Complemented subspaces of $C(K \times L)$

Grzegorz Plebanek

University of Wrocław

joint work with Jakub Rondoš and Damian Sobota (KGRC, Wien)

Methods in Banach spaces, Badajoz (June 2024)

Here K, L always stand for compact Hausdorff spaces; by C(K) we denote the Banach space of all real-valued continuous functions on K.

Here K, L always stand for compact Hausdorff spaces; by C(K) we denote the Banach space of all real-valued continuous functions on K.

A Banach space X is *Grothendieck* if every *weak** converging sequence in X* converges weakly.

Here K, L always stand for compact Hausdorff spaces; by C(K) we denote the Banach space of all real-valued continuous functions on K.

A Banach space X is *Grothendieck* if every *weak** converging sequence in X* converges weakly.

The space C(K) is Grothendieck iff for every sequence of (signed regular Borel measures of bounded variation) measures μ_n satisfying $\int_K f \, \mathrm{d}\mu_n \to 0$ for $f \in C(K)$ we have $\lim_n \mu_n(B) = 0$ for $B \in Bor(K)$.

Here K, L always stand for compact Hausdorff spaces; by C(K) we denote the Banach space of all real-valued continuous functions on K.

A Banach space X is *Grothendieck* if every *weak** converging sequence in X* converges weakly.

The space C(K) is Grothendieck iff for every sequence of (signed regular Borel measures of bounded variation) measures μ_n satisfying $\int_K f \, \mathrm{d}\mu_n \to 0$ for $f \in C(K)$ we have $\lim_n \mu_n(B) = 0$ for $B \in Bor(K)$.

Here K, L always stand for compact Hausdorff spaces; by C(K) we denote the Banach space of all real-valued continuous functions on K.

A Banach space X is *Grothendieck* if every *weak** converging sequence in X* converges weakly.

The space C(K) is Grothendieck iff for every sequence of (signed regular Borel measures of bounded variation) measures μ_n satisfying $\int_K f \, \mathrm{d}\mu_n \to 0$ for $f \in C(K)$ we have $\lim_n \mu_n(B) = 0$ for $B \in Bor(K)$.

For the zero-dimensional space K:

The space C(K) is Grothendieck iff for every sequence of (signed regular Borel measures of bounded variation) measures μ_n

$$\left(\forall A \in \operatorname{clop}(K)\right) \lim_n \mu_n(A) = 0 \Longrightarrow \left(\forall B \in \operatorname{Bor}(K)\right) \lim_n \mu_n(B) = 0.$$

Fact

Fact

C(K) is Grothendieck iff C(K) does not contain a complemented copy of c_0 .

Fact

C(K) is Grothendieck iff C(K) does not contain a complemented copy of c_0 .

Theorem

 $C(\beta\omega)\simeq\ell_\infty$ is a Grothendieck space.

Fact

C(K) is Grothendieck iff C(K) does not contain a complemented copy of c_0 .

$\mathsf{Theorem}$

 $C(\beta\omega)\simeq\ell_{\infty}$ is a Grothendieck space.

Typical examples of C(K) Grothenideck spaces are C(K) where K is zero-dimensional and the algebra $\operatorname{clop}(K)$ has some weak 'sequential completeness property', see Koszmider & Shelah (2013) and González & Kania (2021).

```
Theorem (Cembranos, Freniche [1984])
```

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 .

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 .

In particular, $C(\beta \omega \times \beta \omega)$ is not Grothendieck, it contains a complemented copy of c_0 .

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_0 .

In particular, $C(\beta \omega \times \beta \omega)$ is not Grothendieck, it contains a complemented copy of c_0 .

Alspach and Galego (2011):

Does $C(\beta \omega \times \beta \omega)$ contain complemented copies of other separable (infinite-dimensional) Banach spaces?

```
Corollary
```

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$.

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C\big([0,1]^{\mathfrak{c}}\big)$. so, in particular,

• a complemented copy of C([0,1]);

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- a complemented copy of C([0,1]);
- a complemented copy of C(L) for every metrizable compactum L.

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- a complemented copy of C([0,1]);
- a complemented copy of C(L) for every metrizable compactum L.

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- a complemented copy of C([0,1]);
- a complemented copy of C(L) for every metrizable compactum L.

