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ABSTRACT. For any Lévy process on the quantum group SUq(N),
where 0 < q < 1 and N ∈ N, a Lévy-Khintchine-type decomposi-
tion of its generating functional is given, together with an analogue of
Hunt’s formula. The non-Gaussian component is shown to further
decompose into generating functionals that live on the quantum sub-
groups SUq(n), for n à N. Corresponding results are also given for
the quantum groups Uq(N).

1. INTRODUCTION

Up to stochastic equivalence, a Lévy process with values in a locally compact Lie
group G is determined by its generating functional. This is a (densely defined)
linear functional γ on C0(G), the C∗-algebra of continuous complex-valued func-
tions onG which vanish at infinity, whose domain may be thought of as consisting
of those functions that have a second-order Taylor expansion around the identity
element of the group. Hunt’s formula ([11]) is a generalization and extension of
the Lévy-Khintchine formula ([1], [18]). It is equivalent to the assertion that

(1.1) γ = γD + γG + γL where γL = L ◦ P and L(f ) =
∫

G\{e}
f (s)Π(ds)

for the identity element e of G, in which P is a Hermitian projection that kills
the linear terms, the drift γD and P-invariant Gaussian part γG are linear com-
binations of first- and second-order derivatives evaluated at e respectively, and Π
is the so-called Lévy measure. The Lévy functional L is defined on the space of
functions that, together with their first derivatives, vanish at e. The integral may
be viewed as a mixture of point evaluations; moreover, functionals of the form
f ֏ f (s) − f (e), for fixed s 6= e, generate jump processes. The functional γL
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is also referred to as the jump part; in the case where G = R and Π is finite,
it generates a compound Poisson process. The decomposition depends on the
non-canonical projection P chosen; its role is to deal with any singularity of the
measure Π at e.

If G is compact, Tannaka-Krein duality ([10, Section VII.30]) asserts that
the representative algebra R(G), generated by matrix coefficients of finite-dimen-
sional representations of G, is a norm-dense ∗-subalgebra of the unital C∗-algebra
C(G). In fact, R(G) is a commutative Hopf ∗-algebra from which the topological
group G may be fully recovered ([16]). A compact quantum group in the sense
of Woronowicz ([29]) is a unital C∗-algebra-with-coproduct which enjoys density
relations corresponding to the group cancellation law and contains a dense Hopf
∗-algebra, the CQG algebra of the quantum group, whose role corresponds to
that played by R(G) for a compact group G ([4]). Schürmann’s theory of quan-
tum Lévy processes on ∗-bialgebras ([20]) thereby applies. As with their classical
counterparts, but now up to quantum stochastic equivalence, Lévy processes on
∗-bialgebras are classified by their generating functional, now a Hermitian linear
functional on the CQG algebra which is conditionally positive and vanishes at the
identity element. The problem of finding a decomposition of generating func-
tionals corresponding to (1.1) is expressible in cohomological terms. Of course,
meaning has to be given to drift, Gaussian, and jump parts in the quantum gen-
eralisation. Our Hunt formula includes an explicit description of the drifts and
Gaussian generating functionals, and the specification of an approximation prop-
erty that justifies calling the remainder a jump part (Proposition 2.8).

For some compact quantum groups every generating functional has such a
decomposition, but for others that is not so ([8], [2]). A Hunt formula for
Woronowicz’s SUq(2) ([26], [27]) was obtained in [23], [21]. This led to a short
proof of the classical Hunt formula for compact Lie groups ([24]). Here, we tackle
the case of SUq(N), obtaining a unique decomposition γ = γD+γG+γNG where
γNG = γ2 ◦ P + · · · + γN ◦ P , in which P is a Hermitian projection analogous
to that of (1.1), γD is a drift, γG is a P-invariant Gaussian generating functional
and, for 2 à n à N, γn is an extension to SUq(N) of a completely non-Gaussian
generating functional on SUq(n) which enjoys an irreducibility property. We also
display the essentially classical structure of γD and γG, and show γNG to be the
limit of functionals of the form ωξ(t) ◦ π ◦ P for a representation π and net of
vector functionals (ωξ(t)) (Theorem 4.15). The case of general N turns out to
be more involved than the case N = 2, and some results concerning SUq(2) fail
for N á 3. For instance, for N á 3 the cohomological problem is not always
solvable in the Gaussian case (Corollary 2.13). Also, for N = 2 the completely
non-Gaussian generating functionals may be parametrized by the vectors in its
associated representation Hilbert space, whereas for N á 3 the situation is more
subtle (Section 5).

The paper is organized as follows. Terminology and notation concerning the
CQG algebra of a compact quantum group are set out below. Section 2 contains
the basic definitions and preliminary results. The CQG algebras of the compact
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quantum groups SUq(N) and Uq(N) are, respectively, here denoted SUq(N) and
Uq(N); the former is algebraically generated by a matrix of elements [ujk]

N
j,k=1

(see relations (2.6), et seq.). In Section 3 we deal with our choice of projec-
tion P , with respect to which we show that the Gaussian generating function-
als on SUq(N) are classified by a real (N − 1)-vector and positive-definite real
(N − 1) × (N − 1) matrix, respectively, representing the drift and P-invariant
diffusion-type second-order term (Theorem 3.6). Unlike in lower dimensions, for
N á 3 there are cocycles of Gaussian representations which have no associated
generating functionals (Theorem 3.3). Every Gaussian generating functional is
induced from a Gaussian generating functional that lives on the classical unde-
formed subgroup TN−1 of SUq(N), in the sense of Definition 2.21 (see Remark
3.7). In Section 4 we show that every representation π of SUq(N) has a unique
full decomposition π1 ⊕ · · · ⊕ πN , where the representation π1 is its so-called
Gaussian part and, for 2 à n à N, the representation πn lives on SUq(n) and
πn(1−unn) is injective. Completely non-Gaussian cocycles η are approximated
by coboundaries and are determined by their values η(unn) (2 à n à N). From
this we deduce a full decomposition γ = γ1 + · · · + γN for generating func-
tionals, uniquely determined by the projection P , and conclude with our Hunt
formula (Theorem 4.15). In Section 5 we show that, unlike in the case N = 2, if
N > 2 then the values of η(uNN), for cocycles η of representations π for which
π(1 − uNN) is injective, may not exhaust the representation space. We then in-
dicate a completion process which yields a quasi-innerness property, and thereby
full parametrisation, for completely non-Gaussian cocycles. In Section 6 we briefly
treat the quantum groups Uq(N).

Our work suggests the investigation of Hunt formulae for other q-deformed
compact Lie groups ([16]).

Compact quantum groups and CQG algebras. A CQG algebra ([4]), or al-
gebraic compact quantum group, is a Hopf ∗-algebra G that is linearly spanned by
the coefficients of its finite-dimensional unitary corepresentations or, equivalently,
has a faithful Haar state. Thus, a CQG algebra is a unital ∗-algebra G, with unital
∗-algebra morphisms ∆ : G → G ⊗ G and ε : G → C, linear map κ : G → G, and
unital linear functional h : G → C, called respectively, the coproduct, counit, coin-
verse or antipode, and Haar state, enjoying the coassociativity, counital, coinverse,
invariance, and positivity relations

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆;

(ε ⊗ id) ◦∆ = id = (id⊗ε) ◦∆;

µ ◦ (id⊗κ) ◦∆ = ι ◦ ε = µ ◦ (κ ⊗ id) ◦∆;

(id⊗h) ◦∆ = ι ◦ h = (h⊗ id) ◦∆;

and h(a∗a) > 0 for a 6= 0. Here, µ : G ⊗ G → G denotes the linearisation of the
algebra product, and ι the unital linear map C → G. The coinverse κ is uniquely
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determined by the bialgebra structure, and any ∗-bialgebra morphism between
CQG algebras respects coinverses and so is a CQG algebra morphism (Remarks
4.2.3 and 4.2.5 in [3]); the Haar state h is also unique ([4, Proposition 3.2]).
Compact quantum groups may also be viewed from the equivalent C∗-algebraic
perspective, as was originally done by Woronowicz ([29]). The canonical (univer-
sal and reduced) Woronowicz algebras of a compact quantum group G are com-
monly denoted Cu(G) and Cr(G), and its CQG algebra is here denoted by R(G)
in a further nod to their classical counterparts. The quantum space G itself is only
manifested through one of its realisations. For more on this, we recommend [16],
[12, Section 11.3], and [25, Section 5.4]. For the purposes of this work, it suf-
fices to operate exclusively within CQG algebras. In fact, in our analysis we need
explicit recourse to none of the coproduct, coinverse, or Haar state.1

Convention. In Schürmann’s theory, representations are by possibly-un-
bounded adjointable operators on pre-Hilbert spaces because he works in the more
general setting of ∗-bialgebras-with-character. By contrast, representations of a
CQG algebra G are all by bounded operators, and so may be extended to the
Hilbert space completions. Accordingly, by a representation of G we always mean
a unital ∗-algebra morphism π : G → B(h), for some Hilbert space h = hπ .

2. PRELIMINARIES

Generating functionals of quantum Lévy processes and Schürmann triples.
Let G be a CQG algebra. A Lévy process on G is a family of ∗-algebra morphisms

from G to a noncommutative probability space enjoying certain properties which
encode the stationarity and independence of increments (see [20], [5], and [15,
Chapter VII], or the survey [6]).

Definition 2.1. A generating functional for a quantum Lévy process on G is a
linear functional γ on G which is Hermitian: γ = γ† : a ֏ γ(a∗), normalised :
γ(1) = 0, and conditionally positive: γ(c∗c) á 0 for all c ∈ ker ε.

Quantum Lévy processes are determined up to quantum stochastic equiva-
lence by their generating functionals, and may be reconstructed from their gen-
erating functional using quantum stochastic calculus on a symmetric Fock space
([20, Theorem 2.3.5], [14, Theorem 7.1]), or using Trotter products and Arveson
(product) systems ([22]).

