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1. A touch of algebraic geometry
Algebraic geometry, at least in its most basic form, studies sets defined by polynomial equations.
Such sets are called algebraic. We will begin our encounter with algebraic geometry through
affine algebraic geometry where one studies algebraic subsets of the affine space kn over a field
k. In this chapter we will introduce some very basic notion in the language of algebraic geometry
a’la Weil.
Let k be a field. Soon we will restrict ourselves to algebraically closed sets, but the basic definitions
make sense of arbitrary fields. We also fix a natural number n.

1.1. Affine algebraic sets
Definition 1.1. Let I ⊆ k [X1, . . . , Xn]. The zero set of I is the set

V (I) =
{
a ∈ kn|f(a) = 0 for all f ∈ I

}
.

We call sets of this form affine algebraic sets.

Note that if I ′ is the ideal generated by I , then V (I) = V (I ′). There is therefore no harm in
assuming in the above definition that I is an ideal.

Lemma 1.2. Let I, J, (Iα)α∈A be ideals of k [X1, . . . , Xn]. The following properties hold.

1. V (∅) = kn, V ({1}) = ∅,

2. V (I) ∪ V (J) = V (IJ),

3. V
(∑

α∈A Iα
)
=
⋂

α∈A V (Iα).

Proof. See Exercise 1.4.

Lemma 1.2 implies that affine algebraic sets form the closed sets of a topology on kn (and thus on
any subset of kn). We call this topology the Zariski topology on kn. From now on this is the
default topology on kn and its subsets.

Definition 1.3. A subset V ⊆ kn is called a quasi-affine algebraic set if it is an open subset of
an affine algebraic set.

Recall that a ring R is noetherian if any ideal of R is finitely generated or equivalently: any
ascending chain of ideals stabilizes. The following is a standard theorem proven in any reasonable
algebra course.

Fact 1.4 (Hilbert Basis Theorem). If R is a noetherian ring then so is the ring R[X].

Since fields are clearly noetherian rings, a trivial inductive argument yields the following.

Corollary 1.5. The ring k[X1, . . . , Xn] is noetherian.

Corollary 1.5 has a natural geometric intepretation. To state it we need the following definition.

Definition 1.6. A topological spaceX is called noetherian if there is no strictly descending chain
X0 ⊋ X1 ⊋ . . . ⊋ Xn ⊋ . . . of closed subsets of X .
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Noetherian spaces are quite orthogonal to spaces one typically has in minds (like the reals or man-
ifolds). Nonetheless, they are ubiquitous in algebraic geometry as seen by the following results.

Proposition 1.7. Any affine algebraic set is a noetherian space.

Proof. Since any affine algebraic subset of kn is closed, an chain of closed subsets of in V is also a
chain of closed subsets of kn. It suffices thus to prove that kn is a noetherian space. Let X0 ⊇ X1 ⊇
. . . ⊇ kn be an infinite chain of closed subsets of kn. By the definition of the Zariski topology, for
each k there is some ideal Ik ⊴ k[X1, . . . , Xn] such that Xk = V (Ik). Since Xk ⊇ Xk+1 we have

Xk = X0 ∩X1 ∩ . . . ∩Xk = V (I0) ∩ V (I1) ∩ . . . ∩ V (Ik) = V (I0 + . . . Ik)

by Lemma 1.2. Therefore by replacing Ik by I0 + . . .+ Ik we may assume that

I0 ⊆ I1 ⊆ I2 ⊆ . . .

so by Corollary 1.5 we have that IN = IN+1 = . . . for some N . Thus XN = XN+1 = . . . , which
proves that kn is noetherian.

1.2. Dimension
Definition 1.8. A topological space X is called irreducible if there are no proper closed subsets
X1, X2 ⊊ X such that X = X1 ∪X2. In the case X is an (quasi-)affine algebraic set, we call X an
(quasi-)affine variety.

Proposition 1.9. LetX be a noetherian space. Then there exist irreducible closed subsetsX1, . . . , Xn ⊆ X
such that X = X1 ∪ . . . ∪ Xn. Assuming that Xi ̸⊆ Xj for all i, j , the sets X1, . . . , Xn are uniquely
determined up to permutation.

Sketch of a proof. If X is irreducible, then there is nothing to do. Otherwise X = X1∪X2 for some
proper closed subsets X1, X2 ⊊ X . If X1 is irreducible, leave it be and move to X2. Otherwise
X1 = X11 ∪ X12 for some proper closed sets X11, X12 ⊊ X1... This process has to terminate as
otherwise we would have constructed an infinite chain of closed sets X1 ⊋ X11 ⊋ . . . . Uniqueness
is left as an exercise (see Exercise 1.1).

We call the sets X1, . . . , Xn from Proposition 1.9 the irreducible components of X .
Irreducible sets allow us to define the notion of dimension of a noetherian space X . Let us intro-
duce (only for the sake of the next definition) the following terminology: a strictly ascending of
nonempty irreducible closed sets X0 ⊊ . . . ⊊ Xn ⊆ X is called a chain of length n in X .

Definition 1.10. Let X be a noetherian space. Let X We define the dimension of X as

dimX := sup
{
n ∈ ω| there exists an chain of length n in X

}
∈ N∪{∞}.

It is pretty easy to see that dim k1 = 1 (as the topology on k1 is the cofinite topology) but already
showing that the plane k2 has dimension 2 is a nontrivial task! We give a recipe for that in Exercise
1.16.
For future model-theoretic reasons, the following will unassuming fact will be important.

Lemma 1.11. A Zariski closed set V has dimension ≥ n + 1 if and only if there disjoint Zariski closed
sets V1, V2, . . . ⊆ V , each of dimension ≥ n.

Proof. See Exercise 2.5.
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1.3. Hilberts Nullstellensatz

Theorem 1.12 (Weak Nullstellensatz). Assume that k is algebraically closed and let I◁k[X1, . . . , Xn]
be a proper ideal. Then V (I) is nonempty.

Definition 1.13. Let R be a ring and let I ⊴R be an ideal. The radical of I
√
I :=

{
a ∈ R| there is some n ∈ N such that an ∈ I

}
,

An ideal I is called radical if I =
√
I .

Definition 1.14. Let A ⊆ kn be any set. We define the vanishing ideal as the set

IA =
{
f ∈ k[X1, . . . , Xn]|f(a) = 0 for all a ∈ A

}
.

Theorem 1.15 (Nullstellensatz). Assume that k is an algebraically closed field. For any ideal is I we
have that IV (I) =

√
I .

1.4. The ring of regular functions. Morphisms.
Definition 1.16. Let V ⊆ kn be an affine algebraic set. A function f : V → k is called regular if
there is a polynomial F ∈ k[X1, . . . , Xn] such that f(a) = F (a) for all a ∈ V .

Definition 1.17. Let V ⊆ km,W ⊆ kn be affine algebraic sets. We say that a function f : V → W
is a morphism if there are polynomials f1, . . . , fn ∈ k[X1, . . . , Xm] such that

f(a) = (f1(a), . . . , fn(a))

for all a ∈ W .

Note that f : U → V as above yields a morphism f ♯ : O(V )→ O(W ) given by f ∗(φ) = φ ◦ f for
φ ∈ O(W ).

Proposition 1.18. The ring O(V ) is isomorphic (as a k-algebra) to k[X1, . . . , Xn]/ IV .
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Exercises

Noetherian spaces

Exercise 1.1. Show that the irreducible components of a noetherian space are uniquely deter-
mined.

The Zariski topology

Exercise 1.2. Consider the map f : k → k3 defined by f(t) = (t, t2, t3). Show that the image of f
is Zariski closed.

Exercise 1.3. (A continuation of Exercise 1.2) For k = C give an example of a morphism f : k2 → k
whose image is not Zariski closed. Note that the image of your f is a sum of sets of the form X \Y
where X and Y are Zariski closed. For k = R give an example of a morphism f : k2 → k which
does not have this property.

Exercise 1.4. Let I, J, Iα(α ∈ A) be ideals of k [X1, . . . , Xn]. Show the following:

1. V (∅) = kn, V ({1}) = ∅,

2. V (I) ∪ V (J) = V (IJ),

3. V
(∑

α∈A Iα
)
=
⋂

α∈A V (Iα).

Exercise 1.5. Let R = k[X1, . . . , Xn] and let f ∈ R be a non-constant polynomial.

