Grzegorz Plebanek (UWr)

The simplex method

Notes for the lecture
Mathematical programming and optimization,
to be held in the Spring semester 2021. This part closely follow the book Introduction to linear optimization by D. Bertsimas and J. Tsitsiklis.

Notation and terminology; basic facts

For $x, y \in \mathbb{R}^{n}, x=\left(x_{1}, \ldots, x_{n}\right)$ etc, we write

$$
\begin{aligned}
& x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}=\langle x, y\rangle, \\
& x \leqslant y \Longleftrightarrow(\forall i \leqslant n) x_{i} \leqslant y_{i}, \\
& \|x\|=\sqrt{x \cdot x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} .
\end{aligned}
$$

Definition 1. A polyhedron P in \mathbb{R}^{n} is a subset defined by a finite number of linear inequalities.

Remark 2. Every polyhedron $P \subseteq \mathbb{R}^{n}$ can we written as

$$
P=\left\{x \in \mathbb{R}^{n}: A x \geqslant b\right\}
$$

for some $m \times n$ matrix A and some $b \in \mathbb{R}^{m}$.
A linear optimization problem asks to find $\min c \cdot x=\sum_{i} c_{i} x_{i}$ for x belonging to some polyhedron $P \subseteq \mathbb{R}^{n}$. Some jargon:

- $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ is the cost vector;
- $c \cdot x$ is the objective function;
- every $x \in P$ is called a feasible solution;
- if $x^{*} \in P$ satisfies $c \cdot x^{*}=\min _{x \in P} c \cdot x$ then x^{*} is an optimal solution.

Definition 3. The standard form problem:

$$
\begin{array}{lr}
\text { minimize } & c \cdot x \\
\text { subject to } & A x=b \\
& x \geqslant 0 .
\end{array}
$$

where A is an $m \times n$ matrix, $b \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}$.
Theorem 4. Every linear problem is equivalent to some problem given in the standard form.

Definition 5. A set $A \subseteq \mathbb{R}^{n}$ is convex if $\lambda x+(1-\lambda) y \in A$ for every $x, y \in A$ and every $\lambda \in(0,1)$.

For vectors $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ and scalars $\lambda_{j} \geqslant 0$ satisfying $\sum_{j} \lambda_{j}=1$, the vector

$$
\sum_{j \leqslant k} \lambda_{j} x^{j},
$$

is called a convex combination (of those vectors).

By $\operatorname{conv}\left(x^{1}, \ldots, x^{k}\right)$ we denote the convex hull, that is the set of all convex combination of those vectors.

Theorem 6. Every polyhedron is convex. The convex hull $\operatorname{conv}\left(x^{1}, \ldots, x^{k}\right)$ is the smallest convex set containing all those vectors.

Special points and how to compute them

Definition 7. A point x from a convex set $A \subseteq \mathbb{R}^{n}$ is called an extreme point of A if for any distinct $y, z \in A$, if $x=\lambda y+(1-\lambda) z$ then $\lambda=0$ or $\lambda=1$.

Definition 8. A point x in a polyhedron $P \subseteq \mathbb{R}^{n}$ is a vertex if there is $c \in \mathbb{R}^{n}$ such that $c \cdot x<c \cdot y$ for all $y \in P \backslash\{x\}$.

Definition 9. A point x^{*} in a polyhedron $P \subseteq \mathbb{R}^{n}$ defined by a system of linear equations and inequalities is a basic solution (BS) if

- x^{*} satisfies all the equalities;
- there are n linearly independent constraints that are active at x^{*}.

If, moreover, $x^{*} \in P$ (i.e. satisfies all the constraints) then it is called a basic feasible solution (BFS).

A constraint $a \cdot x \geqslant b$ (where $a \in \mathbb{R}^{n}, b \in \mathbb{R}$) is active at x^{*} if $a \cdot x^{*}=b$.
Theorem 10. $x \in P$ is an extreme point of P iff x is a vertex of P iff it is BFS.
Consider a polyhedron P defined in the standard form

$$
P=\left\{x \in \mathbb{R}^{n}: A x=b, x \geqslant 0\right\},
$$

where A is a matrix $m \times n$ and $b \in \mathbb{R}^{m}$. We can find all the vertices (=BFS solutions) as follows:
(1) Pick indices $B(1), \ldots, B(m) \leqslant n$ so that the columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent, that is the matrix B consisting of those columns is $m \times m$ and $\operatorname{det} B \neq 0$.
(2) Put $x_{i}=0$ for nonbasic indices.
(3) Find $x_{B}=\left(x_{B(1)}, \ldots, x_{B(m)}\right)$ solving $B x_{B}=b$.
(4) This gives BS; if $x_{j} \geqslant 0$ for all j then we get BFS.

