
Grzegorz Plebanek (UWr)

The simplex method
Notes for the lecture

Mathematical programming and optimization,

to be held in the Spring semester 2021. This part closely follow the book Introduction to
linear optimization by D. Bertsimas and J. Tsitsiklis.
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Notation and terminology; basic facts

For x, y ∈ Rn, x = (x1, . . . , xn) etc, we write

x · y =
n∑
i=1

xiyi = ⟨x, y⟩,

x ¬ y ⇐⇒ (∀i ¬ n)xi ¬ yi,

∥x∥ =
√
x · x =

√√√√ n∑
i=1

x2i .

Definition 1. A polyhedron P in Rn is a subset defined by a finite number of linear
inequalities.

Remark 2. Every polyhedron P ⊆ Rn can we written as

P = {x ∈ Rn : Ax  b},

for some m× n matrix A and some b ∈ Rm.

A linear optimization problem asks to find min c · x = ∑i cixi for x belonging to some
polyhedron P ⊆ Rn. Some jargon:
• c = (c1, . . . , cn) ∈ Rn is the cost vector;
• c · x is the objective function;
• every x ∈ P is called a feasible solution;
• if x∗ ∈ P satisfies c · x∗ = minx∈P c · x then x∗ is an optimal solution.

Definition 3. The standard form problem:

minimize c · x
subject to Ax = b

x  0.

where A is an m× n matrix, b ∈ Rm, x ∈ Rn.

Theorem 4. Every linear problem is equivalent to some problem given in the standard
form.

Definition 5. A set A ⊆ Rn is convex if λx+ (1− λ)y ∈ A for every x, y ∈ A and every
λ ∈ (0, 1).
For vectors x1, . . . , xk ∈ Rn and scalars λj  0 satisfying

∑
j λj = 1, the vector∑

j¬k
λjx
j,

is called a convex combination (of those vectors).
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By conv(x1, . . . , xk) we denote the convex hull, that is the set of all convex combination
of those vectors.

Theorem 6. Every polyhedron is convex. The convex hull conv(x1, . . . , xk) is the smallest
convex set containing all those vectors.
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Special points and how to compute them

Definition 7. A point x from a convex set A ⊆ Rn is called an extreme point of A if for
any distinct y, z ∈ A, if x = λy + (1− λ)z then λ = 0 or λ = 1.

Definition 8. A point x in a polyhedron P ⊆ Rn is a vertex if there is c ∈ Rn such that
c · x < c · y for all y ∈ P \ {x}.

Definition 9. A point x∗ in a polyhedron P ⊆ Rn defined by a system of linear equations
and inequalities is a basic solution (BS) if

• x∗ satisfies all the equalities;
• there are n linearly independent constraints that are active at x∗.

If, moreover, x∗ ∈ P (i.e. satisfies all the constraints) then it is called a basic feasible
solution (BFS).

A constraint a · x  b (where a ∈ Rn, b ∈ R) is active at x∗ if a · x∗ = b.

Theorem 10. x ∈ P is an extreme point of P iff x is a vertex of P iff it is BFS.

Consider a polyhedron P defined in the standard form

P = {x ∈ Rn : Ax = b, x  0},

where A is a matrix m × n and b ∈ Rm. We can find all the vertices (=BFS solutions)
as follows:

(1) Pick indices B(1), . . . , B(m) ¬ n so that the columns
AB(1), . . . , AB(m) are linearly independent, that is the matrix
B consisting of those columns is m×m and detB ̸= 0.

(2) Put xi = 0 for nonbasic indices.
(3) Find xB = (xB(1), . . . , xB(m)) solving BxB = b.
(4) This gives BS; if xj  0 for all j then we get BFS.

Such x is degenerate if xB(i) = 0 for some i. Otherwise, it is non-degenerate.

Note that if a given simplex has only non-degenerate BFS then there is 1-1 correspon-
dence between bases and those BFS.

In the degenerated case different bases may give the same BFS.

Basic conclusion. Every polyhedron has a finite number of vertices
(=BFS).

Theorem 11. A nonempty polyhedron has at least one vertex iff it
contains no lines.
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Theorem 12. Consider a standard problem:

minimize c · x
subject to x ∈ P.

Suppose that it has an optimal solution and that the polyhedron P has
at least one vertex. Then min c · x is attained at some vertex of P .
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Changing the vertex

Consider a standard problem:

minimize c · x
subject to Ax = b

x  0.

We are at some vertex x ∈ P connected with a basis B(1), . . . , B(m) (of columns of
A).

The j-th basic direction: Say that we want to incorporate a non-
basic variable j to the basis.

• Find a direction d ∈ Rn such that dj = 1 and dk = 0 for other
nonbasic variables for which Ad = 0.
• This determines the basic part of that direction dB =
(dB(1), . . . , dB(m)):

0 = Ad =
n∑
i=1

diAi =
m∑
i=1

dB(i)AB(i) + Aj = BdB + Aj

dB = −B−1Aj
• We have A(x+ θd) = Ax+ θAd = b so equations hold.

Looking for a new vertex: Suppose that x is non-degenerate, that
is all basic coordinates satisfy xB(i) > 0.

(1) Then x+ θd  0 for small θ.
(2) If x+ θd  0 for all θ > 0 then the polyhedron is unbounded
— it contains a half-line in that direction.

(3) Otherwise, take the greatest θ for which some i gives xB(i) +
θdB(i) = 0. Remove i from the basis, i comes into it.

Looking for a new vertex; degenerated case: Suppose that
x is degenerate, that is xB(i) = 0 for some i.

(1) If dB(i) > 0 (at each such a case) then we proceed as before.
(2) If dB(i) ¬ 0 at the same time then we are stuck — the direction
is not feasible.
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Test for optimality

Suppose that we have found a new vertex in the form y = x+ θd. Then

c · y − c · x = c · (x+ θd)− c · c = θc · d,

so we lowered the objective function if c · d < 0.

Recall that

dB = −B−1Aj,

so

c · d = cB · dB + cj = cj − cB · (B−1Aj).

Definition.

cj = cj − cB · (B−1Aj)

is called the reduced cost of the jth variable.

Lemma 13. If f, g : P → R are two functions on some sem P and f − g is
constant then f and g attain their minima at the same points (if this happens at
all).

Coming back to our standard problem (SP)

minimize c · x
subject to Ax = b

x  0.

denote by a1, . . . , am the rows of the matrix A

Theorem 14. If we consider another problem (SP’) by changing the cost vector
c to

c′ = c+
m∑
i=1

λiai,

then (SP) and (SP’) have the same solutions.

Recall the formula for reduced costs

cj = cj − cB · (B−1Aj)

c = c−B−1A
Note that if we apply it to the coordinate from the basis then cj = 0.
Note also that c is a result of adding to c some linear combination of rows of the
matrix A.
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Theorem 15. If the vector of reduced costs has nonnegative coordinates then the
vertex x (we are at) is optimal.

Theorem 16. If the vector of reduced costs c satisfies ci < 0 for some (necessarily
non-basic) coordinate j and the BFS solution x we consider is non-degenerate
then x is not optimal.