1. Assume that f is square-free (i. e. not divisible by a square of any irreducible polynomial).
Show that the ideal (f) is radical.

2. Describe the ideal (f) for arbitrary f .

Exercise 1.6. Show that an ideal I ⊴R is radical if and only if the quotient ring R/I is reduced i.
e. has no nonzero nilpotent elements.

Exercise 1.7. Let R = k[X1, . . . , Xn] let I ◁ R be a proper ideal. Show that
√
I is equal to the

intersection of all maximal ideals m ◁ R containing I . Hint: think geometrically and use the
Nullstellensatz.

Exercise 1.8. Show that the radical of an ideal I ◁R is equal of the intersection of all prime ideals
p ◁ R containing I . Show that for R = k[X1, . . . , Xn] finitely many ideals suffice. Hint: For the
former Zorn’s Lemma might be useful. For the latter: think geometrically.

Regular functions and morphisms. Duality of geometry and algebra

Exercise 1.9. Let V ⊆ kn be an affine algebraic set.

1. Show that O(V ) is isomorphic as a k-algebra to k[X1, . . . , Xn]/ IV .

2. Assume that k is algebraically closed. How can homomorphisms of k-algebras O(V ) → k
be interpreted geometrically? Is this intepretation still valid if k = R?

3. Assume that k is algebraically closed. Describe how to see at the level of O(V ) the follwoing
properties: V is irreducible, V is finite, V is a point?
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Exercise 1.10. Let R be a ring and let I ⊴R be an ideal. Show that the following correspondence
is a bijection. {

ideals J̃ ⊴R/I
}
←→

{
ideals J ⊴R such that J ⊇ I

}
J̃ 7−→ π−1

(
J̃
)

π(J) ←−[ J

Show that under this correspondence prime (resp. maximal, resp. radical) ideals correspond to
prime (resp. maximal, resp. radical) ideals. Use this to describe the ideals of O(V ) geometrically.

Exercise 1.11. Show that the definition of f ∗ makes sense, i. e. that φ ◦ f ∈ O(V ) dla φ ∈
O(W ) and that f ∗ is a homomorphism of k-algebras. Show that under the identification O(V ) ∼=
k[X1, . . . , Xn]/ IV the homomorphism f ∗ corresponds to the homomorphism od k-algebras

f̃ : k[X1, . . . , Xm]/ IW → k[X1, . . . , Xn]/ IV

given by f̃ (Xi + IW ) = fi + IV (first show that f̃ is well-defined).

Exercise 1.12. Let f : V → W be a morphism of affine algebraic sets.

1. Show that f is injective if f ∗ is surjective and that the converse does not hold.

2. Show that the image of f is dense in W if and only if f ∗ in injective.

Exercise 1.13. Let V be an affine algebraic set. Make the following statement precise and then
prove it: a choice of a finite tuple of generators of the k-algebra O(V ) is the same as embedding
V into an affine space.

Exercise 1.14. Let V be an affine algebraic set. Show that O(V ) is reduced (vide: Exercise 1.6)
finitely generated k-algebra and that each reduced finitely generated k-algebra is of the formO(W )
for some affine algebraic set W .

Planar curves

Exercise 1.15. Let V be an affine algebraic set. Show that the following conditions are equivalent.

1. V is disconnected (as a topological space).

2. There exist some f, g ∈ O(V ) such that f 2 = f, g2 = g, fg = 0, f + g = 1.

Suggestion: It is good idea to try to understand (geometrically) what f and g should be e.g. by
starting with the case when V is a disjoint sum of two lines.

Planar curves

An affine planar curve is a closed subset of k2 all of whose irreducible components have dimension
1.

Exercise 1.16. Show that k2 is two-dimensional by following the following plan.

1. Show that dim k2 ≥ 2.
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2. Prove that if F,G ∈ k[X,Y ] \ k are coprime then the set V (F,G) is finite.

3. Show that if p0 ⊊ p1 ⊊ p2 a chain of prime ideals in k[X, Y ] then p0 = (0), p1 generated by
an irreducible polynomial and p2 is maximal.

4. Deduce that dim k2 = 2.

Exercise 1.17. Deduce from 1.16 that planar curves are precisely the zero-sets of non-constant
polynomials F ∈ k[X, Y ]. When do two non-constant ideals F,G ∈ k[X,Y ] define the same
planar curves? Describe the irreducible components of V (F ).

Exercise 1.18. Let C = V (X2 − Y 3) ⊆ k2 i niech f : k → k2 be the morphism f(t) = (t3, t2).
Check that the image of f is exactly C. Show that f is a bijective morphism k → C (even a
homeomorphism) but not an isomorphism (i. e. f−1 is not a morphism).
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2. Algebraically closed fields
Let us cast the very basic geometry developed so far into model-theoric terms. The less model-
theoretically inclined reader should consults Appendix A for basic facts and definitions, if needed.

Notation 2.1. We consider the language of rings Lrng consisting of two constant symbols 0, 1
and three binary function symbols +,−, ·. Every ring (and thus also every field) is a naturally
an Lrng-structure, with 0, 1,+,−, · interpreted in the obvious way. The theory of algebraically
closed fields ACF is the Lrng-theory whose models are precisely algebraically closed fields (con-
sidered as Lrng-structures as in the previous sentence). For p being a prime number or zero we can
also consider the theory of algebraically closed fields of characteristic p. We denote thisLrng-theory
by ACFp.

2.1. Quantifier elimination and its consequences
Definition 2.2. Let L be a language and let T be an L-theory. We say that T eliminates quanti-
fiers (or that T admits quantifier elimination) if for every L formula ϕ(x) there is a quantifier-
free formula ψ(x) such that T ⊢ ∀x(ϕ(x)↔ ψ(x)).

Remark 2.3. In Definition 2.2 it is enough to check ϕ(x) which are existential i. e. of the form
∃yθ(x, y) for some quantifier-free formula θ(x, y).

There is a nice semantic criterion for quantifier elimination.

Fact 2.4. Assume thatL has at least one constant symbol and let ϕ(x) be anL-formula. Then the following
are equivalent.

1. There is a quantifier-free formula ψ(x) such that T ⊢ ∀x(ϕ(x)↔ ψ(x)).

2. Assume M1,M2 are models of T and N ⊆ M1,M2 is a common L-substructure. Then for any
a ∈ N we have M1 |= ψ(a) if and only if M2 |= ψ(a).

Proposition 2.5. The Lrng-theory ACFp eliminates quantifiers.

Proof. We will use Fact 2.4 together with Remark 2.3.

Corollary 2.6. The theory ACFp is model-complete, i. e. whenever k ⊆ K is an extension of models of
ACFp we have k ≺ K . Explicitely, for every Lrng(k)-formula ϕ(x) and any tuple a ∈ k we have

k |= ϕ(a) if and only if K |= ϕ(a).

Proof. Thanks to Mr Mądrala (who pointed out that this is a future exercise in Ludomir’s course)
the reader is left to discover a proof by herself/himself (see Exercise 2.1).

Model-completeness is an extremely useful property. Think about it - if you want to prove some-
thing about a tuple a ∈ k relative to your model k you can instead move to some model K ⊇ k as
big and fancy as you like (and are able to construct). Or the other way around: if k thinks some
law holds in k, then K also adheres to that law. Of course we are limited to thinks expressible in
first-order logic, but this is still a powerful property.
As an example we will use the above strategy to prove Hilbert’s Nullstellensatz, as promised in the
previous chapter.
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Theorem 2.7 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and let I⊴k[X1, . . . , Xn]

be an ideal. Then IV (I) =
√
I .

Proof. It is easy to check that IV (I) ⊇
√
I so let us prove the reverse inclusion. Take f ∈ IV (I).

By Exercise 1.8 we know that
√
I is the intersection of all prime ideals p containing I , so let

us fix a prime ideal p ⊇ I and let us show that f ∈ p. Since p is a prime ideal, the quotient
ring R = k[X1, . . . , Xn]/p is a domain, so we can form its field of fractions R0, which in turn
has an algebraic closure K ⊇ R0. Note that k ⊆ R ⊆ K. Fix a set of generators g1, . . . , gm of
I ⊴ k[X1, . . . , Xn]. Unwinding the meaning of “f ∈ IV (I)”1 we can translate it into the following
statement:

k |= (∀x) (g1 (x) = . . . = gm (x) = 0 =⇒ f (x) = 0) .

