Complemented subspaces of $C(K \times L)$

Grzegorz Plebanek

University of Wrocław

joint work with

Jakub Rondoš and Damian Sobota (KGRC, Wien)
Methods in Banach spaces, Badajoz (June 2024)

Grothendieck spaces

Grothendieck spaces

Here K, L always stand for compact Hausdorff spaces; by $C(K)$ we denote the Banach space of all real-valued continuous functions on K.

Grothendieck spaces

Here K, L always stand for compact Hausdorff spaces; by $C(K)$ we denote the Banach space of all real-valued continuous functions on K.
A Banach space X is Grothendieck if every weak* converging sequence in X^{*} converges weakly.

Grothendieck spaces

Here K, L always stand for compact Hausdorff spaces; by $C(K)$ we denote the Banach space of all real-valued continuous functions on K.
A Banach space X is Grothendieck if every weak* converging sequence in X^{*} converges weakly.
The space $C(K)$ is Grothendieck iff for every sequence of (signed regular Borel measures of bounded variation) measures μ_{n} satisfying $\int_{K} f \mathrm{~d} \mu_{n} \rightarrow 0$ for $f \in C(K)$ we have $\lim _{n} \mu_{n}(B)=0$ for $B \in \operatorname{Bor}(K)$.

Grothendieck spaces

Here K, L always stand for compact Hausdorff spaces; by $C(K)$ we denote the Banach space of all real-valued continuous functions on K.
A Banach space X is Grothendieck if every weak* converging sequence in X^{*} converges weakly.
The space $C(K)$ is Grothendieck iff for every sequence of (signed regular Borel measures of bounded variation) measures μ_{n} satisfying $\int_{K} f \mathrm{~d} \mu_{n} \rightarrow 0$ for $f \in C(K)$ we have $\lim _{n} \mu_{n}(B)=0$ for $B \in \operatorname{Bor}(K)$.

Grothendieck spaces

Here K, L always stand for compact Hausdorff spaces; by $C(K)$ we denote the Banach space of all real-valued continuous functions on K.
A Banach space X is Grothendieck if every weak* converging sequence in X^{*} converges weakly.
The space $C(K)$ is Grothendieck iff for every sequence of (signed regular Borel measures of bounded variation) measures μ_{n} satisfying $\int_{K} f \mathrm{~d} \mu_{n} \rightarrow 0$ for $f \in C(K)$ we have $\lim _{n} \mu_{n}(B)=0$ for $B \in \operatorname{Bor}(K)$.

For the zero-dimensional space K :

The space $C(K)$ is Grothendieck iff for every sequence of (signed regular Borel measures of bounded variation) measures μ_{n}

$$
(\forall A \in \operatorname{clop}(K)) \lim _{n} \mu_{n}(A)=0 \Longrightarrow(\forall B \in \operatorname{Bor}(K)) \lim _{n} \mu_{n}(B)=0
$$

c_{0} and Grothendieck $C(K)$ spaces

Fact

c_{0} and Grothendieck $C(K)$ spaces

Fact

$C(K)$ is Grothendieck iff $C(K)$ does not contain a complemented copy of c_{0}.

c_{0} and Grothendieck $C(K)$ spaces

Fact

$C(K)$ is Grothendieck iff $C(K)$ does not contain a complemented copy of c_{0}.

Theorem

$C(\beta \omega) \simeq \ell_{\infty}$ is a Grothendieck space.

c_{0} and Grothendieck $C(K)$ spaces

Fact

$C(K)$ is Grothendieck iff $C(K)$ does not contain a complemented copy of c_{0}.

Theorem

$C(\beta \omega) \simeq \ell_{\infty}$ is a Grothendieck space.
Typical examples of $C(K)$ Grothenideck spaces are $C(K)$ where K is zero-dimensional and the algebra $\operatorname{clop}(K)$ has some weak 'sequential completeness property', see Koszmider \& Shelah (2013) and González \& Kania (2021).

The space c_{0} inside $C(K \times L)$

The space c_{0} inside $C(K \times L)$

Theorem (Cembranos, Freniche [1984])

The space c_{0} inside $C(K \times L)$

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_{0}.

The space c_{0} inside $C(K \times L)$

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_{0}.
In particular, $C(\beta \omega \times \beta \omega)$ is not Grothendieck, it contains a complemented copy of c_{0}.

