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Zagadnienia Dirichleta dla równania z ułamkowym spektralnym laplasjanem

Rozważmy zagadnienie brzegowe typu Dirichleta zadane przez równanie ze
spektralnym operatorem Laplace’a (−∆)α/2, α ∈ (1, 2] postaci

(−∆)α/2 u(x) = f (x , u(x),w(x)) dla x ∈ Ω ⊂ Rn

u(x) = 0 dla x ∈ ∂Ω

gdzie

Ω jest obszarem ograniczonym o gładkim (lipschitzowskim) brzegu ∂Ω,

f : Ω× R× Rm → R jest zadaną funkcją,

w ∈ W jest parametrem funkcyjnym

- W = {w ∈ Lp (Ω,Rm) : w (x) ∈W p.w. na Ω} dla W ⊂ Rm,

u jest słabym rozwiązaniem w H
α/2
0 (Ω,R)

- H
α/2
0 (Ω,R) jest ułamkową przestrzenią Sobolewa.



Przestrzeń H
α/2
0 (Ω,R) i operator (−∆)α/2

Niech {ρk , λk} będzie układem ortonormalnym zupełnym w L2 (Ω,R), gdzie ρk ∈ C∞,
ρk |∂Ω = 0 funkcje własne, λk > 0 wartości własne operatora Laplace’a: −∆ρk = λkρk .
W przestrzeni

H
α/2
0 (Ω,R) =

{
u ∈ L2 (Ω,R) :

∞∑
k=1

u2
kλ
α/2
k <∞ dla u =

∞∑
k=1

ukρk

}

- norma ‖u‖2

H
α/2
0

=
∑∞

k=1
u2
kλ
α/2
k

- iloczyn skalarny 〈u, v〉
H
α/2
0

=
∑∞

k=1
ukvkλ

α/2
k .

Spektralny ułamkowy operator Laplace’a (−∆)α/2 możemy zdefiniować:

dla u =
∑∞

k=1
ukρk takich, że

∑∞
k=1

u2
kλ
α/2
k <∞, z (−∆)α/2u w sensie słabym(

(−∆)α/2u
)
ϕ =

∞∑
k=1

ukϕkλ
α/2
k =

∞∑
k=1

ukλ
α/4
k ϕkλ

α/4
k

dla dowolnego ϕ =
∑∞

k=1
ϕkρk takiego, że

∑∞
k=1

ϕ2
kλ
α/2
k <∞

o wartościach w L2 dla u =
∑∞

k=1
ukρk takich, że

∑∞
k=1

u2
kλ
α
k <∞ wzorem

(−∆)α/2u =

∞∑
k=1

ukλ
α/2
k ρk



Przykład

Dla Ω = (0, π) oraz −∆u = −u′′ z u(0) = u(π) = 0 mamy

λk = k2, ρk(x) =

√
2
π

sin(kx)

a zatem

(−∆)α/2u(x) =

∞∑
k=1

ukλ
α/2
k ρk(x) =

√
2
π

∞∑
k=1

ukk
α sin(kx)

gdzie

uk =

∫ π

0

u(x)ρk(x)dx =

√
2
π

∫ π

0

u(x) sin(kx)dx .

W szczególności
(−∆)α/2 sin(2x) = 2α sin(2x) .



Rozważmy zagadnienie Dirichleta w (0, π) z −∆u = u′′ oraz równaniem z
ułamkowym, spektralnym operatorem Laplace’a

(−∆)α/2u = 1 .

Wówczas rozwijając 1 w szereg Fouriera w układzie (k2,
√

2
π

sin(k·))
otrzymujemy

1 =

∞∑
k=1

√
2√
πk

(1− (−1)k) sin(kx)

Następnie korzystając z faktu, że

(−∆)α/2 sin(k·) = kα sin(k·)

otrzymujemy, że rozwiązanie u dane jest wzorem przez zbieżny jednostajnie

u(x) =

∞∑
k=1

√
2√

πk1+α
(1− (−1)k) sin(kx), x ∈ (0, π)

Funkcja 1 po przedłużeniu nieparzystym i 2π-okresowym jest Hγ , γ < 1/2.
Z kolei, ponieważ poprawienie regularności rozwiązania następuje o α (rząd
operatora), rozwiązanie jest klasy Hγ+α z γ < 1/2, a zatem w przestrzeni
Höldera Cα[0, π] (z włożeń Sobolewa). Ponadto zbieżność szeregu jest
jednostajna, więc rozwiązanie jest ciągłe.