Since k ⊆ K we have by 2.6 that K has to think the same about g1, . . . , gm, f ! That is

K |= (∀x) (g1 (x) = . . . = gm (x) = 0 =⇒ f (x) = 0) . (♡)

Let us apply the above for x set to a = (X1 + p, . . . , Xn + p) ∈ Kn. Using intensive staring we see
that quite tautologically we have

h (a) = h+ p

for any h ∈ k [X1, . . . , Xn], in particular we get for i = 1, . . . , n

gi (a) = gi + p = 0K

because gi ∈ I ⊆ p. By (♡) we have that f (a) = 0, so again by starring we have

f + p = f (a) = 0K

hence f ∈ p as desired.

Recall that an L-theory T is complete if for any L-sentence θ we have that T |= θ or T |= ¬θ.
This is equivalent to saying that all models of T have the same opinion abut θ, i.e. either for all
M |= T we have M |= θ or for all M |= T we have M |= ¬θ.

Corollary 2.8. The theory ACFp is complete.

Proof. Let F be the prime field of characteristic p (i. e. the field Fp with p elements if p > 0 and Q
if p = 0). Let K1, K2 |= ACFp. Let θ be any Lrng-sentence. By Fact 2.4 for

M1 = K1,M2 = K2, N = F

we get that M1 |= θ if and only if M2 |= θ. This means that any model of ACFp has the same
opinion about θ, thus ACFp is complete.

Quantifier elimination of ACFp has a natural geometric intepretation. For this we need to intro-
duce the following terminology.

Definition 2.9. Let X be a noetherian space and let Y ⊂ X . We say that Y is constructible if it
is a boolean combination of closed subsets of X .

Remark 2.10. Note that in the case X = kn constructible sets are precisely the quantifier-free
definable subsets of kn (see also Exercise 2.4). Proposition 2.5 can be thus stated as: the definable
sets in ACF are precisely the constructible sets.

1“If a ∈ kn is a zero of every element of I , the a is also a zero of f”.
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Corollary 2.11 (Chevalley’s Theorem). Let f : V → W be a morphism of affine algebraic sets. Then
for any constructible set U ⊆ V its image f(U) is a constructible subset of W .

Remark 2.12. It turns out that algebraically closed fields are the only field which eliminate quan-
tifiers in the language Lrng (see Exercise 2.4). One might ask whether there are interesting ex-
amples of fields which eliminate quantifiers after naming some specific definable sets. There is
a construction called the morleyization of a theory which achieves this almost tautologically for
any theory, but in our context it is hardly interesting. A more natural example is the theory of
(R,+,−, ·, 0, 1,≥). The ordering relation x ≤ y on R is definable in the field-language via the for-
mula (∃z) (y − x = z2). This means that adding ≤ to the language adds no new definable sets, but
it turns out that it yields quantifier elimination. One may say that (∃z) (y − x = z2) is essentially
the only non-eliminable existential formula.

2.2. Fields of definition
For convenience we assume in this section that k is an algebraically closed of characteristic
zero. The positive characteristic case is not much different, but the slight additional inconviniences
might disturb the presentation. Some examples of positive characteristic quirks are discussed in the
exercises.

Definition 2.13. Let k0 ⊆ k be a subfield, not neccesarily algebraically closed. We say that an
affine algebraic set V ⊆ kn is defined over k0 if the IV can be generated by polynomials f1, . . . fn
with coefficients in k0. In this situation we may also say that V is k0-closed. We say that V is
k0-irreducible (or a k0-variety).

Example 2.14 (Somewhat stupid, but it delivers a point). Let us work with k = C. The variety
V = V (πX − πY ) is defined over R and Q(π) but also over Q. A fortiori Q is the smallest field
over which V is defined. The variety W = V (X −

√
2Y ) is defined over C, R and Q[

√
2], but not

over Q( 3
√
17). In fact in can be checked that Q[

√
2] is the smallest field over which W is defined.

In the above example V and W both admit smallest field over which they are defined. It is not
particulary suprising as these are varieties defined by very simple equations. One might suspect
that for more complicated algebraic sets V there are maybe several minimal fields k0 over which
V is defined, or that maybe therea are no minimal ones at all. The following result of Weil proves
doubters wrong: there is always a smallest field kV over which V is defined. This is stricking! It
implies in particular that if you can defined V using polynomials over a field k1 and a field k2, then
you can define V using polynomials over k1 ∩ k2.

Definition 2.15. Let V be an affine algebraic set. We call a field kV ⊆ k the field of definition
of V if kV is the smallest field over which V is defined.

It is absolutely unclear that fields of definitions exists, but we will prove that they do. Before doing
so, let us note the following property.

Lemma 2.16. Let V be an affine algebraic set. If the field of definitions kV of V exists, then it is finitely
generated (as a field over Q).

Proof. See Exercise 2.15.

Lemma 2.16 will also follow directly from our construction of kV (see Theorem 2.20), but it is
good to notice that it is true by general reasons.
Now time for an auxilliary lemma, for which we need a piece of notation.

12



Notation 2.17. Let σAut(k) be any field automorphism. Such σ naturally induces a bijection on
kn, which we also denote by σ. Moreover σ induces an automorphism of k[X1, . . . , Xn] by acting
on k by σ and fixing X1, . . . , Xn, and by abuse of notation we denote it also by σ.

Remark 2.18. It is easy to see that for an affine algebraic set V and an automorphism σAut(k) we
have that σ(V ) is also an affine algebraic set. Moreover Iσ(V ) = σ (IV ). In particular σ(V ) = V if
and only if σ(IV ) = IV .

Lemma 2.19. Let V be an affine algebraic set and let k0 be a field over which V is defined. Assume that
for any σ ∈ Aut(k) we have σ|k0 = idk0 if and only if σ(V ) = V . Then k0 is the field of definition of V .

Proof. We have to check that whenever k1 ⊆ k is a field over V is defined then k0 ⊆ k1. By Galois
theory in order to show k0 ⊆ k1 it is enough to show that any σ ∈ Aut(k) which fixes k1 pointwise
fixes also k0.2 So take σ ∈ Aut(k) which fixes k1 pointwise. Since V is defined over k1 we have
σ(V ) = V so by assumption σ|k0 = idk0 as desired.

Theorem 2.20. Every affine algebraic set V admits a field of definition kV .

Proof. Denote by I = IV the vanishing ideal of V . The ring R := k[X1, . . . , Xn] is a k-vector
space and the set of all monomials (in variables X1, . . . , Xn) is a basis of R over k. Let (mi : i < ω)
be an enumeration of all monomials. The quotient R/I is also a k-vector space and the elements
m0 + I,m1 + I, . . . span R/I , so we may choose a subsequence (bj : j < ω) of (mi : i < ω) such
that b0 + I, b1 + I, . . . is a basis of R/I . For every i < ω let α0

i , α
1
i , . . . ∈ k be the coordinates of

mi + I relative to this basis, i.e. for big enough j < ω we have αj
i = 0 and

mi + I =
∑
j<ω

αj
i bj + I.

Let kV be the field generated by all the coefficients αj
i for i, j < ω. We will prove that kV satisfies

the assumptions of Lemma 2.19 from which it will follows that kV is the field of definition of V .
Define fi := mi −

∑
j<ω α

j
i bj ∈ I .

Claim 1. V is defined over kV . More precisely, IV is generated by f0, f1, . . . .
⊢ Take first any f ∈ R and write f =

∑
i<ω β

imi (here upper i is a superscript, not exponentiation).
We have

f + I =
∑
i<ω

βi
∑
j<ω

αj
i bj + I =

∑
j<ω

(∑
i<ω

βiαj
i

)
bj

thus f ∈ I exactly when
∑

i<ω β
iαj

i for all j < ω. But then

∑
i<ω

βifi =
∑
i<ω

βi

(
mi −

∑
j<ω

αj
i bj

)
= ... =

∑
i<ω

βimi = f,

as desired. ⊣

Claim 2. For any σ ∈ Aut(k) we have σ|kV = idkV if and only if σ(V ) = V .
⊢ The “only if” part holds simply because V is defined over kV by Claim 1. For the “if” part,
assume σ ∈ Aut(k) fixes V setwise. We want to show σ|kV = idkV , i.e. that σ

(
αj
i

)
= αj

i for all
i, j < ω. Since σ(V ) = V we have σ(I) = I ... ⊣
Claim 1 and Claim 2 mean that kV satisfy the assumptions of Lemma 2.19, hence by this lemma
we have that kV is the field of definition of V .