The space c_{0} inside $C(K \times L)$

Theorem (Cembranos, Freniche [1984])

For every infinite K and L the space $C(K \times L)$ contains a complemented copy of c_{0}.
In particular, $C(\beta \omega \times \beta \omega)$ is not Grothendieck, it contains a complemented copy of c_{0}.

Alspach and Galego (2011):

Does $C(\beta \omega \times \beta \omega)$ contain complemented copies of other separable (infinite-dimensional) Banach spaces?

Complemented subspaces of $C(\beta \omega \times \beta \omega)$?

Complemented subspaces of $C(\beta \omega \times \beta \omega)$?

Corollary

Complemented subspaces of $C(\beta \omega \times \beta \omega)$?

Corollary

$C(\beta \omega \times \beta \omega)$ contains a complemented copy of $C\left([0,1]^{c}\right)$.

Complemented subspaces of $C(\beta \omega \times \beta \omega)$?

Corollary

$C(\beta \omega \times \beta \omega)$ contains a complemented copy of $C\left([0,1]^{c}\right)$.
so, in particular,

- a complemented copy of $C([0,1])$;

Complemented subspaces of $C(\beta \omega \times \beta \omega)$?

Corollary

$C(\beta \omega \times \beta \omega)$ contains a complemented copy of $C\left([0,1]^{c}\right)$. so, in particular,

- a complemented copy of $C([0,1])$;
- a complemented copy of $C(L)$ for every metrizable compactum L.

Complemented subspaces of $C(\beta \omega \times \beta \omega)$?

Corollary

$C(\beta \omega \times \beta \omega)$ contains a complemented copy of $C\left([0,1]^{c}\right)$. so, in particular,

- a complemented copy of $C([0,1])$;
- a complemented copy of $C(L)$ for every metrizable compactum L.

Complemented subspaces of $C(\beta \omega \times \beta \omega)$?

Corollary

$C(\beta \omega \times \beta \omega)$ contains a complemented copy of $C\left([0,1]^{c}\right)$. so, in particular,

- a complemented copy of $C([0,1])$;
- a complemented copy of $C(L)$ for every metrizable compactum L.

Recall that

- $C(L)$ is isomorphic to $C[0,1]$ whenever L is uncountable compact metrizable space;

Complemented subspaces of $C(\beta \omega \times \beta \omega)$?

Corollary

$C(\beta \omega \times \beta \omega)$ contains a complemented copy of $C\left([0,1]^{c}\right)$. so, in particular,

- a complemented copy of $C([0,1])$;
- a complemented copy of $C(L)$ for every metrizable compactum L.

Recall that

- $C(L)$ is isomorphic to $C[0,1]$ whenever L is uncountable compact metrizable space;
- there are uncountably many pairwise non-isomorphic $C(L)$ spaces where L is compact and countable.

Our result

Our result

Theorem

Our result

Theorem

If K contains a homeomorphic copy of $K_{1} \times K_{2}$, where, for some κ, K_{1} and K_{2} admit continuous surjection onto $[0,1]^{\kappa}$, then $C(K)$ contains a complemented copy of $C\left([0,1]^{\kappa}\right)$.

Our result

Theorem

If K contains a homeomorphic copy of $K_{1} \times K_{2}$, where, for some κ, K_{1} and K_{2} admit continuous surjection onto $[0,1]^{\kappa}$, then $C(K)$ contains a complemented copy of $C\left([0,1]^{\kappa}\right)$.

Main Theorem

Our result

Theorem

If K contains a homeomorphic copy of $K_{1} \times K_{2}$, where, for some κ, K_{1} and K_{2} admit continuous surjection onto $[0,1]^{\kappa}$, then $C(K)$ contains a complemented copy of $C\left([0,1]^{\kappa}\right)$.

Main Theorem

Suppose that compact spaces K_{1}, K_{2} can be continuously mapped onto some compact topological group G.

Our result

Theorem

If K contains a homeomorphic copy of $K_{1} \times K_{2}$, where, for some κ, K_{1} and K_{2} admit continuous surjection onto $[0,1]^{\kappa}$, then $C(K)$ contains a complemented copy of $C\left([0,1]^{\kappa}\right)$.

Main Theorem

Suppose that compact spaces K_{1}, K_{2} can be continuously mapped onto some compact topological group G.
Then $C\left(K_{1} \times K_{2}\right)$ contains a complemented isometric copy of the space $C(G)$.

Two ingredients (1)

Two ingredients (1)

Lemma (Pełczyński)
Suppose that $\varphi: K \rightarrow L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding.