Definition 2.2 ([20]). A Schürmann triple on G is an ordered triple (π,η, γ)
consisting of a representation π of G, a π-ε-cocycle, or π-ε-derivation, that is, a
linear mapping η : G → hπ satisfying

(2.1) η(ab) = π(a)η(b)+ η(a)ε(b) (a, b ∈ G),

1The fourth author wishes to emphasise that revisions for this final version of the paper were done
by the other authors, and that the original version is available on the arXiv ([9]).
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and a linear functional γ on G satisfying

(2.2) γ† = γ, γ(1) = 0 and γ(c∗c) = ‖η(c)‖2 (c ∈ ker ε),

equivalently, γ† = γ and 〈η(a), η(b)〉 = γ(a∗b) − γ(a)ε(b) − ε(a)γ(b) for
a,b ∈ G.

A linear functional γ on G completes a π-ε-cocycle η if (π,η, γ) is a Schür-
mann triple; we then say that η, or (π,η), is completable.

A Schürmann triple (π,η, γ) or cocycle η, is called cyclic if η(G) = hπ .

The third component of a Schürmann triple is a generating functional. Con-
versely, for any generating functional γ, there is a cyclic Schürmann triple with
γ as its third component. If (π,η, γ) is a cyclic Schürmann triple then, for
any linear isometry V from hπ into a Hilbert space, (Vπ(·)V∗, Vη(·), γ) is a
Schürmann triple (cyclic if and only if V is unitary), and every Schürmann triple
having γ as its third component is of this form. Thus, all cyclic Schürmann triples
having γ as their third component are unitarily equivalent—we refer to any one
of these as γ’s (associated ) Schürmann triple ([20, Section 2.3]).

For K := ker ε, set

Kn := span{c1 · · · cn : c1, . . . , cn ∈ K} for n á 1 and K∞ :=
⋂

ná1

Kn.

Thus, (Kn) is a sequence of ∗-ideals of G decreasing to K∞. Also set

P2(G) := {P ∈ L(G) : P is a Hermitian projection, ranP = K2 and 1 ∈ ker P},

where Hermitian means P = P† : a֏ (Pa∗)∗ for a ∈ G.

Definition 2.3. Let γ be a generating functional on G. Then, γ is a drift if
γ|K2 = 0, equivalently, in terms of its associated Schürmann triple (π,η, γ), if
hπ = {0}.

For P ∈ P2(G), we denote the drift γ−γ ◦ P by γPD, and call γ P-invariant if
γ ◦ P = γ.

Remarks 2.4. The drifts form a real subspace of the linear dual of G. Any
P ∈ P2(G) determines a unique resolution for generating functionals γ into a drift
component plus a P-invariant one: γ = γPD+γ◦P—in this sense P-invariance may
usefully be thought of as a P-driftless property (i.e., having zero drift component
with respect to P). If a cocycle η is completable then, for any particular generating
functional γ which completes η, the set of all generating functionals which do so
equals {γ + γ′ : γ′ is a drift} and the unique P-invariant one is γ ◦ P = γ − γPD.

The P-invariant generating functionals on G are the maps of the form ψ ◦ P
for a linear functional ψ on K2 which is nonnegative: ψ(c∗c) á 0 for all c ∈ K
(and thus also Hermitian).

There is no canonical choice of projection from P2(G). By contrast, since C1
and K are complementary subspaces of G, there is a unique projection in L(G)
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with range K and 1 in its kernel—namely, id−ι◦ ε : a ֏ a− ε(a)1. Moreover, it
is Hermitian and compatible with the projections in P2(G).

Definition 2.5. Let U be a subspace of a complex vector space V . A linearly
independent subset E of V \ U is a basis extension from U to V if its linear span
is a complementary subspace of U . In case V is involutive, a basis extension is
Hermitian if it consists of self-adjoint elements.

For any Hermitian basis extension E from K2 to K, the functionals (ε′d)d∈E
on G given by

ε′d

(
λ1+ k2 +

∑

e∈E

λee
)
= λd,(2.3)

for λ ∈ C, k2 ∈ K2 and {λe : e ∈ E} ⊂ C,

form a basis for the real space of drifts on G, and

(2.4) PE := id−ι ◦ ε −
∑

d∈E

dε′d(·) ∈ P2(G)

equals the projection onto K2 along span({1} ∪ E) = C1⊕ spanE. The resulting
map E ֏ PE is surjective and PE1 = PE2 if and only if spanE1 = spanE2.

Procedure 2.6. All generating functionals on G are obtained by identifying
the following:

(1) the representations π of G;
(2) for each representation π , the π-ε-cocycles η;
(3) for each such cocycle η, the generating functionals γ which complete it.

In the cases of the quantum groups SUq(N) and Uq(N), the representation
theory is known ([13]). Step (2) is a cohomological problem, as π-ε-cocycles
form the first Hochschild cohomology group H1(G,πhε) for h = hπ , and this
may usually be computed in a straightforward way. The main problem lies in step
(3). The basic constraint on a given cocycle η, for it to be completable, is that
‖η(c)‖ must equal ‖η(d)‖ whenever c,d ∈ K satisfy c∗c = d∗d; the task then
amounts to solving ψ(c∗c) = ‖η(c)‖2 (c ∈ K) for a linear functional ψ on K2

since then, for any P ∈ P2(G), the prescriptiona ֏ ψ(Pa) defines a (P-invariant)
generating functional which completes η.

Approximately inner cocycles. As just described, the problem of classify-
ing generating functionals on G lies in the fact that there might be none which
completes a given cocycle. In this section we identify a situation where such a
completion does exist.

Definition 2.7. A π-ε-cocycle is a coboundary, or inner derivation, if it is of
the form

ηπ,ξ : = (π − ι ◦ ε)(·)ξ : a ֏ π(a)ξ − ξε(a)

for some vector ξ in hπ , and is approximately inner if it is a pointwise limit of
coboundaries (ηπ,ξ(λ)) for some net (ξ(λ)) in hπ .
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Note that, for a vector ξ of a Hilbert space h,ωξ denotes the vector functional
T ֏ 〈ξ, Tξ〉 on B(h). The following result is heavily used in Section 4.

Proposition 2.8. Approximately inner cocycles are completable. Specifically, let
P ∈ P2(G), let π be a representation of G, and let (ξ(λ)) be a net in hπ such that
(ηλ := ηπ,ξ(λ)) converges pointwise to a map η. Then, η is a π-ε-cocycle and the net
(γλ := ωξ(λ) ◦ π ◦ P) converges pointwise to a P-invariant generating functional γ
which completes η.

Proof. For each λ, the P-invariant linear functional γλ is Hermitian, and
(π,ηλ, γλ) is easily seen to satisfy (2.1) and (2.2). Therefore, since η is evidently
a π-ε-cocycle and K2 is both the range of P and the linear span of the set {c∗c :
c ∈ K}, the proposition follows from the fact that γλ(c∗c) = ‖π(c)ξ(λ)‖2 =
‖ηπ,ξ(λ)(c)‖

2 → ‖η(c)‖2 for each c ∈ K. ❐

In the classical setting of (1.1), we see that the generating functional γL is
expressible as the limit of the functionalsω1G\U ◦π ◦ P , as the neighbourhoods U
of e shrink to {e}, π being the multiplication representation of R(G) on L2(G,Π)
and 1 here denoting indicator function.

Gaussian generating functionals, cocycles, and representations.

Definition 2.9. A generating functional γ, cocycle η, or representation π is
called Gaussian if it vanishes on, respectively, K3, K2, or K.

For components of a Schürmann triple, these are equivalent (Proposition 5.1.1
in [20]). A representation π is Gaussian if and only if π = ιhπ ◦ ε, where ιhπ de-
notes the unital linear map from C to B(hπ ).

Proposition 2.10. Let E be a Hermitian basis extension from K2 to K. Then,
for any Hilbert space h, the h-valued Gaussian cocycles on G are precisely the maps of
the form

∑
d∈E ξdε

′
d(·) for a family of vectors (ξd)d∈E in h, where the functionals ε′d

are as in (2.3).

Proof. Since Gaussian cocycles vanish on 1 and on K2, this follows from the
fact that elements a of G are uniquely expressible as ε(a)1+k2(a)+

∑
d∈E ε

′
d(a)d

for some k2(a) ∈ K2. ❐

It would be desirable to have a similarly concise description of Gaussian gen-
erating functionals. For now, we note that in general not all Gaussian cocycles η
admit a Gaussian generating functional.

Definition 2.11. A cocycle η on G is Hermitian if it satisfies ‖η(c)‖ =
‖η(c∗)‖ for all c ∈ K.

A Gaussian cocycle of the form η =
∑
d∈E ξdε

′
d is Hermitian if and only if the

Gram matrix [〈ξd, ξd′〉] is real (and therefore symmetric). Proposition 2.10 has
the following consequence.

Corollary 2.12. The following are equivalent:
(i) G has non-Hermitian Gaussian cocycles.

(ii) dimK/K2 á 2.
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For a Gaussian cocycle η to be completable it is sufficient, but not necessary,
that it be Hermitian ([20, Proposition 5.1.11]). It becomes necessary too un-
der the additional assumption given in the next corollary, which applies to both
SUq(N) (by Lemma 3.2 and part (d) of Lemma 3.1), and Uq(N).

Corollary 2.13. Suppose c∗c − cc∗ ∈ K3 for all c ∈ K. Then, a Gaussian
cocycle is completable if and only if it is Hermitian.

Proof. If γ is a generating functional completing a Gaussian cocycle η, then η
is Hermitian since

‖η(c)‖2 − ‖η(c∗)‖2 = γ(c∗c − cc∗) = 0 (c ∈ K).

The converse implication is clear. ❐

Complete non-Gaussianness and Lévy-Khintchine decomposition. We
will next collect basic facts about when a generating functional can have a Lévy-
Khintchine decomposition.