2Here we use our assumption that k has characteristic zero - otherwise we would need to care about separability.
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Corollary 2.21. For any affine algebraic set V there is a finite tuple c ∈ k such that an automorphism
σ ∈ Aut(k) fixes V setwise if and only if σ fixes c pointwise.

Proof. Let kV be the field of definition of V , which exists by Theorem 2.20. By Lemma 2.16 there
is some finite tuple c such that kV = Q (c). Clearly σ ∈ Aut(k) fixes kV pointwise if and only if it
fixes c, so Lemma 2.19 the proof is finished.

Remark 2.22. Essentially the same proof as in Theorem 2.20 and Corollary 2.21 gives the fol-
lowing: every ideal of the ring R = k[X1, . . . , Xn, . . . ] of polynomials in infinitely many variables
admits a field of definition. We leave it to the reader to make this statement precise and supply a
proof.

Corollary 2.21 motivates the following definition.

Definition 2.23. Let T be an L-theory, letM |= T be a sufficiently saturated model,X a definable
set in M and c ∈ M a tuple. We say that c is a canonical parameter for X (or a code for X) if
any automorphism σ ∈ Aut(k) fixes X setwise if and only if σ fixes c pointwise.

The name “canonical parameter” is explained by the following result.

Lemma 2.24. Let T be a L-theory, let M be a sufficiently saturated model of T , let X be a definable set
in M and let c ∈M be a tuple. Then the following conditions are equivalent.

1. c is a canonical parameter of X

2. There exists an L-formula ϕ(x, y) such that X = ϕ(M, c) and whenever c′ ̸= c we have X =
ϕ(M, c′)

Proof. See Exercise 2.14.

So a canonical parameter for X is a tuple c which appears as a parameter in a formula defining X and
in this formula only using c as parameters results in X (so in a way tuple c is canonical).

Corollary 2.25. Every definable set in ACF0 has a code.

Proof. We know that two things:

1. Zariski closed sets have codes by Corollary 2.21.

2. The definable sets in ACF0 are precisely the locally constructible sets (see Remark 2.10), so
are boolean combinations of Zariski closed sets.

One can combine these two facts to show that every definable set in ACF0 has a code (which is
the content of Exercise 2.16).

2.3. Imaginaries and how to eliminate them
Equivalence relations and quotient set are all over the place in mathematics. If X is a definable set
in some model M and E is a definable equivalence on X then the quotient set X/E is something
that M sees and can touch but it is not directly a definable set. Elimination of imaginaries is the
ability to treat X/E like a definable set.

14



Definition 2.26. We say that an a structure M eliminates imaginaries (or admits elimination
of imaginaries) if for every n < ω and every 0-definable equivalence relation E on Mn there is
some k < ω and a 0-definable map fE : Mn → Mk such that for a, b ∈ Mn we have aEb if and
only if fE(a) = fE(b). We say that a theory T eliminates imaginaries (or admits elimination
of imaginaries) if every model of T eliminates imaginaries.

Intuitively, the function f expresses the quotient setMn/E as a bona fide definable set f(X) ⊆Mk.

Example 2.27. We work in k |= ACF0. Let E be the equivalence relation on k2 defined via the
formula

(x1, x2)E (y1, y2)⇐⇒ {x1, x2} = {y1, y2}

which is easily seen to be definable. Set f : k2 → k2 as f(a, b) = (a + b, ab). By kindergarten
algebra we have that {a1, a2} = {b1, b2} if and only if f(a1, a2) = f(b1, b2).

Remark 2.28. It is easy to see that if T is complete then it is enough to check the conditions from
Definition 2.26 for a single model M |= T (see Exercise 2.10).

Lemma 2.29. Assume that T eliminates imaginaries. Then every definable set has a code.

Proof. (⇐=) Let E(x, y) be a formula defining an equivalence relation on a definable set X

E(x, y)

(=⇒) Assume that T eliminates imaginaries and let X be a definable set defined by a formula
ϕ(x, a), where a ∈Mn. Let E ⊆Mn ×Mn be the equivalence relation defined via the formula

θ(y1, y2) := (∀x) (ϕ(x, y1)←→ ϕ(x, y2))

or in other words a1Ea2 exactly when ϕ(x, a1) and ϕ(x, a2) define the same set. Since T eliminates
imaginaries there is some k < ω and a 0- definable function fE : → Y such that

a1Ea2 if and only if f(a1) = f(a2)

for all a1, a2 ∈ U . It is now easy to check that c := f(a) is a code for X .

Lemma 2.30. Assume that L contains at least two constant symbols c1, c2 and T |= c1 ̸= c2. Then T
eliminates imaginaries if and only if every definable set in T has a code.

Proof. See Exercise 2.12.

Combining Lemma 2.30 with Corollary 2.25 yields the following.

Proposition 2.31. The theory ACF eliminates imaginaries.

2.4. Types
Recall the following.

Definition 2.32. A partial type overA in variables x is simply a set ofL(A)-formulas in variables
x. A partial type π (x) is consistent if for any finitely many formulas ϕ1 (x) , . . . , ϕn (x) ∈ π (x)
there is some a ∈ M such that M |=

∧n
i=1 ϕi (a). A type π (x) over A is complete it is consistent

and for any L(A)-formula ϕ (x) we have ϕ (x) ∈ π (x) or ¬ϕ (x) ∈ π (x).
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You may think of a complete type as descriptions of an ideal element of M . See Appendix A for
more on types.

Definition 2.33. Let k0 ⊆ k be a field and let V ⊆ kn be an affine k0-variety. The generic type
of V over k0 is the type pV,k0(x) ∈ Sn(k0) saying “I am in V but in no proper k0-subvariety of V”.

Proposition 2.34. Every complete n-type over k0 is the generic type of a unique k0-variety V .

Proof. Uniqueness is left as an easy exercise (see Exercise 2.6), so let us focus on existence. Let
p ∈ Sn(k0) be a type and let F be the family of all k0-closed sets on which p concentrates. Since
p is a type, the family F has the finite intersection property. The intersection V :=

⋂
F is thus a

Zariski closed and clearly p concentrates on V . Moreover, V is k0-irreducile: if V = V1 ∪ V2 for
some k0-closed subsets V1, V2 ⊆ V then p (being complete) has to concentrate on V1 or V2 and thus
by minimality of V we have that V1 = V or V2 = V .

By the above proposition the following definition makes sense.

Definition 2.35. The dimension of a complete type p ∈ Sn(k0) is the dimension of the unique
k0-variety V for which p = pV,k0 .

Definition 2.36. Let k0 ⊆ k1 be subfields of k, let p ∈ Sn(k0) be a complete type of k0 and let
q ∈ Sn(k1) be an extension of p (i.e. q ⊇ p). We say that q is a forking extension (or that the
extension p ⊆ q forks).

One should think that a non-forking extension q of p is a “free extension”, in a sense that it imposes
no significantly new restrictions. 3.

2.5. Two remarks on dimension
Fact 2.37. The dimension of an affine variety V is equal to the transcendence degree of k(V ) over V .

Lemma 2.38. Work in k |= ACF. Then a definable set V has dimension ≥ n + 1 if and only if there
disjoint definable sets V1, V2, . . . ⊆ V , each of dimension ≥ n.

Proof. See Exercise 2.5.

Note that Lemma 2.38 allows us to define dimension of definable sets in ACF without refering to
the Zariski topology.4

Comments

Marker’s book [1] has a nice introduction to the model theory of ACF (Chapter 3, Section 3.2).
His approach to elimination of imaginaries is different and does not mention fields of definition.
The proof of Proposition 2.20 (first proven by Weil) is taken from Poizat’s paper [2], where he
introduced the notion of elimination of imaginaries.
Not every theory T eliminates imaginaries (see Exercise 2.17 for a concrete example), but there is
a canonical construction way to “expand” T to a theory T eq in a bigger language Leq

T , so that any
model

3Model-theorists are peculiar creatures and they name desired properties by negating an undesired property. Be-
cause of this we have “non-forking”, “not the independece property”, “no finite cover property” and so on.

4We just invented the Morley rank!
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1. M |= T extends uniquely to a model M eq |= T eq.

2. All definable subsets of M inside M eq are already definable in M .

3. M eq eliminates imaginaries.

Essentially for every 0-definable equivalence relation E we add to M new elements corresponding
to E-classes.

