Flows in networks and duality

We now think that $V = \{1, 2, \ldots, n\}$.

The network. Given a directed graph G = (V, A) together with

- a function $V \ni i \to b_i \in \mathbb{R}$ defining an external supply; we assume $\Sigma_i b_i = 0$;
- a function $c : A \to \mathbb{R}_+$, c_{ij} is the cost in the arc $(i, j) \in A$

Definition. A flow $f = (f(i, j))_{(i,j) \in A}$ is **feasible** if (i) $0 \leq f(i, j)$ for every arc $(i, j) \in A$; (ii) $\sum_{j \in \text{In}(i)} f(j, i) + b_i = \sum_{j \in \text{Out}(i)} f(i, j)$ for every vertex i.

GNFP. Minimize

$$\sum_{(i,j)\in A} c_{ij} f(i,j),$$

over all feasible flows.

Dual of GNFP

Consider a problem (D) $\max \sum_{i \leq n} b_i y_i \quad \text{subject to}$ $y_i - y_j \leq c_{ij} \text{ for all } (i, j) \in A.$

Theorem (weak duality). If y is a feasible solution of (D) then

$$b \cdot y = \sum_{i \in V} b_i y_i \leqslant \sum_{(i,j) \in A} c_{ij} f(i,j),$$

for every feasible flow f.

Complementarity. If we find feasible f and y such that $c_{ij}f(i,j) = (y_i - y_j)f(i,j)$ for every $(i,j) \in A$, then f and y are optimal.

Approach to the dual problem

$$\max \sum_{i \leq n} b_i y_i \quad \text{subject to}$$

$$y_i - y_j \leq c_{ij} \text{ for all } (i, j) \in A.$$

$$y_{i \leq j \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \leq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n})$$

$$y_{i \neq n} (y_{i \neq n}, y_{i \neq n}$$

Lemma. If y is feasible, S is balanced then $y^* = y + \theta \chi_S$ is also feasible, where $\theta = \min\{(c_{ij} - (y_i - y_j)) : (i, j) \in A, i \in S, j \notin S\} > 0.$ $\chi_S(i) = \begin{cases} 4 & i \in S \\ 0 & i \notin S \end{cases}$ $y^*_i = y + \theta \chi_S$ $y^*_i = \begin{cases} 3i + \theta & i \notin i \in S \\ y_i & i \notin i \notin S \end{cases}$ $y = \langle 4, i \notin S \rangle$ $y^*_i = \begin{cases} 3i + \theta & i \notin i \notin S \\ y_i & i \notin S \end{cases}$ $y = \langle 4, i \notin S \rangle$ $y = \langle 5, i \notin S \rangle$ $y = \langle 5, i \notin$

$$y^* = y + = \chi_S$$

Outline of the algorithm for the dual problem

Idea

4

- (1) Start from some feasible y.
- (2) Look for balanced $S \subseteq V$ such that $\sum_{i \in S} b_i > 0$. If there are no such S then STOP y is optimal.
- (3) Change y to y^* and repeat.

Example

 $\mathbf{5}$

Primar-dual algorithm

Outline

- (1) Start from some y feasible for the dual problem.
- (2) Use FF to check how much can flow from the source vertices V^+ to target vertices V^- through the graph consisting only of saturated arcs.
- (3) If the volume of the flow is equal to Σ_{i∈V+} b_i then STOP (we have an optomal flow).
 (4) Otherwise LA finds a balanced S with Σ_{i∈S} b_i while
- checking that the flow is maximal.
- (5) Change y to $\underline{y^*} = y + \theta \chi_S$; GoTo (2).

Example

7

What happens here?

8