Lemma 2.14. Let π1⊕π2 be a decomposition of a representation π of G, let Vi
denote the inclusion map hπi → hπ for i = 1,2, and let η be a π-ε-cocycle. Then,
the following hold:

(a) ηi := V∗i η(·) is a πi-ε-cocycle for i = 1,2.
(b) If two of the three cocylces η, η1, and η2 are completable, then so is the third.

It is quite possible that η is completable, but η1 and η2 are not.

Definition 2.15. For a representation π of G, set

hπG :=
⋂

c∈K

kerπ(c) and hπR := (hπG)⊥.

Then, π is completely non-Gaussian if hπG = {0}, or equivalently, if hπR = hπ .
We also call a π-ε-cocycle η completely non-Gaussian if π is, and a generat-

ing functional γ completely non-Gaussian if the representation component of its
Schürmann triple is.

The above definition and its notation are amply justified by the following
straightforward proposition.

Proposition 2.16 ([20]). Let π be a representation of G. Then, hπG and hπR

are invariant subspaces and, denoting the resulting decomposition of π as πG⊕πR, πG
is Gaussian and πR is completely non-Gaussian. Moreover, h(πR)G = {0} = h(πG)R .

If η = ηG ⊕ ηR is the corresponding decomposition of a π-ε-cocycle η then ηG is
Gaussian, and if η is cyclic then ηG and ηR are cyclic too.

Generating functionals of the form ωξ ◦ π ◦ P , and their limits as in Propo-
sition 2.8, are completely non-Gaussian.

Definition 2.17. A Lévy-Khintchine decomposition for a generating functional
γ with Schürmann triple (π,η, γ) is a decomposition γ = γ1 + γ2 for which
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(πG, ηG, γ1) and (πR, ηR, γ2) are Schürmann triples (equivalently, by Lemma
2.14, one of them is).

Remark 2.18. With respect to a fixed projection P ∈ P2(G), if γ has such a
Lévy-Khintchine decomposition then it has a unique one in which γ1 = γ

P
D +γG,

γ2 = γR, and the generating functionals γG and γR are P-invariant.

Definition 2.19. A CQG algebra, or its associated quantum group, is said to
have the following properties:

· (AC) if each cocycle η is completable.
· (GC) if each Gaussian cocycle η is completable.
· (NC) if each completely non-Gaussian cocycle η is completable.
· (NAI) if each completely non-Gaussian cocycle η is approximately inner.
· (LK) if every generating functional admits a Lévy-Khintchine decomposition.

Evidently, (AC) implies both (GC) and (NC), and either of these implies
(LK); none of the reverse implications hold ([8]). The following is an immediate
consequence of Proposition 2.8.

Proposition 2.20. Property (NAI) implies property (NC), and thus also property
(LK).

Schürmann triples on quantum subgroups. In the course of proving our
results for SUq(N), we will decompose representations into components that live
on its quantum subgroups SUq(n) in the sense given below. One way of ex-
tending our results to Uq(N) is by exploiting the quantum subgroup relations
TN à Uq(N) à SUq(N + 1); this is done in Section 6.

Definition 2.21. A compact quantum group H is a quantum subgroup of a
compact quantum group G, written H à G, if there is a CQG algebra epimor-
phism (equivalently, a ∗-bialgebra epimorphism) s : G → H ; we also say that
(H , s) is a quantum subgroup of G.

Given such a subgroup relation, we say that a linear map T from G to a
vector space V lives on (H , s) if kerT ⊃ ker s, equivalently, if T factors (evidently
uniquely) through the epimorphism s:

T = T̃ ◦ s for some map T̃ : H → V.

For the remainder of this subsection we fix a quantum subgroup (H , s) of G
and use tildes for induced maps having domain H . Since s respects counits, the
functional ε̃ on H satisfying ε̃ ◦ s = ε is its counit, and s(Kn) = K̃n for all n.
Also, a representation of G lives on the trivial CQG algebra C if and only if it is
Gaussian. The properties listed next are easily verified.

Lemma 2.22. Suppose that π = π̃ ◦ s, η = η̃ ◦ s and γ = γ̃ ◦ s, for maps
π, . . . , γ̃; then, the following hold:

(1) π is a representation of G if and only if π̃ is a representation of H .
(2) If (1) holds then η is a π-ε-cocycle if and only if η̃ is a π̃-ε̃-cocycle.
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(3) γ is a generating functional on G if and only if γ̃ is a generating functional
on H .

(4) (π,η, γ) is a Schürmann triple on G if and only if (π̃ , η̃, γ̃) is a Schürmann
triple on H .

Moreover, for any representation π of G living on (H , s) and vector ξ in hπ ,

(2.5) hπ̃G = hπG , ηπ,ξ lives on H and Çηπ,ξ = ηπ̃ ,ξ .

This has the following useful corollary.

Proposition 2.23. The property (NAI) is hereditary.
We now show that an approximately inner cocycle lives on a subgroup if its

approximating inner cocycles do.

Proposition 2.24. Let π be a representation of G living on (H , s), let (ξ(λ))
be a net in hπ such that (ηπ,ξ(λ)) converges pointwise to η, and let P ′ ∈ P2(H ).
Then, the following hold:

(a) (ηπ̃ ,ξ(λ)), (ωξ(λ) ◦ π ◦ P), and (ωξ(λ) ◦ π̃ ◦ P ′) have pointwise limits η̃,
γ and γ′, such that η = η̃ ◦ s, and γ and γ′ are generating functionals
completing η and η̃ respectively.

(b) γ = γ′ ◦ s ◦ P .

Proof. (a) It follows from identity (2.5) that ηπ̃,ξ(λ) ◦ s = ηπ,ξ(λ) for each λ,
and so (a) follows from the surjectivity of s and Proposition 2.8.

(b) This follows since s(K2) = K̃2 = ranP ′ so P ′ ◦s ◦P = s ◦P , and thus, for each
λ, (ωξ(λ) ◦ π̃ ◦ P ′) ◦ (s ◦ P) =ωξ(λ) ◦ π̃ ◦ s ◦ P =ωξ(λ) ◦π ◦ P . ❐

The projections P ∈ P2(G) and P ′ ∈ P2(H )may be chosen to be compatible.
This follows from the following straightforward lemma.

Lemma 2.25. Let P = PE and P ′ = PE
′

for Hermitian basis extensions E from
K2 to K and E′ from K̃2 to K̃, according to (2.4). Then, P ′ ◦ s = s ◦ P if and only if
s(E) ⊂ spanE′, in which case span s(E) = spanE′, and so the generating functional
γ from Proposition 2.24 lives on H .

The quantum groups SUq(N) and Uq(N). Let 0 < q < 1. We next collect
the facts about SUq(N) and Uq(N) for N á 2 that are required. For convenience,
we extend our definitions to the case N = 1: SUq(1) = SU(1) := {e}, the trivial
group, and Uq(1) := U(1) = T, the torus. For an element σ of the permutation
group SN , denote the number of inversions of σ as follows:

i(σ) := #{(j, k) : j < k, σ(j) > σ(k)}.

As a unital algebra, the CQG algebra Uq(N) of the compact quantum group
Uq(N), is generated by indeterminates ujk (j, k = 1, . . . , N) and D−1, subject to
the following relations ([13, Section 2]):

uijukj = qukjuij if i < k,(2.6a)
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uijuil = quiluij if j < l,(2.6b)

uijukl = ukluij if i < k, j > l,(2.6c)

uijukl = ukluij − (q
−1 − q)uilukj if i < k, j < l,(2.6d)

and
D−1Dq = 1 = DqD−1,

for the q-determinant of the matrix U = [ujk]
n
j,k=1,

Dq = Dq(U) :=
∑

σ∈SN

(−q)i(σ)u1,σ(1) · · ·uN,σ(N).

The jk-th q-minor is defined as the q-determinant of the (N−1)×(N−1)-matrix
obtained from U by removing the j-th row and the k-th column,

D
jk
q = D

jk
q (U)

:=
∑

σ∈S
jk
N−1

(−q)i(σ)u1,σ(1) · · ·uj−1,σ(j−1)uj+1,σ(j+1) · · ·uN,σ(N),

where S
jk
N−1 denotes the set of bijections σ from {1, . . . , j − 1, j + 1, . . . , N} to

{1, . . . , k−1, k+1, . . . , N}. The involution, counit, and coproduct ofUq(N) are
then determined by the requirements

u∗jk = (−q)
k−jD

jk
q D

−1,

(D−1)∗ = Dq,

ε(ujk) = δjk,

∆ujk =
n∑

l=1

ujl ⊗ulk.

The matrix of elements U satisfies the unitarity relations (2.7) below.
As a unital ∗-algebra, SUq(N) is generated by indeterminates ujk, j, k =

1, . . . , N, subject to the unitarity relations ([28]):

(2.7)
N∑

s=1

ujsu
∗
ks = δjk, 1 =

N∑

s=1

u∗sjusk (j, k ∈ {1,2, . . . , N}),

and the twisted determinant conditions
∑

σ∈SN

(−q)i(σ)uσ(1),τ(1)uσ(2),τ(2) · · ·uσ(N),τ(N) = (−q)
i(τ)1 (τ ∈ SN).

The counit and coproduct are given by the same formulae as for Uq(N).
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Remark 2.26. We also use an alternative characterisation of SUq(N), namely,
as the quotient of Uq(N) by the extra relation Dq = 1; the involution then sim-
plifies to

u∗jk := (−q)k−jD
jk
q ,

showing that, as an algebra, SUq(N) is generated by the ujk. This means that,
when checking well-definedness of representations and cocycles, one only has to
manage the relations of the generators ujk (namely, (2.6) and Dq([ujk]) = 1)
and not those involving their adjoints.

