1. The general network flow problem with bounded capacities (GNFPC). Recall that we consider a directed graph G = (V, A) together with a function $V \ni i \to b_i \in \mathbb{R}$ defining an external supply; we assume $\sum_i b_i = 0$. We are also given a function c : $A \to \mathbb{R}_+$, c_{ij} is the cost in the arc $(i, j) \in A$ and now, additionally, a function u : $A \to \mathbb{R}_+$ determining maximal capacities. Then a flow $f = (f(i, j))_{(i,j)\in A}$ is feasible if $0 \leq f(i, j) \leq u_{ij}$ for every arc $(i, j) \in A$ and $\sum_{j\in \text{In}(i)} f(j, i) + b_i = \sum_{j\in \text{Out}(i)} f(i, j)$ for every vertex *i*. As before, we want to minimize $\sum_{(i,j)\in A} c_{ij}f(i, j)$ over all feasible flows.

The basic simplex algorithm can be adjusted to cover such a case. Try to analyze the following.

- (a) Every basic solution f of GNFPC is associated with a set of edges T forming a spanning tree together with a partition of the remaining arcs $A \setminus T$ into two parts D and U so that f(i, j) = 0 for $(i, j) \in D$ and $f(i, j) = u_{ij}$ for $(i, j) \in U$.
- (b) Having some basic solution which is feasible, we find p_i 's so that the reduced costs $\overline{c_{ij}} = c_{ij} (p_i p_j)$ become zero on the arcs belongind to the given tree.
- (c) Then the test for optimality is: $\overline{c_{ij}} \ge 0$ for all $(i, j) \in D$ and $\overline{c_{ij}} \le 0$ whenever $(ij) \in U$.
- (d) If f failed the test for optimality then we pick an arc (i, j) witnessing the fact. Incorporating this arc to the tree we get the unique circle C. We orient C as follows: if $(i, j) \in D$ then (i, j) is a forward arc; otherwise, it becomes backward.
- (e) We can determine a parameter $\theta \ge 0$ and increase the flow on the forward arcs by θ and decrease it on the backward arcs by θ so that we obtain another basic feasible solution. Then we update T, D, U and repeat.
- 2. Prove that if GNFPC has at least one feasible solution then such a solution can be found using the Ford-Fulkerson algorithm.
- **3.** The following shows that the problem GNFPC can be seen as a transportation problem TP (we assume that u_{ij} are finite for all arcs). We form TP as follows.
 - (a) Every arc $(i, j) \in A$ is treated as a provider in TP offering u_{ij} .
 - (b) Every vertex *i* becomes a recipient demanding $\sum_{k \in \text{Out}(i)} u_{ik} b_i$.
 - (c) For every arc (i, j) (which is now a provider) the transportation cost is zero to i and c_{ij} to j. We think that, in the transportation problem, the cost of sending anything from the 'provider' (i, j) to the 'recipient' k different from i, j is infinite.

Try to find the correspondence between solutions of GNFPC and the resulting transportation problem, 4. A version of the max flow problem. Consider a directed graph G = (V, A) with a source $s \in V$ and a target $t \in V$. This time we have a function $u : V \to \mathbb{R}_+$ fixing the capacities of the vertices (no bounds on capacity of the arcs). We want to determine the maximal flow from s to t respecting u, so that

$$\sum_{k \in \text{In}(i)} f(k,i) = \sum_{k \in \text{Out}(i)} f(i,k) \leqslant u(i),$$

for every $i \in V \setminus \{s, t\}$.

Check that such a problem reduces to the classical max flow problem by the following. For every $i \in V \setminus \{s, t\}$ form two vertices i', i'' connected by an arc (i', i'') of capacity u(i) (add all 'obvious' arcs with infinite capacity).

5. Consider a directed graph G = (V, A) with two different vertices $s, t \in V$ fixed. Say that the connectivity of G (between s and t) is the maximal number of directed paths from s to t going through pairwise disjoint sets of vertices. Say also that the vulnerability in the this context is the minimal number of vertices blocking every way from s to t.

Apply the max flow problem to prove that connectivity is equal to vulnerability.

- 6. How would you solve the max flow problem on an undirected graph with fixed capacities of the edges?
- 7. You have a silver wire of length 15 m. You can sell *i*-meter pieces for c_i per piece, i = 1, 2, 3, 4. How do you cut your treasure?