Recall that

 C(L) is isomorphic to C[0,1] whenever L is uncountable compact metrizable space;

Corollary

 $C(\beta\omega \times \beta\omega)$ contains a complemented copy of $C([0,1]^c)$. so, in particular,

- a complemented copy of C([0,1]);
- a complemented copy of C(L) for every metrizable compactum L.

Recall that

- C(L) is isomorphic to C[0,1] whenever L is uncountable compact metrizable space;
- there are uncountably many pairwise non-isomorphic C(L) spaces where L is compact and countable.

Theorem

Theorem

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0,1]^{\kappa}$, then C(K) contains a complemented copy of $C([0,1]^{\kappa})$.

Theorem

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0,1]^{\kappa}$, then C(K) contains a complemented copy of $C([0,1]^{\kappa})$.

Main Theorem

$\mathsf{Theorem}$

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0,1]^{\kappa}$, then C(K) contains a complemented copy of $C([0,1]^{\kappa})$.

Main Theorem

Suppose that compact spaces K_1, K_2 can be continuously mapped onto some compact topological group G.

$\mathsf{Theorem}$

If K contains a homeomorphic copy of $K_1 \times K_2$, where, for some κ , K_1 and K_2 admit continuous surjection onto $[0,1]^{\kappa}$, then C(K) contains a complemented copy of $C([0,1]^{\kappa})$.

Main Theorem

Suppose that compact spaces K_1, K_2 can be continuously mapped onto some compact topological group G.

Then $C(K_1 \times K_2)$ contains a complemented **isometric** copy of the space C(G).

Lemma (Pełczyński)

Suppose that $\varphi: K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding.

Lemma (Pełczyński)

Suppose that $\varphi: K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y)) = 1$ for every $y \in L$ then C(L) is embedded onto a complemented subspace of C(K).

Lemma (Pełczyński)

Suppose that $\varphi: K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y)) = 1$ for every $y \in L$ then C(L) is embedded onto a complemented subspace of C(K).

Proof.

$$T: C(K) \to C(L), \quad Tf(y) = \int_K f \, \mathrm{d}\mu_y,$$

 $P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.$

Lemma (Pełczyński)

Suppose that $\varphi: K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y)) = 1$ for every $y \in L$ then C(L) is embedded onto a complemented subspace of C(K).

Proof.

$$T: C(K) \to C(L), \quad Tf(y) = \int_K f \, \mathrm{d}\mu_y,$$

 $P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.$

Then P is a projection onto (the copy of) C(L) because

Lemma (Pełczyński)

Suppose that $\varphi: K \to L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding. If there is a continuous mapping $L \ni y \mapsto \mu_y \in P(K)$ such that $\mu_y(\varphi^{-1}(y)) = 1$ for every $y \in L$ then C(L) is embedded onto a complemented subspace of C(K).

Proof.

$$T: C(K) \to C(L), \quad Tf(y) = \int_K f \, d\mu_y,$$

 $P: C(K) \to C(K), \quad Pf = (Tf) \circ \varphi.$

Then P is a projection onto (the copy of) C(L) because

$$T(g \circ \varphi)(y) = \int_{K} g \circ \varphi \, \mathrm{d}\mu_{y} = g(y).$$

Proposition.

If $\varphi: K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from P(K) onto P(L).

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from P(K) onto P(L).

For every $v \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = v$ and the σ -algebra

$$\Sigma = \{ \varphi^{-1}[A] : A \in Bor(L) \}$$

is \triangle -dense in Bor(K) with respect to μ .

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from P(K) onto P(L).

For every $v \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = v$ and the σ -algebra

$$\Sigma = \{ \varphi^{-1}[A] : A \in Bor(L) \}$$

is \triangle -dense in Bor(K) with respect to μ .

• $\varphi[\mu](A) = \mu(\varphi^{-1}[A])$ for $A \in Bor(L)$.

Proposition.

If $\varphi : K \to L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from P(K) onto P(L).

For every $v \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu] = v$ and the σ -algebra

$$\Sigma = \{ \varphi^{-1}[A] : A \in Bor(L) \}$$

is \triangle -dense in Bor(K) with respect to μ .

- $\varphi[\mu](A) = \mu(\varphi^{-1}[A])$ for $A \in Bor(L)$.
- \triangle -density: For every $B \in Bor(K)$ and $\varepsilon > 0$ there is $S \in \Sigma$ such that $\mu(V \triangle S) < \varepsilon$.

Consider the unit square with the two dimensional Lebesgue measure $v_0 = \lambda \otimes \lambda$.

