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Abstract. We investigate properties of those compact spaces K for which
the Banach space C(K) can be isomorphically embedded into a space C(L),
where L is Corson compact. We show that in such a case K must be Corson
compact provided K has some additional measure–theoretic property. The
result is applicable to Rosenthal compacta and several other classes of compact

spaces K.

1. Corson compacta and C(K) spaces

A compact space K is Corson compact if, for some cardinal number κ, K is
homeomorphic to a subset of the Σ–product of real lines

Σ(Rκ) = {x ∈ R
κ : |{α : xα �= 0}| ≤ ω}.

The class of Corson compacta has been intensively studied for its interesting topo-
logical properties and various connections to functional analysis; we refer the reader
to a basic paper [1] by Argyros, Mercourakis and Negrepontis, and to extensive sur-
veys by Negrepontis [19] and Kalenda [12]. In the sequel, we shall denote the class
of Corson compacta by C. Clearly, C is stable under compact subspaces; the class
C is also stable under continuous images (see e.g. [19], 6.26).

For a compact space K we denote by C(K) the Banach space of real–valued
continuous functions with the usual supremum norm. The dual space C(K)∗ is
identified with M(K), the space of all signed Radon measures of finite variation;
likewise, M1(K) is the unit ball of M(K), and P (K) denotes the space of Radon
probability measures on K. Thus every μ ∈ P (K) is treated as an inner regular
measure defined on the Borel σ–algebra Bor(K) of K. In the sequel, M1(K) and
P (K) are often treated as topological spaces, equipped with the weak∗ topology
inherited from C(K)∗. Note that we usually write μ(g) for

∫
K
g dμ. For any

x ∈ K we write δx ∈ P (K) for the corresponding Dirac measure; recall that
Δ(K) = {δx : x ∈ K} is a subspace of P (K) which is homeomorphic to K.

Suppose that L is Corson compact and K is another compact space such that
C(K) � C(L); i.e. they are isomorphic as Banach spaces. Must K be Corson
compact? This question has been around for several years; see e.g. 3.9 in [1], 6.45
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in Negrepontis [19] or Question 1 in Koszmider [13]. We shall consider the following
more general question.

Problem 1.1. Let L be Corson compact and suppose that for a compact space K
there is an isomorphic embedding C(K) ↪→ C(L). Must K be Corson compact?

We shall denote by C∗ the class of those compact spaces K for which there is
an embedding C(K) ↪→ C(L) for some L ∈ C; with that convention, Problem 1.1
amounts to asking whether C∗ = C. It is known that the answer ‘yes’ is consistent;
the result given below is due to Argyros et al. [1].

Theorem 1.2. Let L be a Corson compact space L; the following are equivalent:

(i) every μ ∈ P (L) has a separable support;
(ii) M1(L) is Corson compact.

Consequently, Martin’s axiom MA(ω1) implies that C∗ = C.

There is a long list of Corson compact spacesK constructed under CH (or weaker
axioms) for which P (K) (and M1(K)) is not Corson compact; see e.g. Haydon
[11], Kunen [14], Argyros et al. [1], Kunen and van Mill [15], Plebanek [21, 23].
Nonetheless, the question if Problem 1.1 can be resolved in ZFC remains open.

We note at this point that a list of compacta which plainly do not belong to
C∗ is rather short; let us name two such compacta and explain briefly why they
are outside C∗; we refer the reader to Talagrand [25] and Plebanek [20] for the
terminology and facts that are in use here. If L ∈ C, then the Banach space
C(L) is realcompact (in its weak topology); in fact C(L) has a stronger property,
called the Mazur property ([20]). Both realcompactness and the Mazur property
are preserved by taking closed linear subspaces. The space [0, ω1], of ordinals ≤ ω1

with the topology induced by order, is not in C∗ because C[0, ω1] is not realcompact.
Accordingly, βω /∈ C∗ as C(βω) does not have the Mazur property. Arguments of
this type have been recently used by Galego [8] to prove some structure results on
the spaces of continuous functions on dyadic compacta.

The split interval is another classical compactum which is not Corson compact
(since it is separable but not metrizable). In fact the split interval does not belong
to C∗, as will become clear in the sequel, as a corollary to the following result.