Two ingredients (1)

Lemma (Pełczyński)
Suppose that $\varphi: K \rightarrow L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding.
If there is a continuous mapping $L \ni y \mapsto \mu_{y} \in P(K)$ such that $\mu_{y}\left(\varphi^{-1}(y)\right)=1$ for every $y \in L$ then $C(L)$ is embedded onto a complemented subspace of $C(K)$.

Two ingredients (1)

Lemma (Pełczyński)

Suppose that $\varphi: K \rightarrow L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding.
If there is a continuous mapping $L \ni y \mapsto \mu_{y} \in P(K)$ such that $\mu_{y}\left(\varphi^{-1}(y)\right)=1$ for every $y \in L$ then $C(L)$ is embedded onto a complemented subspace of $C(K)$.

Proof.

$$
\begin{gathered}
T: C(K) \rightarrow C(L), \quad T f(y)=\int_{K} f \mathrm{~d} \mu_{y} \\
P: C(K) \rightarrow C(K), \quad P f=(T f) \circ \varphi .
\end{gathered}
$$

Two ingredients (1)

Lemma (Pełczyński)

Suppose that $\varphi: K \rightarrow L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding.
If there is a continuous mapping $L \ni y \mapsto \mu_{y} \in P(K)$ such that $\mu_{y}\left(\varphi^{-1}(y)\right)=1$ for every $y \in L$ then $C(L)$ is embedded onto a complemented subspace of $C(K)$.

Proof.

$$
\begin{gathered}
T: C(K) \rightarrow C(L), \quad T f(y)=\int_{K} f \mathrm{~d} \mu_{y} \\
P: C(K) \rightarrow C(K), \quad P f=(T f) \circ \varphi
\end{gathered}
$$

Then P is a projection onto (the copy of) $C(L)$ because

Two ingredients (1)

Lemma (Pełczyński)

Suppose that $\varphi: K \rightarrow L$ is a continuous surjection; then $C(L) \ni g \mapsto g \circ \varphi \in C(K)$ is an isometric embedding.
If there is a continuous mapping $L \ni y \mapsto \mu_{y} \in P(K)$ such that $\mu_{y}\left(\varphi^{-1}(y)\right)=1$ for every $y \in L$ then $C(L)$ is embedded onto a complemented subspace of $C(K)$.

Proof.

$$
\begin{gathered}
T: C(K) \rightarrow C(L), \quad T f(y)=\int_{K} f \mathrm{~d} \mu_{y} \\
P: C(K) \rightarrow C(K), \quad P f=(T f) \circ \varphi
\end{gathered}
$$

Then P is a projection onto (the copy of) $C(L)$ because

$$
T(g \circ \varphi)(y)=\int_{K} g \circ \varphi \mathrm{~d} \mu_{y}=g(y)
$$

Two ingredients（2）

Proposition.

If $\varphi: K \rightarrow L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from $P(K)$ onto $P(L)$.

Proposition.

If $\varphi: K \rightarrow L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from $P(K)$ onto $P(L)$.
For every $v \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu]=v$ and the σ-algebra

$$
\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(L)\right\}
$$

is \triangle-dense in $\operatorname{Bor}(K)$ with respect to μ.

Proposition.

If $\varphi: K \rightarrow L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from $P(K)$ onto $P(L)$.
For every $v \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu]=v$ and the σ-algebra

$$
\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(L)\right\}
$$

is \triangle-dense in $\operatorname{Bor}(K)$ with respect to μ.

- $\varphi[\mu](A)=\mu\left(\varphi^{-1}[A]\right)$ for $A \in \operatorname{Bor}(L)$.

Proposition.

If $\varphi: K \rightarrow L$ is a continuous surjection then $\mu \mapsto \varphi[\mu] \in P(L)$ is a continuous surjection from $P(K)$ onto $P(L)$.
For every $v \in P(L)$ there is $\mu \in P(K)$ such that $\varphi[\mu]=v$ and the σ-algebra

$$
\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(L)\right\}
$$

is \triangle-dense in $\operatorname{Bor}(K)$ with respect to μ.

- $\varphi[\mu](A)=\mu\left(\varphi^{-1}[A]\right)$ for $A \in \operatorname{Bor}(L)$.
- \triangle-density: For every $B \in \operatorname{Bor}(K)$ and $\varepsilon>0$ there is $S \in \Sigma$ such that $\mu(V \triangle S)<\varepsilon$.

Basic idea

Basic idea

Consider the unit square with the two dimensional Lebesgue measure $v_{0}=\lambda \otimes \lambda$.