Consider the unit square measure $v_0 = \lambda \otimes \lambda$.	with the two dimensional Lebesgue
<u> </u>	

Consider the unit square with the two dimensional Lebesgue measure $\nu_0=\lambda\otimes\lambda.$

 v_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure.

Consider the unit square with the two dimensional Lebesgue measure $v_0 = \lambda \otimes \lambda$.

 v_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure.

Consider the unit square with the two dimensional Lebesgue measure $v_0 = \lambda \otimes \lambda$.

 v_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure. v_2 s the normalized restriction of $\lambda \otimes \lambda$ to the gray figure.

Consider the unit square with the two dimensional Lebesgue measure $v_0 = \lambda \otimes \lambda$.

 v_1 s the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure. v_2 s the normalized restriction of $\lambda \otimes \lambda$ to the gray figure.

Every v_n has λ as the marginal distributions:

Every v_n has λ as the marginal distributions:

$$v_n(A \times [0,1]) = v_n([0,1] \times A) = \lambda(A)$$

for every Borel $A \subseteq [0,1]$.

Every v_n has λ as the marginal distributions:

$$\nu_n(A\times[0,1])=\nu_n([0,1]\times A)=\lambda(A)$$

for every Borel $A\subseteq [0,1]$. Consequently, if $\lambda(A_1 \triangle B_1) < \varepsilon$ and $\lambda(A_2 \triangle B_2) < \varepsilon$ then

Every v_n has λ as the marginal distributions:

$$v_n(A\times[0,1])=v_n([0,1]\times A)=\lambda(A)$$

for every Borel $A \subseteq [0,1]$.

Consequently, if $\lambda(A_1 \triangle B_1) < \varepsilon$ and $\lambda(A_2 \triangle B_2) < \varepsilon$ then

$$v_n\Big(\big(A_1\times A_2\big)\triangle\big(B_1\times B_2\big)\Big)\leq$$

$$\leq v_n\Big(\big(A_1 \triangle B_1\big) \times [0,1]\Big) + v_n\Big([0,1] \times \big(A_2 \triangle B_2\big)\Big) \leq 2\varepsilon,$$

for every n.

Every v_n has λ as the marginal distributions:

$$v_n(A\times[0,1])=v_n([0,1]\times A)=\lambda(A)$$

for every Borel $A \subseteq [0,1]$.

Consequently, if $\lambda(A_1 \triangle B_1) < \varepsilon$ and $\lambda(A_2 \triangle B_2) < \varepsilon$ then

$$v_n\Big(\big(A_1\times A_2\big)\triangle\big(B_1\times B_2\big)\Big)\leq$$

$$\leq v_n\Big(\big(A_1 \triangle B_1\big) \times [0,1]\Big) + v_n\Big([0,1] \times \big(A_2 \triangle B_2\big)\Big) \leq 2\varepsilon,$$

for every n.

We have $v_n \rightarrow v$, where v denotes λ put on the diagonal.

Consider a compact group (G, \oplus) with its Haar measure λ . We work in $G \times G$.

Consider a compact group (G,\oplus) with its Haar measure λ . We work in $G\times G$.

Consider a compact group (G,\oplus) with its Haar measure λ . We work in $G \times G$.

the limit measure $v = v^0$ is on the diagonal.

Consider a compact group (G,\oplus) with its Haar measure λ . We work in $G \times G$.

the limit measure $v = v^0$ is on the diagonal.

Consider a compact group (G,\oplus) with its Haar measure λ . We work in $G \times G$.

the limit measure $v = v^0$ is on the diagonal.

 v^y is the limit measure on the shifted diagonal $\{(x, x \oplus y) : y \in G\}$.

Suppose that $K = K_1 = K_2$ and $\varphi : K \to G$ is a continuous surjection onto a group G.

• Consider the Haar measure λ on G and the product group $G \times G$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of v^y to get $\mu^y \in P(K \times K)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of v^y to get $\mu^y \in P(K \times K)$.
- Consider $\theta: K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \ominus \varphi(x_1)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of v^y to get $\mu^y \in P(K \times K)$.
- Consider $\theta: K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \ominus \varphi(x_1)$.
- Then $\{g \circ \theta : g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^y \in P(K \times K)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of v^y to get $\mu^y \in P(K \times K)$.
- Consider $\theta: K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \ominus \varphi(x_1)$.
- Then $\{g \circ \theta : g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^y \in P(K \times K)$.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda' \in P(K)$ such that $\varphi[\lambda'] = \lambda$ and $\Sigma = \{\varphi^{-1}[A] : A \in Bor(G)\}$ is \triangle -dense in Bor(K).
- Mimick the construction of v^y to get $\mu^y \in P(K \times K)$.
- Consider $\theta: K \times K \to G \times G$, $\theta(x_1, x_2) = \varphi(x_2) \ominus \varphi(x_1)$.
- Then $\{g \circ \theta : g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^y \in P(K \times K)$.