Theorem 1.3. If K ∈ C∗ \ C, then the compact space M1(K) carries a regular
measure, the support of which is not separable.

Proof. If T : C(K) → C(L) is an isomorphic embedding for some L ∈ C, then
we can as well assume that T [C(K)] separates the points of L. Indeed, define an
equivalence relation ∼ on L by saying that

t ∼ s if T (f)(t) = T (f)(s) for every f ∈ C(K).

Let L′ be the space of equivalence classes of ∼ and let q : L → L′ be the quotient
map. Then L′ = q[L] is Corson compact, and it suffices to notice that C(K)
embeds into C(L′). But this follows from the fact that if g ∈ C(L) is constant on
equivalence classes of ∼, then g = g′ ◦ q for some g′ ∈ C(L′).

Now, consider the conjugate map

T ∗ : M(L) → M(K), T ∗(ν)(f) = ν(Tf).

Since T is an isomorphic embedding, then T ∗ is surjective, and it follows that
M1(K) ⊆ c · T ∗[M1(L)] for some constant c > 0. As K is not Corson, the space
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M1(K), containing K topologically, is not Corson either; consequently, M1(L) is
not Corson compact.

By Theorem 1.2 there is a measure ν ∈ P (L) the support of which is not sep-
arable. Note that T ∗ is injective on Δ(L) = {δl : l ∈ L} since T [C(K)] separates
the points of L. Hence T ∗ defines a homeomorphic embedding of L ∼= Δ(L) into
rM1(K) for some r > 0. It follows that the space M1(K) admits a regular measure
which does not have separable support. �

Following [1] we say that a space K has property (M) if the support of every
μ ∈ P (K) is separable. Note that, however, here we mean ‘the’ support, i.e. the
smallest closed set of full measure (not just the fact that μ is concentrated on a
separable subspace; see the remark at the end of section 3). In view of Theorem 1.3
it is worth investigating for which compact spaces K the space M1(K) has property
(M).

Definition 1.4. Let us say that a compact space K has property (M∗) if the
support of every measure v ∈ P (M1(K)) is separable.

Using this terminology we can rephrase Theorem 1.3 as follows.

Corollary 1.5. If K has property (M∗) and K ∈ C∗, then K ∈ C.

2. Countably determined measures and property (M∗)

The property (M∗) introduced in the previous section may be investigated with
the help of the following concept from topological measure theory. A measure
μ ∈ P (K) is said to be countably determined if there is a countable family F of
closed sets such that

(†) μ(U) = sup{μ(F ) : F ⊆ U, F ∈ F},
for every open U ⊆ K; see Pol [24] and Mercourakis [18]. It will be convenient to
say, whenever (†) holds, that F approximates U from below (with respect to some
μ ∈ P (K), which is clear from the context).

We shall now recall several standard properties of countably determined mea-
sures.

Lemma 2.1. Let K be any compact space and μ ∈ P (K).

(a) If there is a countable family B of Borel sets approximating all open sets
from below, then μ is countably determined.

(b) If a countable family B ⊆ Bor(K) approximates from below each element of
some pseudobase H of the topology on K, then μ is countably determined.

(c) If μ is countably determined, then the support of μ is separable.

Moreover, the class of compact spaces on which every regular measure is count-
ably determined is finitely productive and closed under continuous images.

Proof. (a) follows immediately by regularity of μ. In (b) we note that the smallest
lattice L generated by B is countable and that L approximates from below the
lattice U generated by H, where U is a base closed under finite unions. By τ–
additivity of Radon measures, U approximates all open sets from below.

To check (c) we take a countable family F of closed sets of positive measure
witnessing that μ is countably determined. Let S ⊆ K be the support of μ; then
F ∩ S �= ∅ for F ∈ F and if we pick sF ∈ F ∩ S for every F ∈ F , then S is the
closure of {sF : F ∈ F}.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4284 W. MARCISZEWSKI AND G. PLEBANEK

The second part can be checked in a standard way; see Pol [24], Lemma 3.6. �

Now we have come to the main point of the section.

Theorem 2.2. Suppose that every μ ∈ P (K) is countably determined. Then K
has property (M∗).