Rozwiązania przybliżone (−∆)α/2u = const, czyli sumy częściowe do n

Rozwiązania przybliżone dla sum do n = 1..20. Przybliżenie stałej dla n = 10.



Mówimy, że u ∈ H
α/2
0 (Ω,R) jest słabym rozwiązaniem równania

(−∆)α/2 u(x) = f (x , u(x),w(x)) dla x ∈ Ω

z zerowym warunkiem brzegowym, jeśli dla dowolnego h ∈ H
α/2
0 (Ω,R)

〈u, h〉
H
α/2
0

=

∫
Ω

f (x , u(x),w(x))h (x) dx .

Funkcjonał Kw : H
α/2
0 (Ω,R)→ R postaci

Kw (u) =
1
2
‖u‖2

H
α/2
0

−
∫

Ω

F (x , u(x),w(x)) dx

gdzie Fu(x , u(x),w(x)) = f (x , u(x),w(x)) nazywamy funkcjonałem działania.

Punkty krytyczne funkcjonału Kw , tzn. punkty u takie, że K′w (u) = 0,
odpowiadają słabym rozwiązaniom rozważanego zagadnienia Dirichleta.

Rozważymy punkty krytyczne typu minimum funkcjonału Kw , czyli punkty
krytyczne u∗ takie, że

Kw (u∗) = min
p∈Hα/2

0

Kw (p).



Założenia

(A1) (regularność) funkcje f , F są mierzalne ze względu na x dla dowolnych
(u,w) ∈ R× Rm oraz ciągłe ze względu na (u,w) dla p.w. x ∈ Ω

(A2) (wzrost) jeśli p ∈ (1,∞) istnieje c > 0 oraz s ∈ (1, 2∗α) takie, że

|F (x , u,w)| ¬ c (1 + |u|s + |w |p)

|f (x , u,w)| ¬ c
(

1 + |u|s−1 + |w |p−p/s
)

dla p.w. x ∈ Ω, wszystkich w ∈ Rm, u ∈ R;
jeśli p =∞ to dla dowolnego zbioru ograniczonego W ⊂ Rm istnieje c > 0 oraz
s ∈ (1, 2∗α) takie, że

|F (x , u,w)| ¬ c (1 + |u|s)

|f (x , u,w)| ¬ c
(

1 + |u|s−1
)

dla p.w. x ∈ Ω, wszystkich w ∈W, u ∈ R;

(A3) (podparcie na (-F) z dołu) istnieją funkcje β ∈ L2 (Ω,R) , γ ∈ L1 (Ω,R) oraz

stała b < 1
2λ
α/2
1 takie, że

F (x , u,w) ¬ b |u|2 + β (x) u + γ (x)

dla p.w. x ∈ Ω, wszystkich w ∈ Rm, u ∈ R, gdzie λ1 jest pierwszą, dodatnią
wartością własną operatora Laplace’a (−∆) na przestrzeni H1

0 (Ω,R)

Gdzie 2∗α = 2n
n−α jest wykładnikiem krytycznym Sobolewa, tzn. przestrzeń H

α/2
0 (Ω,R)

wkłada się w sposób zwarty w Ls (Ω,R) dla s ∈ [1, 2∗α).



—————-
Pierwsza wartość własna spektralnego ułamkowego operatora Laplace’a z α ∈ (1, 2]
rozważanego na przestrzeni funkcji z zerowymi warunkami brzegowymi jest postaci

λ
α/2
1 = inf


‖u‖2

H
α/2
0

‖u‖2
L2

; u ∈ H
α/2
0 (Ω,R) , u 6= 0


————–
Jeśli warunki (A1) (regularność) oraz (A2) (wzrost) są spełnione to funkcjonał Kw jest
dobrze określony oraz różniczkowalny w sensie Frecheta oraz

K′w (u) h = 〈u, h〉
H
α/2
0

−
∫

Ω

f (x , u (x) ,w (x)) h (x) dx

dla dowolnego h ∈ H
α/2
0 (Ω,R) .