Exercises
Unless said otherwise, k is an algebraically closed field of characteristic zero and types, definable
sets et cetera are considered in the theory ACF and its models.

Some basic properties of ACF

Exercise 2.1. Show that the theory ACF is model complete.

Exercise 2.2. The Lefschetz Principle is a rule of thumb saying that whatever hold in algebraic
geometry over C should hold over all algebraically closed fields, at least of sufficiently large char-
acteristic. This might be formalized, which is the goal of this exercise. For an Lrng-sentence ϕ
show that the following conditions are equivalent.

1. ACF0 |= ϕ.

2. ACFp |= ϕ for all sufficiently large p.

3. ACFp |= ϕ for infinitely many p.

Note that we might in the above Fp |= ϕ instead of ACFp |= ϕ and C |= ϕ instead of ACF0 |= ϕ.

Exercise 2.3. Prove the following fact (called sometimes the Ax-Grothendieck theorem): if
f : Cn → Cn in an injective polynomial map, then f is surjective. Hint: Use the previous exercise.

Exercise 2.4. We want to explore quantifier-elimination in fields.

1. Show that over any field k (considered in the language Lrng, as always) the constructible
subsets of kn coincide with quantifier-free definable subsets.

2. Show that the statement of the Chevalley Theorem for a field k is equivalent to quantifier-
elimination in k.

3. Given an example of a field k which does not eliminate quantifiers in Lrng. In particular, the
Chevalley Theorem has to fail in k.5

4. (∗) Show that a field admiting quantifier elimination in the language Lrng is algebraically
closed. Warning: This might be hard or borderline impossible to solve with the theory we
have developed till now. After learning some ω-stability theory we will be able to prove a
more general statement.

Exercise 2.5. Show that a definable set V has dimension ≥ n + 1 if and only if there disjoint
definable sets V1, V2, . . . ⊆ V , each of dimension ≥ n.

5More precisely, the naive version of Chevalley’s theorem fails for k; the scheme-theoretic version is valid over any
field.
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Types in ACF

Exercise 2.6. Let V,W ⊆ kn be k0-varieties such that pV,k0 = pW,k0 . Show that V = W .

Exercise 2.7. Let a ∈ kn and set p = tp(a/k0). From the lecture we know that there is a k0-variety
V such that p = pV,k0 . Describe V directly in terms of a.

Exercise 2.8. Show that p ∈ Sn(k0) is equal to the largest number k for which there is a chain of
extensions of complete types p0 ⊆ p1 ⊆ . . . ⊆ pm where p0 = p and for each i = 0, . . . ,m− 1 the
extension pi ⊆ pi+1 forks.

Exercise 2.9. Describe the Stone topology on the space of types Sn(k). Is there any connection
to geometry?

Imaginaries

Exercise 2.10. Assume that T is a complete theory. Show that T eliminates imaginaries if and
only if some model of T does so.

Exercise 2.11. (An extension of Example 2.27) Describe how to treat finite sets (of a given cardi-
nality) as imaginary elements. Give a recipe how to eliminate them in the theory of fields.

Exercise 2.12. Let L be a language and let T be an L-theory. Assume that L contains at least two
constant symbols c1, c2 and that T |= c1 ̸= c2. Show that T eliminates imaginaries if and only if
every definable set in T has a code.

Exercise 2.13 (A good reason for eliminating imaginaries). Let us introduce the following local
definition: we say that a theory T defines sections if every surjective map f : X → Y admits a
definable section, i.e. a definable map g : Y → X such that f ◦ g = idY .6

1. Show that if T defines sections then T eliminates imaginaries.

2. Show that ACF does not define sections. In particular, the converse of the previous item does
not hold.

Exercise 2.14. Let T be a L-theory and let M be a sufficiently saturated model of T . Let X be a
definable set in M and let c be a tuple. Prove that the following conditions are equivalent.

1. c is a canonical parameter of X

2. There exists an L-formula ϕ(x, y) such that X = ϕ(M, c) and whenever c′ ̸= c we have
X = ϕ(M, c′)

Exercise 2.15. Let V be an affine algebraic set.

1. Let K ⊆ L ⊂M be a tower of field extensions. Show that if M is finitely generated over K,
then L is finitely generated over K.

2. Show that the field of definition of V is finitely generated over Q without refering to a direct
construction of kV .

Exercise 2.16. Show that every definable set in ACF0 has a code.
6The theory of R as an ordered field has this property. More generally, o-minimal theories define sections.
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Exercise 2.17. Let K be a field. The theory of vector spaces over K is defined as follows. We
define a language L consisting of a constant symbol 0, a binary function symbol + and for each
r ∈ K a unary function symbol λr. If V is a vector space over K, then we consider it as an L-
structure as follows: 0 and + have a guessable interpretation and λr for r ∈ K is intepreted as the
scalar multiplication λr(v) = r · v.
Now, let K be a finite field with at least 3 element and let T be the theory of infinite K-vector
spaces. Show that T does not eliminate imaginaries.
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3. Differential fields

3.1. Basic differential algebra
Definition 3.1. Let R be a ring. A derivation on R is an additive map δ : R→ R such that

δ(xy) = δ(x)y + xδ(y)

for all x, y ∈ R. In such situation we call the pair (R, δ) a differential ring.

Lemma 3.2. Let (R, δ) be a differential ring, x ∈ R and n < ω. Then δ (xn+1) = (n+1)xn. If moreover
y ∈ R is invertible, then δ

(
x
y

)
= δ(x)y−xδ(y)

y2

Proof. The first identity follows from an easy inductive argument and the second one follows from
applying Leibniz’ rule to δ(x) = δ

(
y · x

y

)
.

By the typical abuse of notation we will ignore δ in the notation and simply write e.g. “let R be a
differential ring”. From now on we fix a differential ring (R, δ).

Definition 3.3. Let I ⊴ R. We say that I is a differential ideal of R (and write I ⊴δ R) if for
every x ∈ R we have δ(x) ∈ R.

Remark 3.4. If I⊴δR then the quotient ring R/I is equipped with a natural derivation δ̃ : R/I →
R/I (well) defined as

δ̃ (x+ I) = δ(x) + I

for x ∈ I . The quotient map π : R→ R/I is a differential homomorphism.

Definition 3.5. The ring of differential polynomialsR{X} is defined as follows. As a pure ring
R {X} is the ring of polynomials over R in countably many variables X(0), X(1), . . . , X(n), . . . and
we equipp it with the unique derivation δ̃ : R {X} → R{X}

Theorem 3.6. Let R be a Ritt-Noetharian differential Q-algebra. Then R{X} is also Ritt-Noetherian.

Corollary 3.7. If K is a differential field, then the ring of K{X1, . . . , Xn} is Ritt-Noetherian for any
n < ω.

3.2. Differential fields
Let (K, δ) be a differential field of characteristic zero.

Lemma 3.8. The field of constants CK is a field and moreover CK is relatively algebraically closed in
K , i.e. whenever a ∈ K is algebraic over CK we have that a ∈ CK .

Proof. Let a ∈ K be algebraic over CK with minimal polynomial f ∈ CK [X].
Thus...

Remark 3.9. Lemma 3.8 as stated is false in characteristic p > 0, since by Lemma 3.2 we have
Kp ⊆ CK . It is however true that CK is relatively separably closed in K and this can be proven in
the same manner as Lemma 3.8.
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Definition 3.10. Let I ⊆ K{X1, . . . , Xn}. We define the vanishing set of I as

V δ(I) =
{
a ∈ Kn|f(a) = 0 for all f ∈ I

}
A Kolchin closed set is a set of the form V δ(I) for some I .

Remark 3.11.

The above results allows us to formulate the following (surely very suprising) definition.

Definition 3.12. The Kolchin topology on Kn is the topology on Kn whose closed sets are
precisely the Kolchin closed subsets of Kn.

As in the case of case of the Zariski topology we have the following interpretation of Theorem
3.6.

Corollary 3.13. The Kolchin topology is Noetherian.

Proof.

Definition 3.14. Let k ⊆ K be a differential field and let a ∈ K. There are two possibilities

1. For some n < ω the element δna is algebraic over the (pure) field k(δ<na) or

2. The sequence a, δa, δ2a, . . . is algebraically independent over k.

In the first case we say that a is differentially algebraic over k and in the second case we say
that a (or the field k < x >) is differentially transcendental over k over k. If a is differentially
algebraic over k then we call the smallest n for which (1) holds the order of a over k.