The following commutation relations among the generators ujk of Uq(N)
and their adjoints, and therefore also those of SUq(N), are easily verified: for
i, j, k, l ∈ {1, . . . , N},

uiju
∗
kl = u

∗
kluij if i ≠ k and j ≠ l,(2.8a)

uiju
∗
kj = qu

∗
kjuij − (1− q

2)
∑

m<j

uimu
∗
km if i ≠ k,(2.8b)

uiju
∗
il = q

−1u∗iluij + (q
−1 − q)

∑

n>i

u∗nlunj if j ≠ l,(2.8c)

uiju
∗
ij = u

∗
ijuij + (1− q

2)
∑

n>i

u∗njunj − (1− q
2)
∑

m<j

uimu
∗
im.(2.8d)

We also use the further consequences: for 1 à j, k < N,

uNju
∗
Nk = q

−1u∗NkuNj if j ≠ k,(2.9a)

ujNu
∗
kN = q

−1u∗kNujN if j ≠ k,(2.9b)

u∗NNuNN = q
2uNNu

∗
NN + (1− q

2)1.(2.9c)

Identity (2.9a) follows from (2.8c), identity (2.8b) with the unitarity condition
(2.7) together imply that, for j ≠ k,

ujNu
∗
kN = qu

∗
kNujN − (1− q

2)
∑

m<N

ujmu
∗
km

= qu∗kNujN + (1− q
2)ujNu

∗
kN ,

from which (2.9b) follows, and identity (2.9c) follows from (2.8d):

uNNu
∗
NN = u

∗
NNuNN − (1− q

2)
∑

m<N

uNmu
∗
Nm

= u∗NNuNN − (1− q
2)(1−uNNu∗NN).

We next describe the relevant quantum subgroup relations. By definition,
SUq(N) is a quantum subgroup of Uq(N) via the CQG epimorphism determined
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by its action on generators: that is, rN : ujk 7 -→ ujk and D−1 7 -→ 1. Also, Uq(N)
is a quantum subgroup of SUq(N + 1) via the epimorphism determined by

tN :




u11 · · · u1N u1,N+1
...

. . .
...

...
uN1 · · · uNN uN,N+1

uN+1,1 · · · uN+1,N uN+1,N+1



7 -→




u11 · · · u1N 0
...

. . .
...

...
uN1 · · · uNN 0

0 · · · 0 D−1




where, as in the definition of rN , the ujk on the lefthand side are the generators
of SUq(N + 1) while those on the righthand side are the generators of Uq(N));
like rN , tN respects coproduct, counit and involution, and thus also coinverse.
Composition gives the chain

SUq(1) à Uq(1) à SUq(2) à Uq(2) à · · · à SUq(N) à Uq(N) à · · · .

Of particular interest to us is the epimorphism

sN := rN−1 ◦ tN−1 : SUq(N)→ SUq(N − 1),

which is determined by

(2.10) sN :




u11 · · · u1,N−1 u1N
...

. . .
...

...
uN−1,1 · · · uN−1,N−1 uN−1,N

uN1 · · · uN,N−1 uNN



7 -→




u11 · · · u1,N−1 0
...

. . .
...

...
uN−1,1 · · · uN−1,N−1 0

0 · · · 0 1



,

and its iterates

(2.11) sn,N := sn+1 ◦ · · · ◦ sN : SUq(N)→ SUq(n) (n < N).

Proposition 2.27. Let 1 ≤ n < N. The kernel of sn,N equals the ideal I
generated by the set

Sn,N :=
{
ukj − δkj1 : 1 à j, k à N, max{j, k} > n

}
.

Proof. For m ∈ {n,N} let us abbreviate SUq(m) to Am and denote its
algebra generators by umjk (1 à j, k à m). We also write K for the ideal ker sn,N
of AN .

For σ ∈ SN and n < p à N, uNp,σ(p) − δp,σ(p)1 ∈ Sn,N ⊂ I, so

1 = Dq([u
N
jk]) ∈

∑

σ∈SN s.t. σ(p)=p for n<pàN

(−q)i(σ)uN1,σ(1) · · ·u
N
n,σ(n) + I

=
∑

τ∈Sn

(−q)i(τ)uN1,τ(1) · · ·u
N
n,τ(n) + I

= Dq([u
N
jk]1àj,kàn)+ I.
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It follows that the relationDq([u
n
jk]) = 1 inAn is preserved by the mapping from

the set of generators ofAn into the quotient algebraAN/I given by unjk ֏ u
N
jk+I

(1 à j, k à n). Since this clearly also preserves the (remaining defining) relations
(2.6), the mapping uniquely extends to an algebra morphismϕ : An →AN/I.

Now, note that the prescriptiona+I ֏ a+K defines an algebra epimorphism
ψ : AN/I → AN/K (since I ⊂ K) and, letting s̃n,N denote the canonically
induced algebra isomorphismAN/K →An,

(ϕ ◦ s̃n,N ◦ψ)(u
N
jk + I) = (ϕ ◦ s̃n,N)(u

N
jk) =

{
uNjk + I if 1 à j, k à n,

δjk1+ I if max{j, k} > n.

Thus, since uNjk − δjk1 ∈ Sn,N ⊂ I if

max{j, k} > n, (ϕ ◦ s̃n,N ◦ψ)(u
N
jk + I) = u

N
jk + I

for all j and k, so ϕ ◦ s̃n,N ◦ψ = idAN/I . It follows that the algebra epimorphism
ψ is injective and thus an isomorphism. Since I ⊂ K, this implies that I = K. ❐

We next establish relations between the values taken on generators, for a given
cocycle on SUq(N).

Lemma 2.28. Let π be a representation of SUq(N), and let η be a π-ε-cocycle.
For i < l à N and j, k < N,

η(uil) = −(I − qπ(ull))
−1π(uil)η(ull),(2.12a)

η(uli) = −(I − qπ(ull))
−1π(uli)η(ull),(2.12b)

π(uNN − 1)η(ujk) =
(
π(ujk − δjk1)(2.12c)

− (q−1 − q) × π(1− q2uNN)
−1π(uiluli)

)
η(uNN).

In particular, η is determined by its value η(uNN) when π(1−uNN) is injective, by
Remark 2.26.

Proof. If a = uil or a = uli where i < l à N, then a ∈ ker ε and, by
identities (2.6a) and (2.6b), aull = qulla. Hence, by the cocycle property,
π(a)η(ull)+ η(a) = qπ(ull)η(a). Since π(ull) is a contraction, this is equiv-
alent to the identity η(a) = −(I − qπ(ull))−1π(a)η(ull).

By the cocycle property applied to identity (2.6d), if j, k < N then

π(ujk)η(uNN)+ η(ujk)

= η(ujkuNN) = η(uNNujk)− (q
−1 − q)η(ujNuNk)

= π(uNN)η(ujk)+ η(uNN)ε(ujk)− (q
−1 − q)π(ujN)η(uNk),
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so

π(uNN − 1)η(ujk)

= π(ujk − δjk1)η(uNN)+ (q−1 − q)π(ujN)η(uNk)

= (π(ujk − δjk1)− (q−1 − q)π(ujN)(I − qπ(uNN))
−1π(uNk))η(uNN)

= (π(ujk − δjk1)− (q−1 − q)(I − q2π(uNN))
−1π(ujNuNk))η(uNN). ❐

We end this section by characterising those representations and cocycles on
SUq(N) that live on SUq(n), for n < N.

Proposition 2.29. Let π be a representation of SUq(N), let η be a π-ε-cocycle,
and let n < N.

(a) The following are equivalent:
(i) π lives on SUq(n).

(ii) π(ukj) = δkjI if max{j, k} > n.
(iii) π(ujj) = I for n < j ≤ N.

(b) Suppose π lives on SUq(n). Then, the following are equivalent:
(i) η lives on SUq(n).

(ii) η(ukj) = 0 if max{j, k} > n.
(iii) η(ujj) = 0 for n < j ≤ N.

Proof. For both parts, the equivalence of (i) and (ii) follows from Proposi-
tion 2.27 because (ii) says π , respectively η, vanishes on the set Sn,N (in the latter
case, since cocycles kill the identity element); moreover, (ii) obviously implies (iii).

(a) For all j = 1, . . . , N, the unitarity relations (2.7) imply the identities

π(ujj)
∗π(ujj)+

∑

k≠j

π(ukj)
∗π(ukj) = I

= π(ujj)π(ujj)
∗ +

∑

k≠j

π(ujk)π(ujk)
∗,

so if π(ujj) = I, then π(ukj) = 0 for k ≠ j. Thus, (iii) implies (ii).

(b) By identities (2.12a) and (2.12b), if η(ull) = 0 then η(uil) = 0 = η(uli) for
i < l, and so (iii) implies (ii). ❐

3. CLASSIFICATION OF GAUSSIAN GENERATING FUNCTIONALS

In this section, we investigate the Gaussian generating functionals on SUq(N) and
their Schürmann triples. We follow Procedure 2.6 for Gaussian representations,
that is, representations of the form ιh ◦ ε : a ֏ ε(a)Ih. Since Gaussian cocycles
vanish on K2, we seek a Hermitian basis extension E from K2 to K (see Section 2).

Lemma 3.1. Set vj := (ujj − 1) ∈ K and

dj := (2i)−1(ujj −u
∗
jj) = (2i)

−1(vj − v
∗
j ) ∈ K.



1732 U. FRANZ, A. KULA, J.M. LINDSAY & M. SKEIDE

Then, the following hold:
(a) ujk ∈ K2 for j ≠ k,
(b) vj + v∗j ∈ K2,
(c) d1 + · · · + dN ∈ K2,
(d) djdk − dkdj ∈ K3.

Proof. (a) Let j ≠ k. Combining relations (2.6a) and (2.6b), one has ujkull =
qullujk for j ≠ k and l :=max(j, k). Therefore, since ull − 1, ujk ∈ K,

ujk = (1− q)−1q(ull − 1)ujk −ujk(ull − 1) ∈ K2.

(b) By the unitarity relation (2.7) we see that 1−ujju
∗
jj =

∑
m≠j ujmu

∗
jm ∈ K2,

so

vj +v
∗
j = (ujj −1)+ (ujj −1)∗ = −(1−ujju∗jj)− (ujj −1)(ujj −1)∗ ∈ K2.