Such x is degenerate if $x_{B(i)}=0$ for some i. Otherwise, it is non-degenerate.
Note that if a given simplex has only non-degenerate BFS then there is 1-1 correspondence between bases and those BFS.

In the degenerated case different bases may give the same BFS.
Basic conclusion. Every polyhedron has a finite number of vertices (=BFS).

Theorem 11. A nonempty polyhedron has at least one vertex iff it contains no lines.

Theorem 12. Consider a standard problem:
minimize
$c \cdot x$
subject to
$x \in P$.

Suppose that it has an optimal solution and that the polyhedron P has at least one vertex. Then $\min c \cdot x$ is attained at some vertex of P.

Changing the vertex

Consider a standard problem:

minimize	$c \cdot x$
subject to	$A x=b$
	$x \geqslant 0$.

We are at some vertex $x \in P$ connected with a basis $B(1), \ldots, B(m)$ (of columns of A).

The j-th basic direction: Say that we want to incorporate a nonbasic variable j to the basis.

- Find a direction $d \in \mathbb{R}^{n}$ such that $d_{j}=1$ and $d_{k}=0$ for other nonbasic variables for which $A d=0$.
- This determines the basic part of that direction $d_{B}=$ $\left(d_{B(1)}, \ldots, d_{B(m)}\right)$:

$$
\begin{aligned}
& 0=A d=\sum_{i=1}^{n} d_{i} A_{i}=\sum_{i=1}^{m} d_{B(i)} A_{B(i)}+A_{j}=B d_{B}+A_{j} \\
& d_{B}=-B^{-1} A_{j}
\end{aligned}
$$

- We have $A(x+\theta d)=A x+\theta A d=b$ so equations hold.

Looking for a new vertex: Suppose that x is non-degenerate, that is all basic coordinates satisfy $x_{B(i)}>0$.
(1) Then $x+\theta d \geqslant 0$ for small θ.
(2) If $x+\theta d \geqslant 0$ for all $\theta>0$ then the polyhedron is unbounded - it contains a half-line in that direction.
(3) Otherwise, take the greatest θ for which some i gives $x_{B(i)}+$ $\theta d_{B(i)}=0$. Remove i from the basis, i comes into it.

Looking for a new vertex; degenerated case: Suppose that x is degenerate, that is $x_{B(i)}=0$ for some i.
(1) If $d_{B(i)}>0$ (at each such a case) then we proceed as before.
(2) If $d_{B(i)} \leqslant 0$ at the same time then we are stuck - the direction is not feasible.

Test for optimality

Suppose that we have found a new vertex in the form $y=x+\theta d$. Then

$$
c \cdot y-c \cdot x=c \cdot(x+\theta d)-c \cdot c=\theta c \cdot d
$$

so we lowered the objective function if $c \cdot d<0$.
Recall that

$$
d_{B}=-B^{-1} A_{j},
$$

so

$$
c \cdot d=c_{B} \cdot d_{B}+c_{j}=c_{j}-c_{B} \cdot\left(B^{-1} A_{j}\right) .
$$

Definition.

$$
\overline{c_{j}}=c_{j}-c_{B} \cdot\left(B^{-1} A_{j}\right)
$$

is called the reduced cost of the j th variable.
Lemma 13. If $f, g: P \rightarrow \mathbb{R}$ are two functions on some sem P and $f-g$ is constant then f and g attain their minima at the same points (if this happens at all).

Coming back to our standard problem (SP)

$$
\begin{array}{lr}
\text { minimize } & c \cdot x \\
\text { subject to } & A x=b \\
& x \geqslant 0 .
\end{array}
$$

denote by a_{1}, \ldots, a_{m} the rows of the matrix A
Theorem 14. If we consider another problem (SP') by changing the cost vector c to

$$
c^{\prime}=c+\sum_{i=1}^{m} \lambda_{i} a_{i}
$$

then (SP) and (SP') have the same solutions.
Recall the formula for reduced costs

$$
\begin{aligned}
& \overline{c_{j}}=c_{j}-c_{B} \cdot\left(B^{-1} A_{j}\right) \\
& \bar{c}=c-B^{-1} A
\end{aligned}
$$

Note that if we apply it to the coordinate from the basis then $\overline{c_{j}}=0$.
Note also that \bar{c} is a result of adding to c some linear combination of rows of the matrix A.

Theorem 15. If the vector of reduced costs has nonnegative coordinates then the vertex x (we are at) is optimal.

Theorem 16. If the vector of reduced costs \bar{c} satisfies $\overline{c_{i}}<0$ for some (necessarily non-basic) coordinate j and the BFS solution x we consider is non-degenerate then x is not optimal.