Lemma 3.15. Let a ∈ K be differentially algebraic over k and let n be the order of a over k. Then
k < a >= k(δ≤na) = k(δ<na)[δna].

Remark 3.16.

3.3. Differentially closed fields
Definition 3.17. We define the language of differential rings as the language Lδ = Lrng ∪{δ}
where δ is a unary functional symbol. We treat any differential ring as an Lδ-structure in any
obvious manner.

Definition 3.18. We say that a differential field (K, δ) is differentially closed if the following
condition holds:

sdasda

Remark 3.19. The name “differentially closed fields” might be a bit misleading for the following
reason. Whenever f ∈ K{X} is a differential polynomial of order at least one (i.e. f is not an
ordinary polynomial) there exists a differential field extension K ⊆ L and a ∈ L \ K for which
f(a) = 0 - that is (proper) differential equations can (and will) attain new solutions in extensions.

At this point we do not even now whether there are any differentially closed fields. The following
results shows that they do in fact exist and more over every differential field sits inside a differentially
closed one.
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Lemma 3.20. Any differential field extends to a differentially closed field.

Proof. Let (K, δ) be a differential field. It is enough to construct for any K-pair (f, g) an extension
K ⊂ L in which (f, g) has a solution: if we manage to do that, then by iterating it transfinitely
many times we can construct a differentially closed extension of K.

Lemma 3.21. LetK1, K2 be ω-saturated differentially closed fields, let k be a common differential subfield
of K1, K2 and let a ∈ K1. Then there is a differential embedding σ : k⟨a⟩ → K2 over k (i.e. fixing k
pointwise).

Proof.

Proposition 3.22. The theory DCF0 eliminates quantifiers.

Proof. We will use the semantic criterion ... Possibly passing to an elementary extension we may
assume that K1, K2 are ω-saturated.

Again just as in the case of ACFp we get the following consequence of Proposition 3.22...

Corollary 3.23. The theory DCF0 is complete and model complete.

Proof. Model completeness follows from quantifier elimination. Regarding completeness, it is enough
to notice that Q equipped with the trivial derivation is a common substructure of all differential
fields of characteristic zero.

...and model completeness together with Lemma 3.20 immediately yields the following.

Corollary 3.24 (The Differential Nullstellensatz). Let K |= DCF0 and let Σ be a finite set of differ-
ential equations over K , which has a solution in some differential extension L ⊇ K .

3.4. Types in DCF0

From now on we work in a differentially closed field (U , δ) which is moreover ω1-saturated, i.e.
any consistent type over a countable set of parameters A ⊆ U is realized in U . By default sets of
parameters are algebraically closed countable differential subfields of U , typically denoted k, k′ and
so on. We denote by C the field of constants of U .

Remark 3.25. U serves as a “universal domain” for differential algebra here, a sort of big enough
playground. It is “just” a convinient device and all meaningful results should not depend on the
choice of U . In model theory such an object is typically called a monster model though these are
usually much bigger.

Quantifier elimination in ACF yields to a geometric description of types using the Zariski topol-
ogy. The same spiel happens with DCF0 and the Kolchin topology.

Definition 3.26. LetX be a differential k-variety. The generic type of X over k is the complete
n-type over k saying “I am in X but in no proper Kolchin k-closed subset of X”.

Remark 3.27. We will sometimes talk about generic types (over some k) of equations Σ. By this
we mean the following: take the differential algebraic set X defined by the Σ, pick a k-component
X0 of X and take the generic type of X0 over k.

Corollary 3.28. Let p ∈ Sn(k) where k is a (countable) differential subfield of U . Then there exists a
unique differential k-variety X ⊆ Un
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Proof. See Exercise 3.3

Definition 3.29. A definable set X ⊆ Un is called finite-dimensional if there is some constant
N such that for any trdeg()... A formula φ(x) is finite-dimensional if the set X = φ(U) is finite-
dimensional. A type p ∈ Sn(k) is finite-dimensional if it contains a finite-dimensional formula.

It is easy to see that the generic type of a differential k-variety of X is finite-dimensional if and
only if X is finite-dimensional.

Remark 3.30. We defined being finite-dimensional while not defining dimension at all - funny,
isn’t it? There are several meaningful notions of dimension for types in DCF0...

Definition 3.31. A type p ∈ Sn(k) is internal to C (or internal to the constants) if for some
(equivalenty: all) a |= p there are b |⌣k

a and c ∈ C such that a ∈ k⟨b, d⟩.

The idea of internality is the following: there is a definable function f such that

Example 3.32. Pick any r ∈ U and let p be the generic type of the equation x′ = rx over some
k ∋ r.

The following is the first serious theorem in this notes. It is the heart of the model-theoretic proof
of the Mordell-Lang theorem, which we will discuss soon. We postpone the proof of Theorem
3.33 to Section 3.7, as we will need to develop some machinery first.

Theorem 3.33 (The Canonical Base Property for DCF0). Fix two countable algebraically closed
differential fields k ⊆ k′ Let p be a finite-dimensional type over k, let a |= p and let c be the canonical base
of tp(a/k′). Then tp(c/k⟨a⟩) is internal to C .

intuition, picture

3.5. Tangent spaces and jets
Let K be an algebraically closed field of arbitrary characteristic.

Definition 3.34. mX,p = {f ∈ O(X)| f(p) = 0} The m-th jet space of X at p is dual space of
mX,p/m

m+1
X,p . The 1th jet space of V at p is also called the tangent space of X at p.

The

Lemma 3.35. sd

Proof. asd

Specializing to R = O(X), I = mm
X,p yields the following.

Corollary 3.36. For any affine variety X and any p ∈ V we have
⋂

m<ω m
m
X,p = (0).

Lemma 3.37. Suppose X, Y are subvarieties of Kn and p ∈ X ∩ Y . If Jetmp (X) = Jetmp (Y ) for all
m < ω, then X = Y .
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3.6. A touch of differential algebraic geometry
We work inside a differential field (K, δ) of characteristic zero.

Definition 3.38. A δ-module over (K, δ) (or a differential module over (K, δ)) is a finite-
dimensional vector space V over K together with an additive endomorphism DV : V → V such
that

DV (rv) = δ(r)v + rDV (v)

for all r ∈ K and v ∈ V . We denote by V δ the kernel of DV and call it the module of constants
of (V,DV ) (which is a vector space over CK).

Fix a basis v1, . . . , vn of (V,DV ) and set vi := DV (vi) for i = 1, . . . , n. Expanding v′1, . . . , v
′
n in

terms of the basis v1, . . . , vn yields 
v′1 = a11v1+ . . .+ a1nvn

v′2 = a21v1+ . . .+ a2nvn
...

v′n = an1v1+ . . .+ annvn

for some coefficients (aij)i,j ∈ K. But this looks just like a system of linear ordinary-differential
equations! So in a way differential modules are algebraic counterparts of such systems. In this
analogy V δ is simply the set of solutions of our system. There is much more to this story, but
unfortunately we will barely touch it.

Lemma 3.39. Let (V,DV ) be a differential module over (K, δ) and assume that K is differentially closed.
Then there is a basis v1, . . . , vn ∈ V δ of V δ over CK which is also a basis of V over K . In particular,
dimCK

V δ = dimK V .

Proof. ...

Lemma 3.40.

3.7. The Canonical Base Property.
We begin the proof of Theorem 3.33.
For m < ω let Vm be Jetmp X equipped with its canonical δ-module structure. By Lemma 3.40
Jetmp Y is a δ-submodule of Vm.

3.8. Interlude: the birth of certain ideas

The beginning of model theory (as an autonomous part of logic) is typically dated at 1964 when
Morley published his famous
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Comments
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Exercises
We work inside a monster model U |= DCF0. We denote by C the field of constants of U .

Exercise 3.1. Let R be the ring of continuous functions on R and let δ be a derivation of R which
vanishes on R. Show that δ ≡ 0.

Exercise 3.2.

