Grzegorz Plebanek (UWr) The simplex method

Notes for the lecture

Mathematical programming and optimization,

to be held in the Spring semester 2021. This part closely follow the book *Introduction to linear optimization* by D. Bertsimas and J. Tsitsiklis.

For $x, y \in \mathbb{R}^n$, $x = (x_1, \ldots, x_n)$ etc, we write

$$x \cdot y = \sum_{i=1}^{n} x_i y_i = \langle x, y \rangle,$$
$$x \leqslant y \iff (\forall i \leqslant n) x_i \leqslant y_i,$$
$$\|x\| = \sqrt{x \cdot x} = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Definition 1. A polyhedron P in \mathbb{R}^n is a subset defined by a finite number of linear inequalities.

Remark 2. Every polyhedron $P \subseteq \mathbb{R}^n$ can we written as

 $P = \{ x \in \mathbb{R}^n : Ax \ge b \},\$

for some $m \times n$ matrix A and some $b \in \mathbb{R}^m$.

A linear optimization problem asks to find $\min c \cdot x = \sum_i c_i x_i$ for x belonging to some polyhedron $P \subseteq \mathbb{R}^n$. Some jargon:

- $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$ is the cost vector;
- $c \cdot x$ is the objective function;
- every $x \in P$ is called a *feasible solution*;
- if $x^* \in P$ satisfies $c \cdot x^* = \min_{x \in P} c \cdot x$ then x^* is an optimal solution.

Definition 3. The standard form problem:

minimize	$c \cdot x$
subject to	Ax = b
	$x \ge 0.$

where A is an $m \times n$ matrix, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$.

Theorem 4. Every linear problem is equivalent to some problem given in the standard form.

Definition 5. A set $A \subseteq \mathbb{R}^n$ is *convex* if $\lambda x + (1 - \lambda)y \in A$ for every $x, y \in A$ and every $\lambda \in (0, 1)$.

For vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ and scalars $\lambda_j \ge 0$ satisfying $\sum_j \lambda_j = 1$, the vector

$$\sum_{j\leqslant k}\lambda_j x^j,$$

is called a convex combination (of those vectors).

By $conv(x^1, \ldots, x^k)$ we denote the *convex hull*, that is the set of all convex combination of those vectors.

Theorem 6. Every polyhedron is convex. The convex hull $conv(x^1, \ldots, x^k)$ is the smallest convex set containing all those vectors.

Definition 7. A point x from a convex set $A \subseteq \mathbb{R}^n$ is called an *extreme point* of A if for any distinct $y, z \in A$, if $x = \lambda y + (1 - \lambda)z$ then $\lambda = 0$ or $\lambda = 1$.

Definition 8. A point x in a polyhedron $P \subseteq \mathbb{R}^n$ is a *vertex* if there is $c \in \mathbb{R}^n$ such that $c \cdot x < c \cdot y$ for all $y \in P \setminus \{x\}$.

Definition 9. A point x^* in a polyhedron $P \subseteq \mathbb{R}^n$ defined by a system of linear equations and inequalities is a basic solution (BS) if

- x^* satisfies all the equalities;
- there are n linearly independent constraints that are active at x^* .

If, moreover, $x^* \in P$ (i.e. satisfies all the constraints) then it is called a basic feasible solution (BFS).

A constraint $a \cdot x \ge b$ (where $a \in \mathbb{R}^n, b \in \mathbb{R}$) is **active at** x^* if $a \cdot x^* = b$.

Theorem 10. $x \in P$ is an extreme point of P iff x is a vertex of P iff it is BFS.

Consider a polyhedron P defined in the standard form

 $P = \{ x \in \mathbb{R}^n : Ax = b, x \ge 0 \},\$

where A is a matrix $m \times n$ and $b \in \mathbb{R}^m$. We can find all the vertices (=BFS solutions) as follows:

- (1) Pick indices $B(1), \ldots, B(m) \leq n$ so that the columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent, that is the matrix B consisting of those columns is $m \times m$ and det $B \neq 0$.
- (2) Put $x_i = 0$ for nonbasic indices.
- (3) Find $x_B = (x_{B(1)}, \dots, x_{B(m)})$ solving $Bx_B = b$.
- (4) This gives BS; if $x_j \ge 0$ for all j then we get BFS.

