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Recenzja rozprawy doktorskiej

Krzysztofa Kowalskiego
”Asymptotyczne zachowanie ekstremalnej pozycji

w gałązkowym spacerze losowym”

Rozprawa doktorska Pana Krzysztofa Kowalskiego została napisana pod
opieką prof. dra hab. Dariusza Buraczewskiego i dotyczy ekstremalnej po-
zycji w gałązkowym spacerze losowym. Najważniejsze wyniki z tej rozprawy
zostały opublikowane w pracy
Kowalski, K. (2024). Branching random walks with regularly varying pertur-
bations. ESAIM Probab. Stat. 28, 379–391,
czyli w dobrym czasopiśmie probablistycznym oraz w złożonej pracy
Kowalski, K. (2025). Asymptotic behavior of the extremal position in a
multi-type branching random walk with heavy-tailed displacements.
https://arxiv.org/abs/2509.14808.

Opis i ocena rozprawy.

Rozprawa licząca 66 stron jest napisana z dbałością o czytelnika. Przed-
stawia ona cele, rezultaty i dowody w sposób bardzo zrozumiały i bardzo
dobrze zorganizowany.
Tematyka rozprawy matematycznie dotyczy ekstremalnej pozycji Rn w

n-tej generacji gałązkowego błądzenia losowego rozważanego w dwóch przy-
padkach. Pierwszy to model wielotypowy biorący pod uwagę cząsteczki nale-
żące do kilku klas czy też typów. Drugi model uwzględnia z kolei możliwość
zaburzeń. W moim odczuciu otrzymane rezultaty są interesujące i ważne dla
probabilistyki. Zawartość matematyczna jest zaawansowana oraz wymagała
dużej znajomości teorii procesów gałązkowych i teorii błądzeń losowych. Nie
znalazłem żadnego błędu merytorycznego.
Podając więcej szczegółów, w rozdziale pierwszym przedstawiono pod-

stawy teorii gałązkowych spacerów losowych i opisano modele, które będą
przedmiotem badań w późniejszych rozdziałach. Pojawia się też tam przegląd
podstawowej literatury.
Rozdział drugi dotyczy nieprzywiedlnego wielotypowego gałązkowego

błądzenia losowego z regularnie zmieniającym się rozkładem Fi przemiesz-
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czeń ξi i-tego typu (Sekcja 2.1) oraz rozkadem typu Weibulowskiego (Sekcja
2.2). W pierwszym przypadku zakłada się, że

1− Fi(x) ∼ Li(x)x−ri jak x→∞,
log(−x)Fi(x)→ 0 jak x→ −∞

i pokazuje się, że
P(Rn ¬ anx) −−−→

n→∞
E[e−ζWx−r ],

gdzie W jest granicą pojawiającą się w Twierdzeniu Kestena-Stiguma, ζ
pewną stałą podaną w sposób jawny oraz r = rI jest ściśle najmniejszym ri.
Dodatkowo, normalizujący ciąg an jest podany poprzez granicę

ρn (1− FI(an)) −−−→
n→∞

1,

gdzie ρ > 1 jest wartością własną Perrona-Frobeniusa macierzy średniej
Mij = ENi,j a Ni,j podaje liczbę dzieci j-tego typu zrodzonych z cząsteczki
typu i-tego w jednej generacji.
Podobny rezultat był uzyskany w [8] używając teorii procesów punk-

towych ale w przeciwieństwie do tej pracy dopuszcza się istnienie liści na
drzewie genealogicznym. Metoda dowodu jest też inna chociaż także opar-
ta o zasadę jednego wielkiego skoku. Dowód głównego Twierdzenia 2.1 jest
elegancki i wymagający sporej pomysłowości. Zwłaszcza na wyróżnienie za-
sługuje dowód granic (2.14) i (2.15).
Drugi przypadek rozkładu typu Weibulowskiego nie był studiowany w

kontekście kilku istniejących typów. Zakłada się, że

1− Fi(x)aj(t) exp{−Lj(t)trj},

gdzie rj ∈ (0, 1), Lj, aj są funkcjami wolno zmieniającymi się oraz Lj(t)t1−rj
są

ostatecznie niemalejące. W Twierdzeniu 2.5 pokazuje się, że

Rn
ψ(n)

p.w.−−→ (log ρ)
1
r ,

gdzie r minimalizuje ri, L(t) = min{Li(t) : r = ri}, zaś ψ(n) spełnia

L(ψ(n))ψ(n)r

n
→ 1.