—————
Jeśli warunki (A1) (regularność) oraz (A2) (wzrost) są spełnione to funkcjonał Kw jest
słabo półciągły z dołu.
—————
Jeśli warunki (A1) (regularność), (A2) (wzrost) oraz (A3) (podparcie na (-F) z dołu)
są spełnione to funkcjonał Kw jest koercytywny.



Zbiory punktów krytycznych

Dla dowolnego parameteru
w ∈ W

niech
Uw ⊂ H

α/2
0 (Ω,R)

oznacza zbiór punktów krytycznych typu minimum funkcjonału Kw , tzn.

Uw =
{
u ∈ H

α/2
0 (Ω,R) ;Kw (u) = minKw (p); p ∈ H

α/2
0 (Ω,R)

}
.

Dla dowolnego w ∈ W, jeśli (A1),(A2),(A3) są spełnione

to zbiór Uw jest niepusty.

i dodatkowo jeżeli funkcjonał Kw jest ściśle wypukły, to zbiór Uw jest
zbiorem jednoelementowym.

Następnie, niech

{wk} ⊂ W będzie ciągiem parametrów

{Uwk } ⊂ H
α/2
0 (Ω,R) będzie odpowiadającym mu ciągiem zbiorów

punktów krytycznych typu minimum funkcjonału Kwk .

Czy jeśli wk → w0, to czy Uwk → Uw0 (w jakim sensie)?



Górna granica zbiorów

Niech X oznacza refleksywną przestrzeń Banacha (np. Hα/2
0 (Ω,R))

Definicja górnej granicy zbiorów w sensie Painlevé-Kuratowskiego

Górną granicą zbiorów Uk w sensie Painlevé-Kuratowskiego nazywamy zbiór
wszystkich punktów skupienia w sensie τ−topologii X ciągów {uk} takich, że
uk ∈ Uk , k = 0, 1, 2, ....
Górną granicę zbiorów Uk w τ−topologii X oznaczamy przez τ − lim supUk .

Ponadto mówimy, że ciąg zbiorów Uk zbiega do U0 w τ−topologii X wtedy,
gdy τ − lim supUk ⊂ U0.
W przypadku, gdy zbiory Uk , k = 0, 1, 2, ... są jednoelementowe tzn.
Uk = {uk} , k = 0, 1, 2, ... zbieżność zbiorów jest równoważna zbieżności ciągu
{uk} w τ−topologii X.

Czy jeśli wk → w0, to czy lim supUwk ⊂ Uw0 , o ile lim supUwk 6= ∅?



Stabilność rozwiązań - zbieżność parametrów w mocnej topologii

Twierdzenie 1. Zakładamy, że
(1) F spełnia (A1)-(A3) (regularność, wzrost, podparcie na -F z dołu),
(2) wk → w0 w Lp (Ω,Rm), p > 1.
Wówczas:
(a) dla dowolnego wk zbiór Uwk punktów krytycznych typu minimum
funkcjonału Kwk jest niepusty,
(b) istnieje kula Bρ ⊂ H

α/2
0 (Ω,R) taka, że Uwk ⊂ Bρ dla k ∈ N0,

(c) lim supUwk 6= ∅ oraz lim supUwk ⊂ Uw0 w H
α/2
0 (Ω,R) .

Zauważmy, że (c) wraz z (2) oznacza, że multifunkcja

Lp (Ω,Rm) 3 w 7→ Uw ∈ H
α/2
0 (Ω,R)

jest półciągła z góry, ze zbieżnością zbiorów w sensie Painlevé-Kuratowskiego.

Jeśli dla dowolnego w funkcjonał działania Kw jest ściśle wypukły, to uwk → uw0

w H
α/2
0 (Ω,R) o ile wk → w0 w Lp (Ω,Rm).