Basic idea

Consider the unit square with the two dimensional Lebesgue measure $v_{0}=\lambda \otimes \lambda$.

Basic idea

Consider the unit square with the two dimensional Lebesgue measure $v_{0}=\lambda \otimes \lambda$.

$v_{1} \mathrm{~s}$ the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure.

Basic idea

Consider the unit square with the two dimensional Lebesgue measure $v_{0}=\lambda \otimes \lambda$.

$v_{1} \mathrm{~s}$ the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure.

Basic idea

Consider the unit square with the two dimensional Lebesgue measure $v_{0}=\lambda \otimes \lambda$.

$v_{1} \mathrm{~s}$ the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure. $\nu_{2} s$ the normalized restriction of $\lambda \otimes \lambda$ to the gray figure.

Basic idea

Consider the unit square with the two dimensional Lebesgue measure $v_{0}=\lambda \otimes \lambda$.

$v_{1} \mathrm{~s}$ the normalized restriction of $\lambda \otimes \lambda$ to the lightgray figure. $\nu_{2} s$ the normalized restriction of $\lambda \otimes \lambda$ to the gray figure.

Properties of v_{n} 's

Properties of v_{n} 's

Every v_{n} has λ as the marginal distributions:

Properties of v_{n} 's

Every v_{n} has λ as the marginal distributions:

$$
v_{n}(A \times[0,1])=v_{n}([0,1] \times A)=\lambda(A)
$$

for every Borel $A \subseteq[0,1]$.

Properties of v_{n} 's

Every v_{n} has λ as the marginal distributions:

$$
v_{n}(A \times[0,1])=v_{n}([0,1] \times A)=\lambda(A)
$$

for every Borel $A \subseteq[0,1]$.
Consequently, if $\lambda\left(A_{1} \triangle B_{1}\right)<\varepsilon$ and $\lambda\left(A_{2} \triangle B_{2}\right)<\varepsilon$ then

Every v_{n} has λ as the marginal distributions:

$$
v_{n}(A \times[0,1])=v_{n}([0,1] \times A)=\lambda(A)
$$

for every Borel $A \subseteq[0,1]$.
Consequently, if $\lambda\left(A_{1} \triangle B_{1}\right)<\varepsilon$ and $\lambda\left(A_{2} \triangle B_{2}\right)<\varepsilon$ then

$$
\begin{gathered}
v_{n}\left(\left(A_{1} \times A_{2}\right) \triangle\left(B_{1} \times B_{2}\right)\right) \leq \\
\leq v_{n}\left(\left(A_{1} \triangle B_{1}\right) \times[0,1]\right)+v_{n}\left([0,1] \times\left(A_{2} \triangle B_{2}\right)\right) \leq 2 \varepsilon
\end{gathered}
$$

for every n.

Every v_{n} has λ as the marginal distributions:

$$
v_{n}(A \times[0,1])=v_{n}([0,1] \times A)=\lambda(A)
$$

for every Borel $A \subseteq[0,1]$.
Consequently, if $\lambda\left(A_{1} \triangle B_{1}\right)<\varepsilon$ and $\lambda\left(A_{2} \triangle B_{2}\right)<\varepsilon$ then

$$
\begin{gathered}
v_{n}\left(\left(A_{1} \times A_{2}\right) \Delta\left(B_{1} \times B_{2}\right)\right) \leq \\
\leq v_{n}\left(\left(A_{1} \triangle B_{1}\right) \times[0,1]\right)+v_{n}\left([0,1] \times\left(A_{2} \triangle B_{2}\right)\right) \leq 2 \varepsilon
\end{gathered}
$$

for every n.
We have $v_{n} \rightarrow v$, where v denotes λ put on the diagonal.

Basic idea (2)

Basic idea (2)

Consider a compact group (G, \oplus) with its Haar measure λ. We work in $G \times G$.

Basic idea (2)

Consider a compact group (G, \oplus) with its Haar measure λ. We work in $G \times G$.

Basic idea (2)

Consider a compact group (G, \oplus) with its Haar measure λ. We work in $G \times G$.

the limit measure $v=v^{0}$ is on the diagonal.

Basic idea (2)

Consider a compact group (G, \oplus) with its Haar measure λ. We work in $G \times G$.

the limit measure $v=v^{0}$ is on the diagonal.

Basic idea (2)

Consider a compact group (G, \oplus) with its Haar measure λ. We work in $G \times G$.

the limit measure $v=v^{0}$ is on the diagonal.
v^{y} is the limit measure on the shifted diagonal $\{(x, x \oplus y): y \in G\}$.