Such x is degenerate if $x_{B(i)} = 0$ for some i. Otherwise, it is non-degenerate.

Note that if a given simplex has only non-degenerate BFS then there is 1-1 correspondence between bases and those BFS.

In the degenerated case different bases may give the same BFS.

Basic conclusion. Every polyhedron has a finite number of vertices (=BFS).

Theorem 11. A nonempty polyhedron has at least one vertex iff it contains no lines.

Theorem 12. Consider a standard problem:		
minimize	$c\cdot x$	
subject to	$x \in P$.	
Suppose that it has an optimal solution and that the polyhedron P has		
at least one vertex. Then $\min c \cdot x$ is attained at some vertex of P .		

Changing the vertex

Consider a standard problem:

minimize	$c \cdot x$
subject to	Ax = b
	$x \ge 0.$

We are at some vertex $x \in P$ connected with a basis $B(1), \ldots, B(m)$ (of columns of A).

The j-th basic direction: Say that we want to incorporate a non-basic variable j to the basis.

- Find a direction $d \in \mathbb{R}^n$ such that $d_j = 1$ and $d_k = 0$ for other nonbasic variables for which Ad = 0.
- This determines the basic part of that direction $d_B = (d_{B(1)}, \ldots, d_{B(m)})$:

$$0 = Ad = \sum_{i=1}^{n} d_i A_i = \sum_{i=1}^{m} d_{B(i)} A_{B(i)} + A_j = Bd_B + A_j$$

$$d_B = -B^{-1}A_j$$

• We have $A(x + \theta d) = Ax + \theta Ad = b$ so equations hold.

Looking for a new vertex: Suppose that x is non-degenerate, that is all basic coordinates satisfy $x_{B(i)} > 0$.

- (1) Then $x + \theta d \ge 0$ for small θ .
- (2) If $x + \theta d \ge 0$ for all $\theta > 0$ then the polyhedron is unbounded — it contains a half-line in that direction.
- (3) Otherwise, take the greatest θ for which some *i* gives $x_{B(i)} + \theta d_{B(i)} = 0$. Remove *i* from the basis, *i* comes into it.

LOOKING FOR A NEW VERTEX; DEGENERATED CASE: Suppose that x is degenerate, that is $x_{B(i)} = 0$ for some i.

- (1) If $d_{B(i)} > 0$ (at each such a case) then we proceed as before.
- (2) If $d_{B(i)} \leq 0$ at the same time then we are stuck the direction is not feasible.

Suppose that we have found a new vertex in the form $y = x + \theta d$. Then

 $c \cdot y - c \cdot x = c \cdot (x + \theta d) - c \cdot c = \theta c \cdot d,$

so we lowered the objective function if $c \cdot d < 0$.

Recall that

$$d_B = -B^{-1}A_j,$$

 \mathbf{SO}

$$c \cdot d = c_B \cdot d_B + c_j = c_j - c_B \cdot (B^{-1}A_j).$$

Definition.

 $\overline{c_j} = c_j - c_B \cdot (B^{-1}A_j)$

is called the reduced cost of the jth variable.

Lemma 13. If $f, g : P \to \mathbb{R}$ are two functions on some sem P and f - g is constant then f and g attain their minima at the same points (if this happens at all).

Coming back to our standard problem (SP)

minimize	$c \cdot x$
subject to	Ax = b
	$x \ge 0.$

denote by a_1, \ldots, a_m the rows of the matrix A

Theorem 14. If we consider another problem (SP') by changing the cost vector c to

$$c' = c + \sum_{i=1}^{m} \lambda_i a_i,$$

then (SP) and (SP') have the same solutions.

Recall the formula for reduced costs

$$\overline{c_j} = c_j - c_B \cdot (B^{-1}A_j)$$
$$\overline{c} = c - B^{-1}A$$

Note that if we apply it to the coordinate from the basis then $\overline{c_j} = 0$.

Note also that \overline{c} is a result of adding to c some linear combination of rows of the matrix A.

Theorem 15. If the vector of reduced costs has nonnegative coordinates then the vertex x (we are at) is optimal.

Theorem 16. If the vector of reduced costs \overline{c} satisfies $\overline{c_i} < 0$ for some (necessarily non-basic) coordinate j and the BFS solution x we consider is **non-degenerate** then x is not optimal.