Flows in networks and duality

We now think that $V=\{1,2, \ldots, n\}$.
The network. Given a directed graph $G=(V, A)$ together with

- a function $V \ni i \rightarrow b_{i} \in \mathbb{R}$ defining an external supply; we assume $\Sigma_{i} b_{i}=0$;
- a function $c: A \rightarrow \mathbb{R}_{+}, c_{i j}$ is the cost in the arc $(i, j) \in A$

Definition. A flow $f=(f(i, j))_{(i, j) \in A}$ is feasible if
(i) $0 \leqslant f(i, j)$ for every arc $(i, j) \in A$;
(ii) $\Sigma_{j \in \operatorname{In}(i)} f(j, i)+b_{i}=\Sigma_{j \in \operatorname{Out}(i)} f(i, j)$ for every vertex i.

GNFP. Minimize

$\sum_{(i, j) \in A} c_{i j} f(i, j)$,
over all feasible flows.

Dual of GNFP

Consider a problem (D)

$$
\begin{aligned}
& \max \sum_{i \leqslant n} b_{i} y_{i} \quad \text { subject to } \\
& y_{i}-y_{j} \leqslant c_{i j} \text { for all }(i, j) \in A .
\end{aligned}
$$

Theorem (weak duality). If y is a feasible solution of (D) then

$$
b \cdot y=\sum_{i \in V} b_{i} y_{i} \leqslant \sum_{(i, j) \in A} c_{i j} f(i, j),
$$

for every feasible flow f.
Complementarity. If we find feasible f and y such that

$$
c_{i j} f(i, j)=\left(y_{i}-y_{j}\right) f(i, j) \text { for every }(i, j) \in A,
$$

then f and y are optimal.

Approach to the dual problem

$\max \sum_{i \leqslant n} b_{i} y_{i} \quad$ subject to
$y_{i}-y_{j} \leqslant c_{i j}$ for all $(i, j) \in A$

$$
\begin{gathered}
y=\left(y_{21} y_{2}, \ldots . y_{2}\right) \\
y+2=\left(y_{1}+\infty, y_{2}+a_{1}, \ldots,\right)
\end{gathered}
$$

Observe that: $y=0$ is a feasible solution and for every feasible $y, y+a$ is feasible too.

Fo froorble solution y
Jargon. An arc (i, j) is saturated (with respect to y) if $c_{i j}=y_{i}-$
A set $S \subseteq$
leaving S.

Lemma. If y is feasible, S is balanced then $y^{*}=y+\theta \chi_{S}$ is also feasible, where

$$
\theta=\min \left\{\left(c_{i j}-\left(y_{i}-y_{j}\right)\right):(i, j) \in A, i \in S, j \notin S\right\}>0 .
$$

$$
\begin{array}{lll}
x_{S}(i)=\left\{\begin{array}{lll}
1 & i \in 5 \\
0 & i \notin S
\end{array}\right. & \frac{y^{*}=y+\theta x_{S}}{y_{i}^{*}= \begin{cases}y_{i}+\theta & \text { if } i \in S \\
y_{i} & \text { if } i \notin S\end{cases} } \begin{array}{ll}
0 &
\end{array} \quad \begin{array}{ll}
0 & =21_{1} R_{1}
\end{array}
\end{array}
$$

$$
\left[\begin{array}{l}
y_{i}^{x}-j_{j}^{x}= \\
=\left(y_{i}+\theta\right)-(y \cdot+\theta)- \\
=y_{i}-y_{j} \leq c_{i j} \\
y_{i}^{x}-y_{j}^{x}=
\end{array}\right.
$$

$$
y^{*}=y+\omega x_{s}
$$

Outline of the algorithm for the dual problem

When y^{*} is better: If and only if

$$
\sum_{i \in V} b_{i} y_{i}^{*}-\sum_{i \in V} b_{i} y_{i}=\theta \sum_{i \in S} b_{i}>0 .
$$

Idea

(1) Start from some feasible y.
(2) Look for balanced $S \subseteq V$ such that ${\underline{\underline{\sum_{i \in S}} b_{i}}>0 \text {. If }}^{\text {Lout }}$ there are no such S then STOP - y is optimal.
(3) Change y to y^{*} and repeat.

Example

击
 $C_{i j}$ in red saturated = $r_{i j}=y_{i}-y_{j}$

$$
\begin{array}{lrl}
y=(0,0,0,0) & S=\{a\} & \theta=1 \\
S_{y^{\prime}}=(1,0,0,0) & S=\langle a, b\} & \theta=1 \\
S_{y^{\prime \prime}}=(2,1,0,0) & S=\{a, b, c\} & \theta=1 \\
y^{\prime \prime \prime}=(3,2,1,0) & \text { op }+ \text { tinct. }
\end{array}
$$

$$
\theta=\operatorname{anin}\left(c_{i j}-\left(y_{i}-y_{j}>\right)\right.
$$

Iustracje algongtun
(5) $u=1$
(a)
(c) $n=1$

A +

Primar-dual algorithm

$$
\operatorname{mon} \sum_{(i, j \notin 1}^{G} c_{i j} f(i,) \quad \max \sum_{i} p_{i} y_{i}
$$

Outline

(1) Start from some y feasible for the dual problem.
(2) Use FF to check how much can flow from the source vertices V^{+}to target vertices V^{-}through the graph consisting only of saturated arcs.
(3) If the volume of the flow is equal to $\Sigma_{i \in V^{+}} b_{i}$ then STOP (we have an optomal flow).
(4) Otherwise LA finds a balanced S with $\sum_{i \in S} b_{i}$ while checking that the flow is maximal.
(5) Change y to $y^{*}=y+\theta \chi_{S}$; GoTo (2).

Example

$$
\begin{aligned}
& S=\{1,2,4\} \quad \theta=2 \\
& y^{\prime}=y+2,2(1,1 \cdot 0,1,0)=(3,1,0,0) \quad
\end{aligned}
$$

What happens here?

We woot to pave: $\mid \sum_{i \in S} b_{i}>0$ and the set S (in grea) is bandond.
X prepijv proer wiendedh $V^{+} \cap S$
Y prepily time winad. V OS
wtedy $x=y$

$$
x<\sum_{i \in V^{\top} \cap S} p_{i} \quad y=\sum_{i \in V n S}\left|b_{i}\right|
$$

stgd $\sum_{i \in S} p_{i}>\underbrace{}_{i}$