(c) Observe that

u11 · · ·uNN = (v1 + 1) · · · (vN + 1) = 1+ (v1 + · · · + vN)+ terms in K2.

Therefore, v1 + · · · + vN + (1−u11 · · ·uNN) ∈ K2. Since Dq = 1, we have

(3.1) 1−u11 · · ·uNN =
∑

σ∈SN , σ≠id

(−q)i(σ)u1,σ(1) · · ·uN,σ(N).

Now, for σ 6= id there is at least one j such that j 6= σ(j), so, from part (a), the
righthand side of (3.1) is in K2. Thus, v1 + · · · + vN ∈ K2, hence,

d1 + · · · + dN = (2i)−1((v1 + · · · + vN)− (v1 + · · · + vN)
∗) ∈ K2.

(d) This follows from part (a), in view of the relations (2.6d) and (2.8a). ❐

Now, consider the family of characters determined by

εθ2,...,θN (ukl) := eiθkδk,l (k, l ∈ {1, . . . , N}),

for θ2, . . . , θN ∈ R and θ1 given implicitly by
∑N
k=1 θk = 0. The pointwise

defined linear functionals

(3.2) ε′j :=
∂

∂θj

∣∣∣∣
θ2=···=θN=0

εθ2,...,θN (j = 2, . . . , N)

are drifts because they kill 1 (since each εθ1,...,θd is a character), vanish on K2 (by
Leibniz’s rule, as ε0,...,0 = ε) and are Hermitian (since d∗k = dk and ε′j(dk) = δjk).
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Lemma 3.2. Set E := {d2, . . . , dN}. Then, the following hold:
(a) E is a Hermitian basis extension from K2 to K.
(b) {ε′j : j = 2, . . . , N} is a basis for the real space of drifts on SUq(N).

Proof. The set E is Hermitian, and it follows from parts (a), (b), and (c) of
Lemma 3.1 that E ∪ K2 spans K. For j, k = 2, . . . , N, ε′j(dk) = δjk, so E is
linearly independent, and ε′j kills K2 so E and K2 are disjoint. Thus, (a) holds,
and so does (b) since drifts vanish on {1} ∪ K2. ❐

In view of part (d) of Lemma 3.1 and Corollaries 2.13 and 2.12, we deduce
the following result.

Theorem 3.3. SUq(N) does not have property (GC) unless N à 2.
This is also proved in [2]. SUq(N) has property (AC) if N = 2 ([23], [21]).
From now on, we fix the Hermitian basis extension EN := {d2, . . . , dN} from

K2 to K, and thereby also the projection in P2(SUq(N)) as in (2.4), which we
denote PN . The resulting family of projections is compatible with the subgroup
relations SUq(N) á SUq(n), as verified next.

Proposition 3.4. Pn ◦ sn,N = sn,N ◦ PN for n < N.

Proof. The epimorphism sN (see (2.10)) sends dN to 0 and, for 2 à n à N−1,
sends the dn of SUq(N) to the dn of SUq(N − 1), so sN(EN) = EN−1 ∪ {0}.
Therefore, by Lemma 2.25, PN−1 ◦ sN = sN ◦ PN . By identity (2.11) this can be
iterated to yield the proposition. ❐

Note that the ε′j obtained in (3.2) coincide with the functionals ε′d (d = dj)
defined in (2.3) from the basis extension EN . Thus, Proposition 2.10 yields the
following characterization.

Proposition 3.5. The Gaussian cocycles on SUq(N) are precisely the maps of the
form

(3.3) η =
N∑

j=2

ξjε
′
j(·)

for a family of vectors (ξj)Nj=2 in a Hilbert space h.

We next describe the Gaussian generating functionals on SUq(N). Consider
the pointwise-defined functionals

ε′′jk :=
∂2

∂θj ∂θk

∣∣∣∣
θ2=···=θN=0

εθ2,...,θN (j, k = 2, . . . , N).

Theorem 3.6. If we letMn(R)+ denote the set of real nonnegative-definite n×n
matrices, the prescription

(r , R)֏
N∑

j=2

rjε
′
j +

1
2

N∑

j,k=2

rjkε
′′
jk
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defines a bijection from RN−1×MN−1(R)+ to the set of Gaussian generating function-
als γ on SUq(N) in which the second sum is the PN-invariant component γ ◦ PN .

Proof. In view of Lemma 3.2, it suffices for us to verify that the prescription

[rjk] ֏
1
2

∑N
j,k=2 rjkε

′′
jk defines a bijection from MN−1(R)+ to the set of PN-

driftless (i.e., PN-invariant) Gaussian generating functionals γ.
First note that by Leibniz’s rule, for a,b ∈ SUq(N),

ε′′jk(ab) = ε
′′
jk(a)ε(b)+ ε

′
j(a)ε

′
k(b)+ ε

′
k(a)ε

′
j(b)+ ε(a)ε

′′
jk(b).

It follows that ε′′jk vanishes on K3 and, by direct computation, ε′′jk(dl) = 0 and
ε′′jk(dldm) = δjlδkm+δjmδkl for j, k, l,m = 2, . . . , N. In particular, ε′′jk ◦PN =

ε′′jk and, for all c ∈ K and λ ∈ C
N−1,

∑
λ̄jε

′′
jk(c

∗c)λk = 2|
∑
λkε

′
k(c)|

2 á 0
so, since nonnegative-definiteness is preserved under the Schur product, for any
matrix R = [rjk] ∈ MN−1(R)+ the functional 1

2

∑
rjkε

′′
jk is conditionally positive

and therefore a PN-invariant Gaussian generating functional.
Conversely, if γ is a Gaussian generating functional, its associated cocycle η

is of the form (3.3) and so, by Corollary 2.13 and part (d) of Lemma 3.1, η is
Hermitian; hence, the Gram matrix [〈ξj , ξk〉] is real and thus in MN−1(R)+. ❐

Remarks 3.7. The CQG algebra TN−1 of the torus TN−1 is generated, as
unital ∗-algebra, by a family of commuting unitaries {uj : j = 1, . . . , N} sub-
ject to the relation u1 · · ·uN = 1. The prescription ujk ֏ δjkuj determines a
CQG epimorphism τN : SUq(N) → TN−1 with respect to which the characters
εθ2,...,θN of SUq(N) live on TN−1. Therefore, the Gaussian generating functionals
of SUq(N) live on TN−1. It also follows that, for any compact quantum group
G satisfying SUq(N) á G á TN−1, the projection P ∈ P2(G) may be chosen to
be compatible with those for SUq(N) and TN−1, and the Gaussian generating
functionals of G correspond to those of TN−1. Application of results on classical
compact Lie groups in [24] to TN−1 gives an alternative proof of Theorem 3.6.
The preliminary version of our paper ([9]) motivated generalisation of the the-
orem to all q-deformations of simply connected semisimple compact Lie groups
(Theorem 6.1 in [7]).

4. DECOMPOSITION

This is the central section of the paper. We decompose an arbitrary representation
π of SUq(N) uniquely into a direct sum π1 ⊕ · · · ⊕ πN , in which π1 = πG,
as defined in Proposition 2.16 and, for 2 à n à N, πn lives on SUq(n) and
πn(1−unn) is injective. We then show that, in the corresponding decomposition
η1⊕· · ·⊕ηN of a π-ε-cocycle η, for 2 à n à N each cocycle ηn is approximately
inner and determined by the vector η(unn). This implies that SUq(N) has prop-
erty (NAI) and so also (LK). We deduce a Hunt formula for SUq(N) incorporating
full decomposition for generating functionals.
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The following elementary lemma plays a key role in the approximation of
cocycles (part (a) is well known in, for example, ergodic theory). For bounded
operators T , we write ranT for ranT .

Lemma 4.1 (Contraction operator lemma). For any contraction operator C
on a Hilbert space, the following hold:

(a) ker(I−C∗) = ker(I−C), so also ran(I−C) = ker(I−C)⊥ = ran(I−C∗).
(b) Setting P := Pker(I−C), as t → 1−, we have P(t) := (1−t)(I−tC)−1 SOT

---------------------------------------------------------------------------------------------------------→ P

and P⊥(t) := (I − tC)−1(I − C)
SOT
---------------------------------------------------------------------------------------------------------→ P⊥.

In particular, the following four conditions are equivalent:
(i) I − C is injective.

(i)′ I − C has dense range.

(ii) (I − tC)−1(I − C)
SOT
---------------------------------------------------------------------------------------------------------→ I as t → 1−.

(ii)′ (1− t)(I − tC)−1 SOT
---------------------------------------------------------------------------------------------------------→ 0 as t → 1−.

Proof. (a) Let ξ ∈ ker(I −C) = ran(I −C∗)⊥ = ran(C∗ − I)⊥. By symmetry,
it suffices to prove that ξ ∈ ker(I − C∗). This follows by Pythagoras:

‖ξ‖2 + ‖(C∗ − I)ξ‖2 = ‖C∗ξ‖2 à ‖ξ‖2.

(b) For 0 < t < 1, the following hold:

(1) I − P(t) = tP⊥(t).
(2) ‖P(t)‖ à 1.
(3) P(t)(I − C) = (1− t)P⊥(t).

Thus,

(4) ‖P(t)(I − C)‖ à 2(1− t)/t.

By (1), P(t) → I on ker P⊥(t) = ker(I − C) and, by (4) and (2), P(t) → 0 on

ran(I − C). Hence, P(t)
SOT
---------------------------------------------------------------------------------------------------------→ P by (a), and so P⊥(t)

SOT
---------------------------------------------------------------------------------------------------------→ P⊥ by (1). ❐

Decomposition of representations and cocycles. We start by separating out
the maximal subspace on which the operator π(1 − uNN) acts injectively, for a
given representation π .

Lemma 4.2. Let π be a representation of SUq(N). Then, π has a unique
decomposition πN ⊕πN for which πN lives on SUq(N − 1) (which is equivalent to
πN(1−uNN) = 0), and πN(1−uNN) is injective. Also, hπ

N
= kerπ(1−uNN).