Exercise 3.3.
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4. ω-stable theories

4.1. Some history
The beginning of model theory is typically dated... Morley’s categoricity theorem... ... An un-
countable model of T is controlled by certain special sets... Strongly minimal sets... In a way
atoms...
Think about vector spaces (linear dimension), algebraically closed fields (transcendence degree),
pure sets (cardinality)
In fact Zilber conjectured that every strongly minimal structure look like one of the above ex-
amples, in a precise way we will soon see. This statement is called the Zilber trichotomy. Really
turned out to be harsher - Hrushovski constructed... However, Zilber trichotomy tends to hold
for strongly minimal sets defined in theories “with a geometric flavours” - ...
Morley rank

4.2. The Morley rank
Let us fix a complete first order theory T without finite models and let C |= T be a monster model.

Definition 4.1. Let X ⊆ Cn be a definable set. For α ∈ On we define recursively the statement
“RM(X) ≥ α” as follows.

• Base step. RM(X) ≥ 0 if X is nonempty.

• Successor step. Ifα = β+1 thenRM(X) ≥ αwhen there are disjoint definable setsX0, . . . , Xn, . . . ⊆
X with RM(Xi) ≥ β for all i < ω.

• Limit step. If α is a limit ordinal, then RM(X) ≥ α if RM(X) ≥ β for all β < α.

If there is some α such that RM(X) ≥ α does not hold, then we say that X is ranked and define
its Morley rank as

RM(X) = sup {α ∈ On |RM(X) ≥ α} .

For completeness we set RM(X) =∞ if X ̸= ∅ is not ranked and RM(∅) = −1.

4.3. Strongly minimal sets
Definition 4.2. A pregeometry consists of a set X and a function cl : P(X) → P(X) called a
closure operator satisfying the following properties.

1. A ⊆ clA and cl (clA) = clA.

2. If A ⊆ X and a ∈ clA if and only if there is a finite set A0 ⊆ A such that a ∈ clA0.

3. (The exchange property) If a ∈ cl (A ∪ {b}) \ clA then b ∈ cl (A ∪ {a}).

Example 4.3. three...

Example 4.4. Let (X, cl) be a pregeometry. A subset Y ⊆ X gives rise to two new pregeometries:
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1. The induced pregeometry on Y defined via A 7→ Y ∩ clA.

2. The localization X/Y which is X together with the closure operator clY A = cl (A ∪ Y ).

(It is easy to check that the above are really pregeometries).

For the remainder this subsection let (X, cl) be a pregeometry.

Definition 4.5. We say that a setA ⊆ X is independent if for any a ∈ Awe have a ̸∈ cl (A \ {a}).
We say that A is a basis of X if X is independent and clA = X .

Lemma 4.6. There exists a basis of X and any two bases of X are equinumerous.

In the light of the above fact the following definition makes sense.

Definition 4.7. We call the cardinality of some/any basis of X the dimension of X and denote
it by dimX .

Example 4.8.

Definition 4.9. We say that a structure M is minimal if every definable set X ⊆ M is either
finite or cofinite. We say that a structure M is strongly minimal if any M ′ ≡ M is a minimal
structure. Finally, a theory T is strongly minimal if any model of T is minimal (equivalently:
strongly minimal).

Example 4.10. the three...

Comments
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Exercises
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5. ω-stable groups
Let us work in a model M . A definable group is a definable subset G ⊆ Mn together with a
group operation ∗ : G×G→ G which is also a definable map.
In the context of ω-stable theories definable groups are especially well-behaved.

5.1. Algebraic groups

5.1.1. Affine algebraic groups

Let K be an algebraically closed field. For convenience we will assume that charK = 0.

Definition 5.1. An affine algebraic group is an affine algebraic set G ⊆ Kn together with
together with a group operation ∗ : G×G→ G which is also a regular morphism.

Example 5.2. There is a plethora of examples of affine algebraic groups.

1. The simplest one is perhaphs the additive group Ga(K) = (K,+).

2. There is also the multiplicative group Gm(K) = (K×, ·). As written Gm(K) is not an affine
algebraic group since K× is not closed in K. To remedy that we identify it with the hyper-
bola {

(x, y) ∈ K2|xy = 1
}

with coordinatewise multiplication as the group operation.

3. Let Mn×n(K) be the set of all n× n matrices over K, identified with the affine space Kn×n.
ClearlyMn×n(K) is an affine algebraic group, the group operation being addition. Note that
for n = 1 we get again Ga(K)

4. The general linear group GLn(K) which consists of all invertible n×n matrices with coeffi-
cients in K. We encounter the same problem as in the previous example: GLn(K) treated as
a subset of Kn×n is not a closed set. To remedy that, we identify GLn(K) with the following
set

G = {(A, t) ∈Mn×n(K)×K|t detA = 1} .

The set G is a bona fide affine algebraic set and it is easy to see that the operation

(A, s) · (B, t) = (AB, st) ·

makes (G, ) into an affine algebraic group. We identify G with GLn(K) via the map

GLn(K) ∋ A 7−→ (A, detA) ∈ G

which is of course an isomorphism of groups and moreover a homeomorphism in the Zariski
topology. Note that GL1(K) = Gm(K).

5. There are various interesting subgroups of the above examples, e.g. the special linear group
(SL)n(K) ≤ GLn(K) consisting of all A ∈ GLn(K) with detA = 1.
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5.1.2. Elliptic curves and abelian varieties

Naively y2 = x3 + ax+ b

If three point p, q, r ∈ E are colinear then we declare p⊕ q ⊕ r = 0E .
The proper approach is to replace the affine plane K by the projective plane P2(K). The P2(K) is
obtained from K2 by adding for direction L (the family of all lines parallel to a given one) a point
∞L which belongs to each l ∈ L. Point of the form ∞L are called points at infinity. All the
points at infinity lay on the line at infinity.
There is a nice way of representing points of P2(K). For neat geometric reason we will not go
into we can identify P2(K) with the quotient (K3 \ {(0, 0, 0)}) / ∼ where (a, b, c) ∼ (a′, b′, c′) if
there is some λ ∈ K× such that (a, b, c) = λ(a′, b′, c′). The equivalence class of (a, b, c) is denoted
by [a : b : c]. Under this identification a point (a, b) ∈ K2 corresponds to [a : b : 1] and If L is the
direction parallel to the vector (a, b) then∞L = [a : b : 0].7.
In general Pn(K) = (Kn+1 \ {0}) / ∼.
Homogeneous polynomial F (X0, . . . , Xn)

Z(F ) = {[a0 : . . . : an] ∈ Pn(K)|F (a0, . . . , an) = 0}
The Zariski topology on Kn coincides with the subspace topology coming from the inclusion
Kn ⊆ Pn(K).

Definition 5.3. An abelian variety is a projective variety A together with a group operation
∗ : G×G→ G which is also a regular morphism.

Abelian varieties are beautiful, magical objects. As one might
An important source of abelian varieties arises as follows. To a non-singular projective curve C
on can associate an abelian variety J(C) called Jacobian variety of C. This variety comes with
a map C → J(C) (typically is a closed embedding) which is universal among maps from C to an
abelian variety. Since abelian varieties are well-behaved (e.g. Jacobian varieties where crucial in
Weil’s work on Riemann hypothesis for curves over finite fields).

5.1.3. The general case

Definition 5.4. 8 An algebraic group is quasi-projective variety G together with a group oper-
ation ∗ : G×G→ G which is also a regular morphism.

Fact 5.5 (A special case of Chevalley’s theorem). Assume that K is an algebraically closed field of
characteristic zero. Then any connected algebraic group G contains a normal affine subgroup L ≤ G so that
the quotient A := G/L is an abelian variety. In particular G is an extension of an abelian variety by an
affine group and this extension is essentially unique.

The group L appearing in the above theorem can be characterized as the largest affine subgroup
of G, in particular it is unique! The existence of a largest affine subgroup of G boils down to the
fact that the compositum of two affine subgroups is an affine subgroup, which is relatively easy.
The tricky part is to show that the quotient G/L is an abelian variety.

7Note that point on the line passing through (0, 0) and (a, b) have projective coordinates of the form [at : bt : 1] =[
a : b : 1

t

]
. Formally passing to the limit t→∞ yields the point at infinity [a : b : 0]

8The following definition includes a small cheat. There is a general notion of a algebraic variety, defined similarly
to the definition of a smooth manifolds. One should define algebraic groups as such a abstract varieties together with
a compatible group structure. It is is then a theorem that any algebraic group is a quasi-projective variety. Actually
one can deduce this from Fact 5.5
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extending abelian varieties
For our purposes especially important are extensions of abelian varieties by vector groups i.e. the
groups Ga

n(K).

Fact 5.6. Let A be an abelian variety of dimension g, let V be a vector group and let

1→ V → G→ A→ 1

be an extension of A by V . Then there exists an algebraic subgroup G0 ⊆ G such that dimG0 ≤ 2g which
projects onto A.

