Question

Does $C(\beta\omega \times \beta\omega)$ contains a complemented copy of C(K) for every separable K?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Measure-theoretic tool

・ロト・日本・モー・モー ショー ショー

Consider a continuous surjection $\varphi : K \to L$ and $\nu \in P(L)$.

・ロト・日本・ヨト・ヨー シック

$$\Sigma = \{\varphi^{-1}[A] : A \in Bor(L)\}$$

イロト イヨト イヨト イヨト ヨー わらの

is \triangle -dense in Bor(K) with respect to μ ?

$$\Sigma = \{\varphi^{-1}[A] : A \in Bor(L)\}$$

is \triangle -dense in Bor(K) with respect to μ ? A quick way: the set $M = \{\mu \in P(K) : \varphi[\mu] = \nu\}$ is closed and convex and if μ is an extreme point of M then it is as required.

$$\Sigma = \{\varphi^{-1}[A] : A \in Bor(L)\}$$

is \triangle -dense in Bor(K) with respect to μ ? A quick way: the set $M = \{\mu \in P(K) : \varphi[\mu] = \nu\}$ is closed and convex and if μ is an extreme point of M then it is as required. Alternatively, define μ_0 on Σ by the required formula.

$$\Sigma = \{\varphi^{-1}[A] : A \in Bor(L)\}$$

is \triangle -dense in Bor(K) with respect to μ ? A quick way: the set $M = \{\mu \in P(K) : \varphi[\mu] = \nu\}$ is closed and convex and if μ is an extreme point of M then it is as required. Alternatively, define μ_0 on Σ by the required formula. Then extend μ_0 to a Borel measure preserving the density condition.