Suppose that $K=K_{1}=K_{2}$ and $\varphi: K \rightarrow G$ is a continuous surjection onto a group G.

Suppose that $K=K_{1}=K_{2}$ and $\varphi: K \rightarrow G$ is a continuous surjection onto a group G.

- Consider the Haar measure λ on G and the product group $G \times G$.

Suppose that $K=K_{1}=K_{2}$ and $\varphi: K \rightarrow G$ is a continuous surjection onto a group G.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda^{\prime} \in P(K)$ such that $\varphi\left[\lambda^{\prime}\right]=\lambda$ and $\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(G)\right\}$ is \triangle-dense in $\operatorname{Bor}(K)$.

Suppose that $K=K_{1}=K_{2}$ and $\varphi: K \rightarrow G$ is a continuous surjection onto a group G.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda^{\prime} \in P(K)$ such that $\varphi\left[\lambda^{\prime}\right]=\lambda$ and $\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(G)\right\}$ is \triangle-dense in $\operatorname{Bor}(K)$.
- Mimick the construction of v^{y} to get $\mu^{y} \in P(K \times K)$.

Suppose that $K=K_{1}=K_{2}$ and $\varphi: K \rightarrow G$ is a continuous surjection onto a group G.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda^{\prime} \in P(K)$ such that $\varphi\left[\lambda^{\prime}\right]=\lambda$ and $\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(G)\right\}$ is \triangle-dense in $\operatorname{Bor}(K)$.
- Mimick the construction of v^{y} to get $\mu^{y} \in P(K \times K)$.
- Consider $\theta: K \times K \rightarrow G \times G, \theta\left(x_{1}, x_{2}\right)=\varphi\left(x_{2}\right) \ominus \varphi\left(x_{1}\right)$.

Suppose that $K=K_{1}=K_{2}$ and $\varphi: K \rightarrow G$ is a continuous surjection onto a group G.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda^{\prime} \in P(K)$ such that $\varphi\left[\lambda^{\prime}\right]=\lambda$ and $\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(G)\right\}$ is \triangle-dense in $\operatorname{Bor}(K)$.
- Mimick the construction of v^{y} to get $\mu^{y} \in P(K \times K)$.
- Consider $\theta: K \times K \rightarrow G \times G, \theta\left(x_{1}, x_{2}\right)=\varphi\left(x_{2}\right) \ominus \varphi\left(x_{1}\right)$.
- Then $\{g \circ \theta: g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^{y} \in P(K \times K)$.

Suppose that $K=K_{1}=K_{2}$ and $\varphi: K \rightarrow G$ is a continuous surjection onto a group G.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda^{\prime} \in P(K)$ such that $\varphi\left[\lambda^{\prime}\right]=\lambda$ and $\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(G)\right\}$ is \triangle-dense in $\operatorname{Bor}(K)$.
- Mimick the construction of v^{y} to get $\mu^{y} \in P(K \times K)$.
- Consider $\theta: K \times K \rightarrow G \times G, \theta\left(x_{1}, x_{2}\right)=\varphi\left(x_{2}\right) \ominus \varphi\left(x_{1}\right)$.
- Then $\{g \circ \theta: g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^{y} \in P(K \times K)$.

Suppose that $K=K_{1}=K_{2}$ and $\varphi: K \rightarrow G$ is a continuous surjection onto a group G.

- Consider the Haar measure λ on G and the product group $G \times G$.
- Find $\lambda^{\prime} \in P(K)$ such that $\varphi\left[\lambda^{\prime}\right]=\lambda$ and $\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(G)\right\}$ is \triangle-dense in $\operatorname{Bor}(K)$.
- Mimick the construction of v^{y} to get $\mu^{y} \in P(K \times K)$.
- Consider $\theta: K \times K \rightarrow G \times G, \theta\left(x_{1}, x_{2}\right)=\varphi\left(x_{2}\right) \ominus \varphi\left(x_{1}\right)$.
- Then $\{g \circ \theta: g \in C(G)\}$ is complemented in $C(K \times K)$ because we have the mapping $y \mapsto \mu^{y} \in P(K \times K)$.

Zero-dimensional case

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0,1]$.

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0,1]$.

Let K be the double arrow space $K=((0,1] \times\{0\}) \cup([0,1) \times\{1\})$.

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0,1]$.