The theorem follows directly from Lemma 2.1(c) and the following lemma, which
is due to Pol [24], Lemma 4.4; we enclose a (slightly different) proof of the latter.

Lemma 2.3. If every μ ∈ P (K) is countably determined, then every measure
v ∈ P (M1(K)) is again countably determined.

Proof. (1) We consider first measures v ∈ P (P (K)). In the sequel, x ∈ P (K)
always denotes a variable in the formulae.

For every g ∈ C(K) we write ϕg : P (K) → R for the continuous function given
by ϕg(x) = x(g) =

∫
K
g dx, for x ∈ P (K). We also consider mappings ϕh for

h : K → R which are not necessarily continuous. Observe that for any closed
F ⊆ K, ϕχF

is upper semicontinuous.
Every regular measure v on P (K) has a barycenter since P (K) is compact and

convex; see e.g. Diestel [4], Chapter IX. This (in particular) means that there is
μ ∈ P (K) such that for any g ∈ C(K) we have

(∗) ϕg(μ) = μ(g) =

∫

P (K)

x(g) dv(x).

If F ⊆ K is closed, then there is a downward directed family {ga : a ∈ A} ⊆ C(K),
such that χF = infa∈A ga; from this and (∗) one can conclude that

(∗∗) μ(F ) =

∫

P (K)

x(F ) dv(x).

In turn (∗∗) shows that the formula (∗) is valid for every ϕ = ϕh, where h is a
linear combination of χF , with F closed.

(2) Now fix v ∈ P (P (K)), and let μ be its barycenter. By our assumption, μ
is countably determined, so there is a countable family F of closed sets in K that
approximates all open sets from below. The family of the sets

H(g, r) = {x ∈ P (K) : x(g) > r}, where g ∈ C(K), g : K → [0, 1], r ∈ R,

is a pseudobase of the weak∗ topology of P (K). By Lemma 2.1 it is sufficient to
prove that the countable family consisting of sets

H(h, r), where h ∈ s(H) = {(1/n)
∑

i≤n

χFi
: n ∈ ω, Fi ∈ F},

approximates that pseudobase from below.
(3) Claim. Let g : K → [0, 1] be a continuous function. For every ε > 0 there is

h ∈ s(F) such that 0 ≤ h ≤ g and v{x ∈ P (K) : ϕg−h(x) > ε} < ε.
To prove the claim take n so that 1/n < ε2/2; for every i < n write Vi = {t ∈

K : g(t) > i/n} and choose Fi ∈ F so that Fi ⊆ Vi and
∑

i<n μ(Vi \ Fi) < ε2/2.
We have

h =
∑

i<n

χFi
≤

∑

i<n

χVi
< g <

∑

i<n

χVi
+ 1/n,
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and we shall check that h is as required. But the inequalities above yield that
μ(g − h) < ε2, so

∫

P (K)

ϕg−h dv = μ(g − h) < ε2,

and the claim follows from the Chebyshev inequality.
(4) Consider now H = H(g, r). Then

B =
⋃

h∈s(H),h<g

H(h, r) ⊆ H(g, r);

we shall check that v(H(g, r) \B) = 0.
Fix δ > 0 and r′ such that r + δ > r′ > r and v(H(g, r) \H(g, r′)) < δ. Let h

be as in (3) with ε = r′ − r; thus for a set E = {x ∈ P (K) : ϕg−h > ε} we have
v(E) < ε, and writing H = H(g, r), H ′ = (g, r′), we have

v(H)− δ ≤ v(H ′) ≤ ε+ v(H ′ \ E) ≤ ε+ v(H(h, r)),

where we used the inclusion H ′ \E ⊆ H(h, r). This verifies the last statement from
(2) and completes the proof that the measure v is countably determined.

(5) Finally, M1(K) is the image of T × P (K) × P (K) under the mapping
l(s, t, μ, ν) = sμ − tν, where T = {(s, t) ∈ [0, 1]2 : s + t ≤ 1}. The property
‘every measure is countably determined’ is finitely productive and closed under
continuous images, so the proof is complete. �

Every countably determined measure μ is in particular of countable Maharam
type (i.e. L1(μ) is separable). Let us remark that using part (1) of the proof of
Lemma 2.3 one can get the following analogous result.