Fact 5.7. Any group definable in ACF is definably isomorphic to an algebraic group.

5.1.4. Differential algebraic groups

Manin kernels!!!

5.2. Speedrunning the basics of ω-stable groups
Let T be a countable complete ω-stable theory, let U |= T be a monster model and fix a definable
group (G, ·) with G ⊆ Un. By adding constants to the language we might (and will) assume that
G is definable without parameters by a formula G(x).
For a set A ⊆ U we denote by SG (A) the set of complete types over A concentrated on G, i.e.
all types p ∈ Sn (G) such that G(x) ∈ p(x).
A type p ∈ SG (A) is called a generic type of G if RM(p) = RM(G).

5.2.1. Chain conditions

Lemma 5.8 (The chain condition). Every strictly descending sequence of definable subgroups of G is
finite.

Corollary 5.9. Let (Gi : i ∈ I) be a family of definable subgroups of G. Then, there is some finite subset
I0 ⊆ I such that ⋂

i∈I

Gi =
⋂
i∈I0

Gi

holds.

In particular, we may apply the above corollary to the family of all definable finite-index subgroups
of G. This yields the following.

Definition 5.10. We define the connected component ofG as the smallest definable finite-index
subgroup G0 ≤ G.

Note thatG0 is a normal subgroup ofG, since for any g ∈ G the subgroup gG0g−1 ≤ G is definable
and of finite index and thus G0 ⊆ gG0g−1.
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5.2.2. Generic types and stabilizers

The group G acts naturally on the type space SG (A) via

g · p =
{
φ
(
g−1x, a

)
: φ (x, a) ∈ p

}
for p ∈ S1 (G) and g ∈ G. Here φ (g−1x, a) is formally the formula

(∃y)x = g · y ∧ φ (y, a) .

Semantically, we have that g · p = tp (ga/A) for some (equivalently: any) a |= p.

Definition 5.11. The stabilizer of p ∈ SG(A) is the group Stab(p) = {g ∈ G|g · p = p}.

Lemma 5.12. For a type p ∈ SG(A) the following conditions are equivalent.

1. p is a generic type of G.

2. Stab(p) has finite index in G.

3. Stab(p) = G0.

Lemma 5.13. Assume that H ≤ G is a connected A-definable subgroup and let p be the generic type of
H over A. Then any element of H is a product of two realizations of p.

Proof.

Corollary 5.14. Assume that H ≤ G is a connected A-definable subgroup and let X ⊆ H be a definable
subset with RM(X) = RM(H). Then H = XX .

Proof. Pick a set A over which both H and X are defined. Let p be the generic type of H over A.
Then p is concentrated on X . By Lemma 5.13 we have

H = p(U)p(U) ⊆ XX ⊆ H

hence H = XX .

5.2.3. Zilber’s indecomposability theorem

Definition 5.15. A set X ⊆ G is called indecomposable if for any definable subgroup H ≤ G
the orbit space X/H is either infinite or consits of a single elements.

Example 5.16. We will prove that any conjugacy class in a connected group is indecomposable.
Let a ∈ G and define X = {gag−1 : g ∈ G}. Let H ≤ G be a definable subgroup (exercise!)

Theorem 5.17. Assume that G is a group of finite Morley rank. Let X = {Xi : i ∈ I} be a family of
definable indecomposable subsets of G and assume that each of them contains the identity e ∈ G. Then the
group generated by

⋃
i∈I Xi is definable and connected.

Remark 5.18. Before we prove Theorem 5.17, let us make a few comments.

1. The conclusion of Theorem 5.17 and an easy compactness argument imply in particular
that the group H generated by X is generated by a finite subfamiy X0. In fact the proof of
Theorem 5.17 will reveal that there is some m < ω and some i0, . . . , im ∈ I (not neccesarily
distinct) such that H = Xε0

i0
· . . . ·Xεm

im
, where ε0, . . . , εm ∈ {−1, 1}.
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2. Note that we do not assume that the family X is in itself definable!

3. The assumption e ∈ G is indispensible: any singleton is an indecomposable set, thus any
subset of G is a union of a family of indecomposable sets.

4. Likewise, the assumption that G has finite Morley rank cannot be dropped.

Proof of 5.17. Denote by H the group generated by X . By possibly enlargening X may assume
that for any Xi ∈ X we have X−1

i ∈ X . For s = (i0, . . . , im) ∈ I<ω define

Xs = Xi0 · . . . ·Xim ⊆ H.

Since Xs ⊆ G and RM(G) is finite, there is some s ∈ I<ω for which RM(Xs) is maximal. Let A be
a (finite) set over which Xs is defined and pick a type p ∈ SG(A) such that p concentrates on Xs

and RM(Xs) = RM(p).

Claim. H ⊆ Stab(p).
⊢ sdf ⊣
We have Xt ⊆ H ⊆ Stab(p) thus ref...

RM(Xs) ≤ RM(Stab(p)) ≤ RM(p) = RM(Xs)

hence RM(Xs) = RM(Stab(p)) = RM(p). In particular p is a generic type of Stab(p) and therefore
ref... Stab(p) is connected. Now since RM(Xs) = RM(Stab(p)) we have by Corollary that
Stab(p) = XsXs ⊆ H ⊆ Stab(p). Hence H = Stab(p), thus H is definable and connected.

Example 5.19. Assume thatG is connected and of finite Morley rank. We will show that its derived
group G′ (i. e. the group generated by all commutators ghg−1h−1 for g, h ∈ G) is definable and
connected. Consider the family (Xg : g ∈ G) where Xg = {ghg−1h−1 : h ∈ G}. By Exercise 5.4
we have that Xg are indecomposable and moreover clearly e ∈ G, thus by Theorem 5.17 we have
that the group generated by

⋃
g∈GXg is definable and connected. But this group is by definition

the derived group G′ of G.

5.3. Manin kernels
Let A be an abelian variety over K and let Γ be a finite rank subgroup of A(K). As already
mentioned, we introduced differentially closed fields for a very specific reason: we want to enlarge
Γ to a definable object (so that we can nuke it with model-theoretic machinery) which is still
“small” in some sense (so that we can still use it to deduce something interesting about Γ). A
precise meaning of this replacement is given by the following theorem, which we will prove in
this subsection.

Theorem 5.20. Let A be an abelian variety over K and let Γ be a finite rank subgroup of A(K). Then
there is a δ-definable subgroup H ≤ A such that Γ ⊆ H and the Morley rank of H is finite.

Proof. .

Corollary 5.21. Assume that A ̸= 0 is a simple abelian variety. Then among all infinite δ-definable
subgroups of A there is a smallest one. This subgroup is δ-connected, of finite Morley rank and contains all
torsion points of A.
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Proof. Let B be the intersection of all infinite δ-definable subgroups of A of finite Morley rank.
This is a type-definable group in DCF0, thus by ω-stability we conclude that B is δ-definable. By
the previous paragraph, B contains the torsion part of A, hence B is infinite. So we showed that B
is the smallest infinite δ-definable subgroup of A and that Tor(A) ⊆ B. Clearly B is δ-connected,
as otherwise B0 would contradict the minimality of B. Moreover, B has finite Morley rank since
it is contained in A0.

Definition 5.22. For a simple abelian variety A ̸= 0 inside a model of DCF0 we call its smallest
infinite δ-definable subgroup the Manin kernel of A and denote by A♯.

Comments
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Exercises
Throughout this list we work in an ω-stable theory T
Around indecomposability...

Around indecomposability

In this part we assume that G has finite Morley rank.

Exercise 5.1. Let X ⊆ G be a definable normal subset of G (i. e. for any g ∈ G we have gXg−1 =
X). Assume that for every definable normal subgroup H ≤ G the set of orbits X/H is either
infinite or consists of one element. Prove that X is indecomposable.

Exercise 5.2. Let X be definable strongly minimal subset of G. Prove that there exists an inde-
composable set X0 ⊆ X such that X \X0 is finite.

Exercise 5.3. Show that Zilbers Indecomposability Theorem fails for groups of infinite Morley
rank. Find a counterexample of Morley rank ω.

Exercise 5.4. Assume that G is connected. Prove that for any g ∈ G the set {ghg−1h−1 : h ∈ G} is
indecomposable.

Exercise 5.5. Prove that G′ is definable even if G is not connected.
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