Jeśli dla dowolnego w , dodatkowo funkcjonał działania Kw jest wypukły, to zbiór
jego minimów pokrywa się ze zbiorem jego punktów krytycznych, a zatem także
zbiorem słabych rozwiązań w H

α/2
0 (Ω,R) zagadnienia Dirichleta dla równania

(−∆)α/2 u(x) = f (x , u(x),w(x)) dla x ∈ Ω .



Przykład. Brak ciągłej zależności.

Rozważmy rodzinę rozwiązań

uw =
1

2− w
sin(x1) sin(x2),w < 2

zagadnienia Dirichleta dla równania w Ω = (0, π)2

−∆u = wu + sin(x1) sin(x2),w < 2

z jednorodnym warunkiem brzegowym

u|∂Ω = 0.

Mnożąc, dla w = 2, równanie różniczkowe przez funkcję sin(x1) sin(x2) oraz
całkując stronami, a następnie przez części otrzymujemy sprzeczność

0 =

∫ π

0

∫ π

0

sin2(x1) sin2(x2)dx1dx2 > 0

co dowodzi braku rozwiązań dla granicznej wartości parametru. Z kolei
wspomniana rodzina rozwiązań dla w < 2 ”wybucha” w normach L∞(Ω) oraz
L2(Ω) w granicy, tzn.

‖uw‖∞ →∞, ‖uw‖2 →∞ jeśli w → 2−.



Powyższe rozumowanie można przeprowadzić także w jednowymiarowym
przypadku z rozwiązaniem postaci

uw =
1

1− w
sin(x),w < 1

a także w trójwymiarowym przypadku dla rodziny rozwiązań

uw =
1

3− w
sin(x1) sin(x2) sin(x3),w < 3

czy też uogólnionym n wymiarowym przypadku dla w < n

uw =
1

n − w
Πn

i=1 sin(xi ).

Zjawisko braku ciągłej zależności związane jest tu z interakcją prawej strony
równania z jądrem operatora samosprzężonego, gdy rozwiązalność zagadnienia
liniowego wymaga ortogonalności prawej strony do jądra tu reprezentowanego
przez funkcje własne dla krytycznej wartości parametru, czyli pierwszej wartości
własnej, por. alternatywę Fredholma.



Przykład

Niech Ω = (0, π)2. Pierwsza wartość własna operatora Laplace’a −∆ na
przestrzeni H1

0 (Ω,R) wynosi
λ1 = 3

natomiast odpowiadająca funkcja własna

ρ1 = sin(x1) sin(x2) sin(x3).

Natomiast λα/2
1 = 3α/2 jest pierwszą wartością własną oraz

ρ1 = sin(x1) sin(x2) sin(x3) odpowiadającą funkcją własną ułamkowego
operatora Laplace’a (−∆)α/2 na przestrzeni Hα/2

0 (Ω,R).
Założenia twierdzenia 1 spełnia następujące równanie

(−∆)α/2 u (x) = au (x)− s |x |2 us−1 (x)w 1 (x) + |x |w 2 (x) x ∈ Ω

u(x) = 0 x ∈ ∂Ω

o ile 1 < s < 6/(3− α), p > 1 dostatecznie duże, a < 3α/2 oraz
0 ¬ w 1 (x) ¬ 1, 0 ¬ w 2 (x) ¬ 1 dla x ∈ Ω.



Stabilność rozwiązań - zbieżność parametrów w słabej topologii

Uzyskanie wyników dotyczących stabilności rozwiązań względem słabej
topologii Lp w przestrzeni parametrów jest możliwe, o ile prawa strona
równania jest liniowa ze względu na parametr w , tzn. rozważamy wtedy

(−∆)α/2 u(x) = f 1(x , u(x)) +
〈
f 2(x , u(x)),w(x)

〉
dla x ∈ Ω ⊂ Rn

u(x) = 0 dla x ∈ ∂Ω

gdzie f 1 : Ω× R→ R, f 2 : Ω× R→ Rm oraz w : Ω→ Rm.

Funkcjonał działania jest wówczas postaci

Kw (u) =
1
2
‖u‖2

H
α/2
0

−
∫

Ω

F 1(x , u(x)) +
〈
F 2(x , u(x)),w (x)

〉
dx

gdzie F 1
u (x , u) = f 1(x , u) oraz F 2

u (x , u) = f 2(x , u).