Proposition 2.4. Suppose that every μ ∈ P (K) is of countable type. Then every
v ∈ P (M1(K)) is of countable type.

Proof. We again consider some v ∈ P (P (K)) and its barycenter μ ∈ P (K), and
we follow the notation of part (1) of the proof of Lemma 2.3. For any g, h ∈ C(K)
and x ∈ P (K) we have |x(g)− x(h)| ≤ x(|g − h|), and by the barycentric formula
(∗) this yields

∫

P (K)

|ϕg − ϕh| dv ≤
∫

P (K)

ϕ|g−h| dv = μ(|g − h|).

Since μ is of countable type, the above inequality implies that the family

Φ = {ϕg : g ∈ C(K)} ⊆ C(P (K))

is separable in the L1–norm of L1(v). Let Ψ be the subring of C(P (K)) generated
by Φ; it is routine to check that Ψ is separable too. But Ψ is norm dense in
C(P (K)) by the Stone–Weierstrass theorem, so C(P (K)) is separable in the L1–
norm of L1(v). Consequently, L1(v) is itself separable since C(P (K)) is its dense
subspace.

For the general case we can argue as in (5) of the proof of Lemma 2.3, since
the class of compact spaces on which every Radon measure is of countable type is
preserved by continuous images and countable products. �
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3. Applications and remarks

We can now present some applications of our considerations.

Corollary 3.1. If K ∈ C∗, then K is Corson compact under any of the following
assumptions:

(i) K is scattered; or
(ii) K is a linearly ordered topological space; or
(iii) K is zero–dimensional and the algebra Clopen(K) is minimally generated

in the sense of Koppelberg.

Corollary 3.1 follows immediately from Corollary 1.5 and Theorem 2.2, as any of
(i)–(iii) implies that all μ ∈ P (K) are countably determined. This is clear in case (i),
since every μ ∈ P (K) on a scattered compactum is purely atomic (concentrated
on a countable set). If K is linearly ordered, then every μ is again countably
determined by a result to be found in [18].

For (iii) recall that a Boolean algebra A is minimally generated if for some κ
we can express A as

⋃
ξ<κ Aξ, where Aξ form a continuous increasing chain of

algebras and for every ξ < κ, Aξ+1 is a minimal extension of Aξ; that is, there is no
intermediate algebra B between Aξ and Aξ+1. We refer to Borodulin-Nadzieja [2]
and [6] for more details. In fact we can extend (iii) beyond zero–dimensional spaces,
considering the compact space obtained by inverse limits of transfinite sequences of
simple extensions; see [6] for further references.

It is now clear that if K is the split interval, then K /∈ C∗; we can use either (ii)
or (iii) of Corollary 3.1 in this case. Moreover, K is the subject of the result given
below. Recall that K is Rosenthal compact if K can be represented as the compact
sets of Baire one functions on some Polish space; see [3], [9], [16], [26].

Corollary 3.2. If K is Rosenthal compact and K ∈ C∗, then K ∈ C.

Proof. The point is that by results due to Godefroy [9], if K is Rosenthal compact,
then M1(K) is also Rosenthal compact and the support of every regular measure on
a Rosenthal compactum is separable. Consequently, every Rosenthal compactum
has property (M∗), and we may apply Theorem 2.2 alone here. �

Let us mention in connection with Corollary 3.2 that the problem if every mea-
sure on a Rosenthal compact space is countably determined seems to be more
delicate; see Marciszewski and Plebanek [17]. We also note that consistently, un-
der some assumption contradicting MA(ω1), if K is first–countable, then every
μ ∈ P (K) is countably determined (in fact has some stronger property); see Ple-
banek [22]. It follows that in some models of ZFC in which MA(ω1) fails, if K is
first–countable and K ∈ C∗, then K ∈ C.

We finish the section by a side remark: Under CH there is a nonseparable Corson
compact L without property (M), such that nonetheless every ν ∈ P (L) is of
countable type; see Kunen [14]. That construction gives a space L and a measure
μ ∈ P (L) such that L is the support of μ. It follows that P (L) is separable
(see e.g. [7]), so when we transfer μ to a measure v on P (L) via the mapping
L  t → δt ∈ P (L), the support of v is not separable though v lives on a separable
space P (L).
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4. Using calibers

We do not know if C∗ = C is provable in ZFC. In view of the results we have
presented, it is natural to ask the following.