Proof. The equivalence is contained in Proposition 2.29. We first show that
k := kerπ(1 − uNN) is an invariant subspace for π . Since the ujk generate
SUq(N) as an algebra (Remark 2.26), to see this it suffices to fix ξ ∈ k and
j, k ∈ {1, . . . , N}, and to verify that πjkξ ∈ k (in the convenient abbreviation
πjk := π(ujk)). For j = k = N this is obvious. For k < N, applying π to
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identity (2.7), and then the vector functional ωξ , we see that π∗Nsξ = 0 = πsNξ
for s < N, so, by identity (2.8d),

π∗NkπNkξ = πNkπ
∗
Nkξ + (1− q

2)
∑

m<k

πNmπ
∗
Nmξ = 0.

Thus, πNkξ = 0. Similarly, πjN = 0. Finally, for j, k < N,

πjkπNNξ = πNNπjkξ − (q
−1 − q)πjNπNkξ

by identity (2.6d), so πjkπNNξ = πNNπjkξ, in other words πjkξ ∈ k, as re-
quired.

In the resulting decomposition, π = πN ⊕πN ,

πN(1−uNN) = 0 and πN(1−uNN) is injective.

It remains to prove uniqueness. Thus, let ρ ⊕ σ be another such decomposition
of π ; we must show that hρ = k. This follows from Lemma 4.1:

hρ = kerρ(1−uNN) ⊂ k

= ranπ(1−uNN)⊥ ⊂ ranσ(1−uNN)⊥

= (hσ )⊥ = hρ. ❐

Definition 4.3. A decompositionπ1⊕· · ·⊕πN of a representation of SUq(N)
is full if the following hold:

(1) For 1 à n < N, there is a representation π̃n of SUq(n) such that πn =
π̃n ◦ sn,N .

(2) For n á 2, πn(1−unn) is injective.

For n = 1, (1) says that πn is Gaussian, and for n á 2, (1) implies that
πn(1−unn) = π̃n(1−unnn)whereunnn denotes unn in SUq(n). (2) is equivalent
to π(1−unn) having dense range for n á 2.

This superscript convention, indicating which quantum subgroup is being
referred to, continues below.

Theorem 4.4. Every representation of SUq(N) has a unique full decomposition.

Proof. We prove this by induction on N. For N = 1 there is nothing to prove.
Suppose the proposition holds for N = K − 1 for some K á 2, and let π be a
representation of SUq(K).

Existence. By Lemma 4.2, π = πK ⊕ πK where πK(1 − uKK) is injective and
πK = π̃ ◦ sK for a representation π̃ of SUq(K − 1). By the induction hypothesis,
π̃ = ρ1⊕· · ·⊕ρK−1 where ρ1 is Gaussian and, for k = 2, . . . , K−1, ρk(1−u

K−1
kk )

is injective and ρk = ρ̃k ◦ sk,K−1, for some representation ρ̃k of SUq(k). Set
πk := ρk ◦ sK for k = 1, . . . , K − 1. Then, π = π1 ⊕ · · · ⊕ πK, where π1 is
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Gaussian, πK(1−uKK) is injective and, for k = 2, . . . , K − 1, πk(1−ukk) equals
ρk(1−uK−1

kk ) and so is injective, and πk = ρ̃k ◦sk,K−1 ◦sK = ρ̃k ◦sk,K , so πk lives
on SUq(k).

Uniqueness. Suppose π = ρ1 ⊕ · · · ⊕ ρK is another such decomposition. Then,
by the uniqueness part of Lemma 4.2, we have ρK = πK and ρ1 ⊕ · · · ⊕ ρK−1 =
π1 ⊕ · · · ⊕ πK−1. Now, for k = 1, . . . , K − 1, πk = π̃k ◦ sK and ρk = ρ̃k ◦ sK
for representations π̃1, . . . , ρ̃K−1 of SUq(K − 1) and, by the surjectivity of sK ,
π̃1 ⊕ · · · ⊕ π̃K−1 = ρ̃1 ⊕ · · · ⊕ ρ̃K−1. Since π̃1 and ρ̃1 are Gaussian and, for
k = 2, . . . , K−1, π̃k and ρ̃k live on SUq(k) and π̃k(1−uK−1

kk ) and ρ̃k(1−uK−1
kk )

are injective, it follows from the induction hypothesis that π̃k = ρ̃k for k =
1, . . . , K − 1. Therefore, πk = ρk for k = 1, . . . , K, as required. ❐

Theorem 4.5. Let π1 ⊕ · · · ⊕πN be the full decomposition of a representation
π of SUq(N), and let η1 ⊕ · · · ⊕ ηN be the induced decomposition of a π-ε-cocycle
η. Then, η1 is Gaussian and, for n á 2, ηn lives on SUq(n).

Proof. For n = 1, the cocycle ηn is Gaussian since the representation πn is.
Form > n á 2, by part (a) of Proposition 2.29 applied to identity (2.6d),

πn(unn)ηn(umm)+ ηn(unn)

= πn(umm)ηn(unn)+ ηn(umm)− (q
−1 − q)πn(unm)ηn(umn)

= ηn(unn)+ ηn(umm),

so ηn(umm) ∈ kerπn(1 − unn) = {0}. Thus, by part (b) of Proposition 2.29,
ηn lives on SUq(n). ❐

Approximation of cocycles and (NAI) for SUq(N). We now show that each
of the cocycles ηn (n á 2) in Theorem 4.5 is approximately inner.

Proposition 4.6. Let η be a cocycle of a representation π of SUq(N) such that
π(1−uNN) is injective. Then,

η = pw-limt→1− ηπ,ζ(t) where ζ(t) := −π(1− tuNN)−1η(uNN).

Proof. In view of the cocycle relations and Remark 2.26, it suffices to prove
that, for each of the algebra generators a = ujk, η(a) is the pointwise limit as
t → 1− of the following expression:

(4.1) −π(a− ε(a)1)π(1− tuNN)−1η(uNN).

We can prove this by using Lemma 4.1 (the contraction operator lemma) and
Lemma 2.28.

Case a = uNN . By Lemma 4.1, π(1− tuNN)−1π(1−uNN)η(uNN)→ η(uNN).
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Case a = ukN or a = uNk (k < N). Then, a ∈ ker ε so π(a) = π(a− ε(a)1).
Thus, using relations (2.12a)–(2.12b), Lemma 4.1 implies that η(a) equals

−π(1− quNN)−1π(a)η(uNN)

= − lim
t→1−

π(1− quNN)−1π(a)π(1− tuNN)−1π(1−uNN)η(uNN)

= − lim
t→1−

π(a− ε(a))π(1− tuNN)−1η(uNN).

Case a = ujk (j, k < N). We must show that

−π(ujk − δjk1)π(1− tuNN)−1η(uNN)→ η(ujk).

By the contraction operator lemma,

−π(1− tuNN)−1π(uNN − 1)η(ujk)→ η(ujk).

It therefore suffices to show that

−π(1−tuNN)−1π(uNN−1)η(ujk)+π(ujk−δjk1)π(1−tuNN)−1η(uNN)→ 0.

By identity (2.12c), the first term equals

−π(1−tuNN)−1(π(ujk−δjk1)−(q−1−q)π(1−q2uNN)
−1)π(ujNuNk)η(uNN),

and so, since the operators π(1−q2uNN)−1 and π(1− tuNN)−1 commute, after
cancellation of the δjk terms and multiplication through by the invertible operator
π(1 − q2uNN), we see that the task is equivalent to showing that the following
family converges to 0, as t → 1−, on the vector η(uNN):

π(1− q2uNN)[π(ujk),π(1− tuNN)−1](4.2)

+ (q−1 − q)π(1− tuNN)−1π(ujNuNk).

We show that it converges to 0 strongly. Let us abbreviate π(uil) to πil for each
i and l. It follows from identity (2.6d) that

[πjk, π
α
NN] = −(q

−1 − q)
( α−1∑

ν=0

q2ν
)
πα−1
NN πjNπNk (α ∈ Z+);

thus, taking the Neumann series for (I − tπNN)−1, which is valid since tπNN is a
strict contraction,

[πjk, (I − tπNN)
−1] = −(q−1 − q)

∞∑

α=1

α−1∑

ν=0

q2νtαπα−1
NN πjNπNk.
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Therefore, (4.2) equals the following operator composed with (q−1 − q)πjNπNk:

− (I − q2πNN)
∞∑

α=1

α−1∑

ν=0

q2νtαπα−1
NN + (I − tπNN)

−1

=
∞∑

ν=0

∞∑

α=ν+1

(q2(ν+1)(tπNN)
α − tq2ν(tπNN)

α−1)+ (I − tπNN)
−1

=
∞∑

ν=0

(
(q2tπNN)

ν+1
∞∑

β=0

(tπNN)
β − t(q2tπNN)

ν
∞∑

β=0

(tπNN)
β
)

+ (I − tπNN)
−1

= (I − q2tπNN)
−1(q2tπNN − tI + I − q

2tπNN)(I − tπNN)
−1

= (I − q2tπNN)
−1(1− t)(I − tπNN)−1,

so the required convergence follows from Lemma 4.1. ❐

Theorem 4.7. Let π1 ⊕ · · · ⊕πN be the full decomposition of a representation
π of SUq(N), and let η1 ⊕ · · · ⊕ ηN be the induced decomposition of a π-ε-cocycle
η. Then, for n á 2, ηn = pw-limt→1− ηπn,ξ(n,t) where

ξ(n, t) := −πn(1− tunn)−1ηn(unn).

Thus, in terms of the decomposition hπ = hπG ⊕ hπR ,

η = pw-limt→1− ηG ⊕ ηπR,ξ(t),(4.3)

where

ξ(t) := −π2(1− tu22)
−1η2(u22)⊕ · · · ⊕πN(1− tuNN)

−1ηN(uNN).