Zero-dimensional case

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0,1].

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0,1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\})$.

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0,1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\})$. The projection $\varphi : K \to [0,1]$ defines an isometric embedding of C[0,1] onto an uncomplemented subspace X of C(K).

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0,1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\})$. The projection $\varphi : K \to [0,1]$ defines an isometric embedding of C[0,1] onto an uncomplemented subspace X of C(K). In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012).

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0,1].

Let K be the double arrow space $K = \big((0,1] \times \{0\}\big) \cup \big([0,1) \times \{1\}\big)$. The projection $\varphi: K \to [0,1]$ defines an isometric embedding of C[0,1] onto an uncomplemented subspace X of C(K). In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012). On the other hand, Marciszewski (2008) proved that

On the other hand, Marciszewski (2008) proved that $C(K) = C[0,1] \oplus C(K)$.

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ of nonatomic Boolean algebras then C(K) has a complemented subspace isomorphic to C[0,1].

Let K be the double arrow space $K = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\})$. The projection $\varphi : K \to [0,1]$ defines an isometric embedding of C[0,1] onto an uncomplemented subspace X of C(K). In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012).

On the other hand, Marciszewski (2008) proved that $C(K) = C[0,1] \oplus C(K)$.

The above corollary does not work here: K does not contain a product of two non-scattered compacta, see e.g. Martínez Cervantes and GP (2019).

Problems

Problems

Question

Can we (reasonably) characterize nonmetrizable spaces K such that C(K) contains a complemented copy of C[0,1]?

Problems

Question

Can we (reasonably) characterize nonmetrizable spaces K such that C(K) contains a complemented copy of C[0,1]?

Question

Does $C(\beta\omega \times \beta\omega)$ contains a complemented copy of C(K) for every separable K?

Consider a continuous surjection $\varphi: K \to L$ and $v \in P(L)$.

Consider a continuous surjection $\varphi: K \to L$ and $v \in P(L)$. How we find $\mu \in P(K)$ such that $\varphi[\mu] = v$ and the σ -algebra

$$\Sigma = \{ \phi^{-1}[A] : A \in Bor(L) \}$$

is \triangle -dense in Bor(K) with respect to μ ?

Consider a continuous surjection $\varphi: K \to L$ and $v \in P(L)$. How we find $\mu \in P(K)$ such that $\varphi[\mu] = v$ and the σ -algebra

$$\Sigma = \{ \varphi^{-1}[A] : A \in Bor(L) \}$$

is \triangle -dense in Bor(K) with respect to μ ? A quick way: the set $M = \{\mu \in P(K) : \varphi[\mu] = v\}$ is closed and convex and if μ is an extreme point of M then it is as required.

Consider a continuous surjection $\varphi: K \to L$ and $v \in P(L)$. How we find $\mu \in P(K)$ such that $\varphi[\mu] = v$ and the σ -algebra

$$\Sigma = \{ \phi^{-1}[A] : A \in Bor(L) \}$$

is \triangle -dense in Bor(K) with respect to μ ? A quick way: the set $M=\{\mu\in P(K): \phi[\mu]=v\}$ is closed and convex and if μ is an extreme point of M then it is as required. Alternatively, define μ_0 on Σ by the required formula.

Consider a continuous surjection $\varphi: K \to L$ and $v \in P(L)$. How we find $\mu \in P(K)$ such that $\varphi[\mu] = v$ and the σ -algebra

$$\Sigma = \{\phi^{-1}[A] : A \in \mathit{Bor}(L)\}$$

is \triangle -dense in Bor(K) with respect to μ ? A quick way: the set $M=\{\mu\in P(K): \phi[\mu]=v\}$ is closed and convex and if μ is an extreme point of M then it is as required. Alternatively, define μ_0 on Σ by the required formula. Then extend μ_0 to a Borel measure preserving the density condition.