Problem 4.1. Is it consistent that 2ω1 ∈ C∗?

Clearly the usual product measure on 2ω1 is of type ω1 and thus is not countably
determined, so at the moment 2ω1 seems to be a natural candidate for proving
that C∗ may be different from C. One can ask a question going, in a sense, in the
opposite direction: Is there a nonmetrizable Corson compactum L which admits an
embedding C(L) ↪→ C(2ω1)? We shall note that the answer ‘no’ to that question
follows from MA(ω1).

Let us recall that ω1 is a caliber of a compact space K if for every family {Vξ :
ξ < ω1} of nonempty open subsets of K there is a point t ∈ K belonging to Vξ for
uncountably many ξ’s. Note that ω1 is a caliber of the space 2ω1 simply because 2ω1

is separable (let us mention that ω1 is a caliber of 2κ for every κ; see e.g. Todorčević
[27] and the references therein). Recall also that under MA(ω1) the cardinal number
ω1 is a caliber of Radon measures in the sense that every uncountable family of
sets of positive measure has an uncountable subfamily with nonempty intersection;
see Džamonja and Plebanek [5] for a survey on calibers of measures and measure
algebras.

Theorem 4.2. Suppose that K and L are compact spaces such that C(K) embeds
into C(L). Assuming MA(ω1), if ω1 is a caliber of L, then it is also a caliber of K.

Proof. Let us fix an isomorphic embedding T : C(K) → C(L) and consider a family
{Vξ : ξ < ω1} of nonempty open subsets of K. For every ξ < ω1 choose a function
gξ ∈ C(K) such that ||gξ|| = 1 and gξ vanishes outside Vξ. As T is an embedding
there is ε > 0 such that ||Tgξ|| > ε for all ξ < ω1. WriteHξ = {t ∈ L : |Tgξ(t)| > ε}.
Then the sets Hξ, ξ < ω1, form an uncountable family of nonempty open subsets
of L. Thus there is an uncountable I ⊆ ω1 and t0 ∈ L such that |Tgξ(t0)| > ε for
ξ ∈ I. Without loss of generality we can assume that all numbers Tgξ(t0) have the
same sign; say they are all > ε for ξ ∈ I. Let σ = T ∗δt0 ∈ M(K). Then for ξ ∈ I
we have

σ(gξ) = T ∗δt0(gξ) = Tgξ(t0) > ε.

If we let μ be the positive part of the signed measure σ, then μ(Vξ) ≥ μ(gξ) > ε
whenever ξ ∈ I. Now it follows from MA(ω1) that there is an uncountable J ⊆ I
such that

⋂
ξ∈J Vξ �= ∅, and we are done. �

Corollary 4.3. Suppose that K is Corson compact, L is a compact space having
caliber ω1, and C(K) ↪→ C(L). If MA(ω1) holds, then K is metrizable.

Proof. It is easy to check that if ω1 is a caliber of a Corson compactum K, then
K is necessarily metrizable (using the very definition of Corson compacta; cf. [1]).
Therefore the assertion follows from Theorem 4.2. �
Corollary 4.4. Suppose that K is Corson compact and C(K) ↪→ C(2ω1). If
MA(ω1) holds, then K is metrizable.

The last corollary is essentially known. It can be derived from a result due to
Hagler [10], which, in particular, says that if K is not metrizable and C(K) embeds
into C(2ω1), then C(K) contains an isomorphic copy of the Banach space l1(ω1).
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In turn this yields that K carries a measure of uncountable type (cf. Haydon [11]),
which is impossible if K ∈ C and MA(ω1) holds.

We do not know if Corollary 4.4 can be proved in the usual set theory; however,
the assertion of Corollary 4.3 is not true under CH. Indeed, consider again the
Kunen space L mentioned at the end of section 3 and let μ ∈ P (L) be a measure
of countable type supported by L. Then C(L) may be treated as a closed subspace
of L∞(μ), and L∞(μ) ≡ L∞[0, 1] � l∞ ≡ C(βω).
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