Proof. Let n á 2. By Theorem 4.5, ηn = η̃n ◦ sn,N for a cocycle η̃n on
SUq(n) and, by Lemma 2.22, it suffices to prove that ηπ̃n,ξ(n,t) converges point-
wise to η̃n. Now,

πn(1−unn) is injective (by Theorem 4.4),

π̃n(1− tunnn) = πn(1− tunn) for all t ∈ [0,1], and

η̃n(u
n
nn) = ηn(unn),

so π̃n(1−unnn) is injective and ξ(n, t) = −π̃n(1−tunnn)η̃n(u
n
nn). The theorem

therefore follows by applying Proposition 4.6 with N = n. ❐

Note that if π is completely non-Gaussian (and so hπG = {0}), then (4.3)
simplifies to the pointwise convergence ηπ.ξ(t) → η as t → 1−, and so we draw
the following immediate corollary.

Theorem 4.8. SUq(N) has property (NAI), and thus also (LK).
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Decomposition of generating functionals and Hunt formula for SUq(N).

Lemma 4.9. Let (π ′, η′) and (π ′′, η′′) be cyclic representation-cocycle pairs on
SUq(N) such that (π ′, η′) lives on SUq(N − 1) and π ′′(1 − uNN) is injective.
Then, the following hold:

(a) The cocycle η′ vanishes on (1−uNN)K.
(b) The set η′′((1−uNN)K) = π ′′(1−uNN)η′′(K) is dense in hπ

′′
.

(c) The cocycle η′ ⊕ η′′ is cyclic.

Proof. (a) This follows since π ′(1−uNN) = 0 because π ′ lives on SUq(N−1)
and 1−uNN ∈ ker sN .

(b) By Lemma 4.1, π ′′(1−uNN) has dense range so this follows from the cyclicity
of η′′.

(c) The cyclicity of η′⊕η′′ follows from that of η′ and η′′ since, for c1, c2 ∈ K, by
part (b) there is a sequence (dp) in K such that η′′((1−uNN)dp)→ η′′(c2−c1),
and by part (a) η′((1−uNN)dp) = 0 for all p so

(η′ ⊕ η′′)(c1 + (1−uNN)dp) =

(
η′(c1)

η′′(c1)+ η′′((1−uNN)dp)

)

→

(
η′(c1)

η′′(c2)

)
as p →∞. ❐

Definition 4.10. Let N á 2. We say that a completely non-Gaussian gen-
erating functional γ on SUq(N) is gf-irreducible if the following holds: for any
generating functional decomposition γ = γ′ + γ′′, if γ′ lives on SUq(N − 1),
then it is a drift.

Proposition 4.11. Let γ be a generating functional on SUq(N) for N á 2,
and let (π,η, γ) be its Schürmann triple. Then, γ is gf-irreducible if and only if
π(1−uNN) is injective.

Proof. Suppose first that γ is gf-irreducible. By Theorems 4.4 and 4.5 and
Propositions 4.6 and 2.8, π and η decompose as πN ⊕ πN and ηN ⊕ ηN , where
πN(1−uNN) is injective, ηN lives on SUq(N−1), and ηN is approximately inner
and so completable by a PN-invariant generating functional γN . The normalised
Hermitian functional γN := γ − γN satisfies γN(c∗c) = ‖η(c)‖2 − ‖ηN(c)‖2 =
‖ηN(c)‖2 for all c ∈ K, and so is a generating functional which completes ηN and
thus also lives on SUq(N − 1), and satisfies γN +γN = γ. Thus, γN is a drift and

so ηN = 0. But ηN is cyclic (since η is), and so hπ
N
= {0}; thus, π = πN and so

π(1−uNN) is injective.
Suppose conversely that π(1 − uNN) is injective, and let γ′ + γ′′ be a gen-

erating functional decomposition of γ such that γ′ lives on SUq(N − 1). Let
(π ′, η′, γ′) and (π ′′, η′′, γ′′) be the Schürmann triples of γ′ and γ′′. Then,
(π ′, η′, γ′) lives on SUq(N − 1), so η′ vanishes on (1 − uNN)K by part (a) of
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Lemma 4.9. Also, (π ′ ⊕ π ′′, η′ ⊕ η′′, γ) is a Schürmann triple, so there is an

isometry V ∈ B(hπ ; hπ
′
⊕ hπ

′′
) such that

(
η′(c)
η′′(c)

)
= Vη(c) for all c ∈ K. In

view of part (b) of Lemma 4.9, these together imply that η′ = 0, so γ′ is a drift.
Therefore, γ is gf-irreducible. ❐

Definition 4.12. A generating functional decomposition γ = γ1 + · · · + γN
on SUq(N) is full if the following hold:

(1) For 1 à n < N, γn = γ̃n◦sn,N for a generating functional γ̃n on SUq(n).
(2) For n á 2, γ̃n is gf-irreducible and Pn-invariant.

For n = 1, (1) says that γn is Gaussian. Given (1), letting (π̃n, η̃n, γ̃n) be
γ̃n’s Schürmann triple, so that

(πn := π̃n ◦ sn,N, ηn := η̃n ◦ sn,N, γn := γ̃n ◦ sn,N)

is γn’s Schürmann triple, the condition (2) is equivalent to

(2)′ For n á 2, πn(1−unn) is injective and γn is PN-invariant.

This follows from Proposition 4.11 (since πn(1−unn) = π̃n(1−unnn)), and the
compatibility of the projections Pn (Proposition 3.4).

Lemma 4.13. If a generating functional γ on SUq(N) has a full decomposition
γ1+· · ·+γN then, in terms of each γn’s Schürmann triple (πn, ηn, γn), the following
hold:

(a) π1 ⊕ · · · ⊕πN is a full (representation) decomposition.
(b) The cocycle η1 ⊕ · · · ⊕ ηN is cyclic.

Proof. Let γ = γ1 + · · · + γN be such a decomposition. For each n denote
by (π̃n, η̃n, γ̃n) the induced Schürmann triple on SUq(n), noting that for n =
2, . . . , N, γ̃n is gf-irreducible and, by (2)′, the operator πn(1 − unn) is injective
and γn is PN-invariant. In particular, (a) holds.

(b) For N = 1 there is nothing to prove. Suppose the proposition holds for N =
K − 1 where K á 2, and that a generating functional γ on SUq(K) has a full
decomposition γ = γ1 + · · · + γK . In the above tilde notation, note that for
k = 1, . . . , K − 1,

(π̂k := π̃k ◦ sk,K−1, η̂k := η̃k ◦ sk,K−1, γ̂k := γ̃k ◦ sk,K−1)

is a cyclic Schürmann triple (since (πk, ηk, γk) is), and set γ̂K := γ̂1+· · ·+ γ̂K−1.
This generating functional decomposition is full because γ̂k = γ̃k ◦ sk,K−1 for each
k and, for k = 2, . . . , K−1, γ̃k is gf-irreducible and Pk-invariant. Therefore, by the
induction hypothesis, η̂1+· · ·+ η̂K−1 is cyclic, which means that η1⊕· · ·⊕ηK−1

is cyclic; and so, by part (c) of Lemma 4.9,

η1 ⊕ · · · ⊕ ηK = (η1 ⊕ · · · ⊕ ηK−1)⊕ ηK

is too. Hence, (b) follows by induction. ❐
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Theorem 4.14. Every generating functional γ on SUq(N) has a unique full
decomposition.

Proof. Existence. Let γ be a generating functional on SUq(N), and (π,η, γ)
be its Schürmann triple. By Theorem 4.4, π then has a full decomposition
π1 ⊕ · · · ⊕πN ; let η1 ⊕ · · · ⊕ ηN be the corresponding decomposition of η. By
Theorems 4.5 and 4.7, ηn lives on SUq(n) for each n and, for n = 2, . . . , N,
ηn is approximately inner and thus completable by a PN-invariant generating
functional γn, so γn also lives on SUq(n). Moreover, letting (π̃ , η̃, γ̃) be the
induced Schürmann triple on SUq(n), π̃n(1 − unnn) equals πn(1 − unn) and
so is injective; thus, γ̃n is gf-irreducible by Proposition 4.11. Now, the func-
tional γ1 := γ − (γ2 + · · · + γN) is Hermitian and normalised, and satisfies
γ1(c∗c) = ‖η(c)‖2 − (‖η2(c)‖2 + · · · + ‖ηN(c)‖2) = ‖η1(c)‖2 for all c ∈ K,
and so is a generating functional which completes η1; moreover, it is Gaussian
because π1 is. It follows that γ1 + · · · + γN is a full decomposition of γ.

Uniqueness. Let γ1+· · ·+γN and γ′1+· · ·+γ
′
N be full decompositions of a gener-

ating functional γ on SUq(N). Set π := π1⊕ · · ·⊕πN and η := η1 ⊕ · · · ⊕ ηN
where, for each n, (πn, ηn, γn) is γn’s Schürmann triple—and do likewise for
γ′1, . . . , γ

′
N . Since γ1 = γ − (γ2 + · · · + γN) and for n á 2, γn ◦ PN = γn

and γn(c∗c) = ‖ηn(c)‖2 for c ∈ K, and likewise for γ′1, . . . , γ
′
N , uniqueness

follows once it is verified that ‖ηn(·)‖ = ‖η′n(·)‖ for n á 2. By Lemma 4.13,
π := π1⊕· · ·⊕πN and π ′ := π ′1⊕· · ·⊕π

′
N are full (representation) decomposi-

tions and (π,η, γ) and (π ′, η′, γ) are cyclic Schürmann triples. Therefore, there
is a unitary operator U ∈ B(hπ ; hπ

′
) such that η′ = Uη(·) and π ′ = Uπ(·)U∗.

The full decomposition π = π1 ⊕ · · · ⊕ πN evidently induces a full decomposi-
tion, say πU1 ⊕· · ·⊕π

U
N , of π ′; the resulting decomposition η′ = ηU1 ⊕· · ·⊕η

U
N

satisfies ‖ηUn(·)‖ = ‖ηn(·)‖ for each n. Thus, by the uniqueness part of Theo-
rem 4.4, for each n, πUn = π ′n so ηUn = η

′
n; therefore, ‖η′n(·)‖ = ‖ηn(·)‖, as

required. ❐

Combining the theorems of this section with Theorem 3.6 and Remarks 2.18
and 2.4, we deduce our main result.