Jest to delikatniejszy przypadek niż analiza rozkładu regularnie zmieniające-
go się. Kluczowy wydaje się być Lemat 2.8, którego dowód oparty o uogólnio-
ną tożsamość Vandermonde’a jest bardzo elegancki. Dowód głównego Twier-
dzenia 2.5 jest precyzyjny i oparty jest z grubsza o identyfikację ”miejsca”
wystąpienia najcięższego ogona oraz wyliczenia ”ilości” jego wpływu na koń-
cową pozycję ekstremalną.
Rozdział trzeci zajmuje się przypadkiem przywiedlnym. Rezultaty są

podobne. Dowody twierdzeń oparte są na podziale na klasy, wewnątrz któ-
rych typy mogą wzajemnie powstawać, oraz na indukcji matematycznej. Krok
pierwszy w tej indukcji to krok nieprzywiedlny. Przejście z kolei kroku induk-
cyjnego jest pomysłowe i nowe. W szczególności z dużym zainteresowaniem
przeczytałem szacowania na stronach 40-43 rozprawy doktorskiej.
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Ostatni rozdział zajmuje się wartością ekstremalną R∗n w n-tej generacji
dla zaburzonego gałązkowego błądzenia losowego. Zaburzenie wprowadzone
przez Bandyopadhyay’ego i Ghosh in [5] jest w postaci

Xv(θ) =
1
θ
log

Yv
Ev

dla dodatniej stałej θ i dodatnich zmiennych losowych {Yv}v∈T o rozkładzie
regularnie zmieniającym się spełniających

1− F (x) ∼ c+x−γ jak x→ +∞,

gdzie γ ∈ (0, 1) i T oznacza genealogiczne drzewo. Dodatkowo, {Ev}v∈T, jest
ciągiem i.i.d. wykładniczych zmiennych losowych z parametrem 1 niezależ-
nym od {Yv}v∈T. Definiuje się

θ0 = inf {θ > 0 : ν(θ) = θν ′(θ)}

gdzie

ν(θ) = logE
[
N∑
i=1

eθξi
]
,

N jest liczbą dzieci w jednym pokoleniu oraz ν ′(θ) = e−ν(θ)E
[∑N
i=1 ξie

θξi
]
.

Twierdzenia 4.1 i 4.2 są typu Prawa Wielkich Liczb czyli udowadnia się, że
jeśli E

[
W1(γθ) log+W1(γθ)

]
< ∞ dla martyngału Bigginsa Wn(θ) i θ < θ0

γ
,

to

R∗n
n

p.w.−−−→
n→∞

ν (γθ)
γθ

oraz

R∗n
n

p.w.−−−→
n→∞

ν(θ0)
θ0

kiedy θ0 ¬ θ. Warto dodać, że jeśli θ ­ θ0
γ
to θ0 ¬ θ. Dowód obu powyż-

szych twierdzeń, choć krótki, jest bardzo pomysłowy i bardzo mi się podoba.
Zwłaszcza warto zwrócić uwagę na górne szacowanie P

(
R∗n(θ)
n
− ν(β)

β
< −ε

)
.

Twierdzenia 4.3-4.5 są typu słabych zbieżności. Udowadnia się w nich, że
przy założeniach Twierdzenia 4.1 ciąg R∗n−n

ν(γθ)
γθ
zbiega słabo i identyfikuje

się jego granicę. Z kolei przy pewnych dodatkowych założeniach pokazuje
się, że centrowanie przy słabej zbieżności może być też inne, w szczególności
R∗n − n

ν(θ0)
θ0
+ 1
2θ0
log n i R∗n − n

ν(θ0)
θ0
+ 3 logn2θ0 zbiegają słabo o ile odpowiednio

θ = θ0
γ
i θ > θ0. Dowody tych twierdzeń oparte są o Lemat 4.1 z [13] (czy też

Lemma 4.5 z rozprawy doktorskiej) i jako takie są znacznie mniej złożone
choć oczywiście uzupełniają całość teorii.

Drobne korekty.
Poniżej podaję listę pewnych poprawek, które mogą być użyteczne w przy-
szłości.
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— Brakuje przecinków i kropek po bardzo wielu tożsamościach. W szczegól-
ności raz są przecinki przed ”where”, raz ich nie ma.

— Na str. 8 brakuje spacji po [14,15].
— φ(x) chyba nie jest używane później - nie ma więc sensu wprowadzać tego
oznaczenia.

— W (1.1) powinno być N a nie n.
— W Tw. 2.1 i Tw. 3.1 powinno być r a nie q w granicy (w dowodzie Tw.
3.1 też warto zdecydować się na notację albo z r albo z q).

— Str. 27 - ’from Lemma 2.9’.
— Str. 12 - brakuje spacji przed [44].
— Na początku Rozdziału 4 warto by było przypomnieć notację R∗n ze strony
13.

— Warto też dodać uwagę ze szczegółami wyjaśniającymi jak ma się warunek
θ ¬ θ0 do nierówności θ ­ θ0γ . Jedno zdanie zaraz po Tw. 4.2 i 4.5 wydaje
się być niewystarczające.

Konkluzja.
Wobec powyższych uwag, uważam, że rozprawa doktorska magistra Krzyszto-
fa Kowalskiego w pełni spełnia wymagania ustawowe i zwyczajowe stawiane
rozprawom doktorskim. Wnoszę o przyjęcie rozprawy i dopuszczenie jej Au-
tora do dalszych etapów postępowania w sprawie nadania stopnia doktora
nauk w dziedzinie nauk ścisłych i przyrodniczych, w dyscyplinie matematyka.

Wrocław, dnia 15 grudnia 2025
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