Let K be the double arrow space $K=((0,1] \times\{0\}) \cup([0,1) \times\{1\})$. The projection $\varphi: K \rightarrow[0,1]$ defines an isometric embedding of $C[0,1]$ onto an uncomplemented subspace X of $C(K)$.

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0,1]$.

Let K be the double arrow space $K=((0,1] \times\{0\}) \cup([0,1) \times\{1\})$. The projection $\varphi: K \rightarrow[0,1]$ defines an isometric embedding of $C[0,1]$ onto an uncomplemented subspace X of $C(K)$. In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012).

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0,1]$.

Let K be the double arrow space $K=((0,1] \times\{0\}) \cup([0,1) \times\{1\})$. The projection $\varphi: K \rightarrow[0,1]$ defines an isometric embedding of $C[0,1]$ onto an uncomplemented subspace X of $C(K)$. In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012).
On the other hand, Marciszewski (2008) proved that $C(K)=C[0,1] \oplus C(K)$.

Zero-dimensional case

Corollary

If K is zero-dimensional and the algebra $\operatorname{clop}(K)$ admits a Boolean homomorphism onto a free product $\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}$ of nonatomic Boolean algebras then $C(K)$ has a complemented subspace isomorphic to $C[0,1]$.

Let K be the double arrow space $K=((0,1] \times\{0\}) \cup([0,1) \times\{1\})$.
The projection $\varphi: K \rightarrow[0,1]$ defines an isometric embedding of $C[0,1]$ onto an uncomplemented subspace X of $C(K)$. In fact there is no complemented separable superspace $Y \supseteq X$, see Kalenda and Kubiś (2012).
On the other hand, Marciszewski (2008) proved that $C(K)=C[0,1] \oplus C(K)$.
The above corollary does not work here: K does not contain a product of two non-scattered compacta, see e.g. Martínez Cervantes and GP (2019).

Problems

Problems

Question

Can we (reasonably) characterize nonmetrizable spaces K such that $C(K)$ contains a complemented copy of $C[0,1]$?

Question

Can we (reasonably) characterize nonmetrizable spaces K such that $C(K)$ contains a complemented copy of $C[0,1]$?

Question

Does $C(\beta \omega \times \beta \omega)$ contains a complemented copy of $C(K)$ for every separable K ?

Measure-theoretic tool

Measure-theoretic tool

Consider a continuous surjection $\varphi: K \rightarrow L$ and $v \in P(L)$.

Measure-theoretic tool

Consider a continuous surjection $\varphi: K \rightarrow L$ and $v \in P(L)$. How we find $\mu \in P(K)$ such that $\varphi[\mu]=v$ and the σ-algebra

$$
\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(L)\right\}
$$

is \triangle-dense in $\operatorname{Bor}(K)$ with respect to μ ?

Measure-theoretic tool

Consider a continuous surjection $\varphi: K \rightarrow L$ and $v \in P(L)$. How we find $\mu \in P(K)$ such that $\varphi[\mu]=v$ and the σ-algebra

$$
\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(L)\right\}
$$

is \triangle-dense in $\operatorname{Bor}(K)$ with respect to μ ?
A quick way: the set $M=\{\mu \in P(K): \varphi[\mu]=v\}$ is closed and convex and if μ is an extreme point of M then it is as required.

Measure-theoretic tool

Consider a continuous surjection $\varphi: K \rightarrow L$ and $v \in P(L)$. How we find $\mu \in P(K)$ such that $\varphi[\mu]=v$ and the σ-algebra

$$
\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(L)\right\}
$$

is \triangle-dense in $\operatorname{Bor}(K)$ with respect to μ ?
A quick way: the set $M=\{\mu \in P(K): \varphi[\mu]=v\}$ is closed and convex and if μ is an extreme point of M then it is as required. Alternatively, define μ_{0} on Σ by the required formula.

Measure-theoretic tool

Consider a continuous surjection $\varphi: K \rightarrow L$ and $v \in P(L)$. How we find $\mu \in P(K)$ such that $\varphi[\mu]=v$ and the σ-algebra

$$
\Sigma=\left\{\varphi^{-1}[A]: A \in \operatorname{Bor}(L)\right\}
$$

is \triangle-dense in $\operatorname{Bor}(K)$ with respect to μ ?
A quick way: the set $M=\{\mu \in P(K): \varphi[\mu]=v\}$ is closed and convex and if μ is an extreme point of M then it is as required. Alternatively, define μ_{0} on Σ by the required formula. Then extend μ_{0} to a Borel measure preserving the density condition.