Theorem 4.15 (Hunt formula for SUq(N)). Let γ be a generating functional
on SUq(N). Then, there is a unique decomposition γ = γD + γG + γNG, in which
γD is a drift, and γG and γNG are PN-invariant generating functionals which are,
respectively, Gaussian and completely non-Gaussian. Moreover, the following hold:

(1) γG and γD are uniquely parameterised by a matrix inMN−1(R)+ and vector
in RN−1.

(2) γ has a unique full decomposition γ1+· · ·+γN , and if (πn, ηn, γn) is γn’s
Schürmann triple for each n, then

(π := π1 ⊕ · · · ⊕πN , η := η1 ⊕ · · · ⊕ ηN , γ)

is γ’s Schürmann triple.
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(3) γNG = pw-limt→1−ωξ(t)◦πR◦PN where πR is the non-Gaussian remainder
of π and

ξ(t) := −π2(1− tu22)
−1η2(u22)⊕ · · · ⊕πN(1− tuNN)

−1ηN(uNN).

The realisation of γNG in (3) is analogous to that of γL in the classical Hunt
formula (1.1) given in the remark following Proposition 2.8.

For the limiting case q = 1 corresponding to the compact Lie group SU(N)
the proofs of Lemma 3.1 and Theorem 4.7, on which our Hunt formula de-
pends, are no longer valid. However, the theorem as stated still holds. Indeed, the
Gaussian/non-Gaussian decomposition and parameterisations (1) are statements
of Hunt’s results in the language of generating functionals; moreover, (2) is seen
by decomposing the Lévy measure into its restrictions to the corresponding sub-
groups of SU(N).

5. FROM PARAMETRIZATION BY hπ TO QUASI-INNERNESS

Given a gf-irreducible generating functional on SUq(N), with Schürmann triple
(π,η, γ), by Proposition 4.11 and Lemma 2.28 we know that π(1 − uNN) is
injective and so η is determined by its value η(uNN). One may therefore ask
which vectors of the representation space hπ arise in this way. In case N = 2 every
vector does, so the cocyles are parameterised by hπ ([23, Theorem 2.8], [21, The-
orem 3.3]). We now show this to be false for N = 3; the argument extends
to higher values of N. The section ends with an indication of a positive coun-
terpart to this, namely, a quasi-innerness property of completely non-Gaussian
cocycles/π-ε-derivations.

Proposition 5.1. There is a representation π of SUq(3) and vector ξ in hπ such
that π(1−u33) is injective but η(u33) ≠ ξ for every π-ε-cocycle η.

Proof. Following Woronowicz, we write the generators ujk of SUq(2) as

[
u11 u12

u21 u22

]
=

[
α −qγ∗

γ α∗

]
.

Let ρ be the irreducible representation of SUq(2) on ℓ2(Z+) defined, in terms of
the standard orthonormal basis (en)ná0, by

ρ(α) : en ֏
√

1− q2nen−1 and ρ(γ) : en ֏ qnen

(where e−1 := 0). For k = 1,2, set ρk := ρ ◦ rk for the CQG epimorphisms
rk : SUq(3)→ SUq(2) given by

r1 : [ujk]֏



α −qγ∗ 0
γ α∗ 0
0 0 1


 and r2 : [ujk]֏




1 0 0
0 α −qγ∗

0 γ α∗



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(so r1 = s3). Then, ρ1 and ρ2 are representations of SUq(3) and so, setting
π := ρ1 ⋆ ρ2,

[
π(ujk)

]
j,k
=




3∑

i=1

ρ1(uji)⊗ ρ2(uik)



j,k

=



ρ(α)⊗ I −qρ(γ)∗ ⊗ ρ(α) q2ρ(γ)∗ ⊗ ρ(γ)∗

ρ(γ)⊗ I ρ(α)∗ ⊗ ρ(α) −qρ(α)∗ ⊗ ρ(γ)∗

0 I ⊗ ρ(γ) I ⊗ ρ(α)∗


 .

Now, π(1 − u33) = I ⊗ ρ(1 − α∗) is injective because ρ(1 − α∗) is. Suppose
for a contradiction there is a π-ε-cocycle η satisfying η(u33) = e0 ⊗ e0. Since
π(u31) = 0 and ρ(α)e0 = 0, relation (2.12c) for j = 1 = k implies

(I ⊗ ρ(1−α∗))η(u11) = (I −π(u33))η(u11)

= (I −π(u11))η(u33)

= ρ(1−α)e0 ⊗ e0 = e0 ⊗ e0.

For n á 0, set an := 〈e0 ⊗ en, η(u11)〉. Now ρ(α∗)en =
√

1− q2(n+1)en+1, so

e0 =
∑

ná0

an(I − ρ(α
∗)en

=
∑

ná0

an
(
en −

√
1− q2(n+1)en+1

)

= a0e0 +
∑

ná1

(
an − an−1

√
1− q2n

)
en.

Thus, a0 = 1 and, for n á 1, |an|2 =
∏n
k=1(1−q

2k). Therefore, since
∑
|an|2 à

‖η(u11)‖2 < ∞,
∏n
k=1(1 − q

2k) → 0 as n → ∞, so
∑
q2k diverges and we have

our contradiction. ❐

This leaves us with the question: which vectors in hπ may occur as values
η(uNN) for a cocycle η? Every element in the dense subspace ranπ(1 − uNN)
occurs; and the collection of cocycles determined by them is precisely the set of
coboundaries. Indeed, for ξ′ = −π(1 − uNN)ξ, by the contraction operator
lemma we have (see Theorem 4.7) the following pointwise convergence as t → 1−:

−π ◦ (id−ι ◦ ε)(·)π(1− tuNN)−1ξ′ → π ◦ (id−ι ◦ ε)(·)ξ = ηπ,ξ,

and the identity ηπ,ξ(uNN) = π(uNN − 1)ξ = ξ′.

Proposition 5.2. Let (ξ(λ)) be a net in hπ . Then, the net of coboundaries
(ηπ,ξ(λ)) converges pointwise on SUq(N) provided that it converges on ujj for 1 à
j à N.
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Proof. This follows from Remark 2.26 since, setting l := max(j, k) for j 6= k,
relations (2.6a) or (2.6b) imply that

ηπ,ξ(λ)(ujk) = π(ujk)ξ(λ)

= π(1− qull)−1π(1− qull)π(ujk)ξ(λ)

= −π(1− qull)
−1π(ujk)π(ull − 1)ξ(λ)

= −π(1− qull)−1π(ujk)ηπ,ξ(λ)(ull). ❐

We conclude this section with a quasi-innerness property enjoyed by all com-
pletely non-Gaussian cocycles.

Theorem 5.3. Let π be a completely non-Gaussian representation of SUq(N),
and let (hπ , J) denote the completion of hπ with respect to the norm

||| · ||| : ξ ֏ (
N∑

j=1

‖π(1−ujj)ξ‖2)1/2.

Then, a net (ξ(λ)) in hπ is ||| · |||-Cauchy if and only if the corresponding net of
π-ε-coboundaries (ηπ,ξ(λ)) converges pointwise. Moreover, the following hold:

(1) There is a unique operator π̄ : K → B(hπ ; hπ) which “extends” the represen-
tation π in the sense that it satisfies

π̄(ac) = π(a)π̄(c) and π̄(c)J = π(c) (a ∈ SUq(N), c ∈ K).

(2) The prescription χ ֏ ηπ̄ ,χ := (a ֏ π̄(a − ε(a)1)χ) defines a linear
isomorphism from hπ to the space of π-ε-cocycles.

There is also a unique operator ¯̄π : K2 → B(hπ) such that

¯̄π(c∗c) = π̄(c)∗π̄(c) and J∗ ¯̄π(e)J = π(e) (c ∈ K, e ∈ K2).

This has the property that, for all χ ∈ hπ , the generating functionalωχ ◦ ¯̄π ◦ PN
completes (π,ηπ̄ ,χ).

6. THE CASE OF Uq(N)

A Hunt formula for Uq(N) may be obtained by employing very similar argu-
ments to those used above for SUq(N). The upshot is the same as Theorem 4.15
except that it is with respect to the tower of subgroups Uq(0) à · · · à Uq(N)
with Uq(0) denoting the trivial compact quantum group, rather than the tower
SUq(1) à · · · à SUq(N) (also starting at the trivial group); thus, N replacesN−1
in (1), the decomposition in (2) starts at n = 0 rather than n = 1, and the compo-
nents of ξ(t) in (3) start at n = 1 rather than n = 2. We therefore instead discuss
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only the (NAI) and (GC) questions for Uq(N), as these may easily be deduced
from our results and reasoning for the SUq(N) quantum groups.

Since SUq(N + 1) á Uq(N) á TN , it follows from Remarks 3.7 that Uq(N)
has the same Gaussian generating functionals as SUq(N + 1) and a Hermitian
projection P ′ for Uq(N) compatible with that of SUq(N + 1) is the one corre-
sponding to the following choice of basis extension:

E′ = {tN(dn) : 2 à n à N} ∪ {tN(dN+1) = (2i)−1(D−1 −D−1∗)}.

Theorem 6.1. Uq(N) does not have property (GC), unless N = 1.

Proof. The reasoning used in the proof of the SUq(N) counterpart (Theo-
rem 3.3) applies. By part (d) of Lemma 3.1, the basis extension E′ again consists
of elements whose commutators lie in K3, and dimK/K2 = N á 2 unless N = 1
so Corollaries 2.13 and 2.12 again apply. ❐

Since the (NAI) property is hereditary (Proposition 2.23) and SUq(N+1) has
it (Theorem 4.8), Uq(N) does too.

Theorem 6.2. Uq(N) has property (NAI), and thus also (LK).
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