Założenia

(A0) (postać) F jest postaci F (x , u,w) = F 1(x , u) +
〈
F 2(x , u),w

〉
;

(A1’) (regularność) funkcje f 1, f 2,F 1,F 2 są mierzalne ze względu na x dla dowolnych
u ∈ R oraz ciągłe ze względu na u dla p.w. x ∈ Ω;

(A2’) (wzrost) dla 1 < p <∞ istnieją stała c > 0 oraz s ∈
(

1 + 1
p−1 , 2

∗
α

)
takie, że∣∣f 1 (x , u)

∣∣ ¬ c
(

1 + |u|s−1
)∣∣f 2 (x , u)

∣∣ ¬ c
(

1 + |u|s−1−s/p
)

dla p.w. x ∈ Ω, wszystkich u ∈ R.

Twierdzenie 2. Jeśli
(1) spełnione są warunki: (A0), (A1’), (A2’), (A3),
(2) wk ⇀ w0 (słabo) w Lp (Ω,Rm).
Wtedy:
(a) dla dowolnego wk zbiór Uwk punktów krytycznych typu minimum
funkcjonału Kwk jest niepusty,
(b) istnieje kula Bρ ⊂ H

α/2
0 (Ω,R) taka że Uwk ⊂ Bρ dla k ∈ N0,

(c) ∅ 6= lim supUwk ⊂ Uw0 w H
α/2
0 (Ω,R) oraz mocna i słaba granica górna

zbiorów Uwk w H
α/2
0 (Ω,R) pokrywają się.



Niejednorodny warunek brzegowy

Rozważmy układ równań eliptycznych z niejednorodnym warunkiem brzegowym

−∆u(x) = f (x , u(x),w(x)) dla x ∈ Ω ⊂ Rn

u(x) = v(x) dla x ∈ ∂Ω

gdzie

f : Ω× RN × Rm → RN jest zadanym potencjalnym polem wektorowym,

- istnieje funkcja F : Ω× RN × Rm → R taka, że

f (x , u,w) = Fu (x , u,w)

co oznacza fi (x , u,w) = Fui (x , u,w) dla i = 1, 2, ...,N.

w ∈ W jest parametrem funkcyjnym,

v ∈ V ⊂ H1/2
(
∂Ω,RN

)
,

u słabe rozwiązanie w H1
(

Ω,RN
)

takie, że u − Tv ∈ H1
0

(
Ω,RN

)
- operator T jest przedłużeniem v takim, że Tv ∈ H1

(
Ω,RN

)
.



Przestrzeń H1/2
(
∂Ω,RN

)
Niech Ω ⊂ Rn oznacza zbiór ograniczony o brzegu klasy C0,1, wówczas przez
H1/2

(
Ω,RN

)
oznaczamy podprzestrzeń przestrzeni L2

(
Ω,RN

)
funkcji

z : Ω→ RN takich, że

[z]2
n,1 =

∫
Ω

∫
Ω

|z (x)− z (y)|2

|x − y |n+1 dxdy <∞

z normą określoną wzorem

‖z‖H1/2 = ‖z‖L2 + [z]n,1.

Ponieważ Ω ∈ C0,1, więc istnieje skończone pokrycie Ui , i = 1, 2, ...k, brzegu
∂Ω takie, że ∂Ω ⊂

⋃k

i=1 Ui oraz ∂Ω =
⋃k

i=1 Γi , gdzie
Γi = {x ∈ Rn : x = (x ′, xn) , xn = ai (x ′)} , x ′ ∈ Rn−1 natomiast ai : Di → R
jest funkcją spełniającą warunek Lipschitza na Di , i = 1, 2, ..., k z Di ⊂ Rn−1.

Funkcja
v ∈ H1/2

(
∂Ω,RN

)
wtedy i tylko wtedy, gdy funkcja

g
(
x ′
)

= v
(
x ′, ai

(
x ′
))
∈ H1/2

(
Di ,RN

)
dla i = 1, 2, ..., k. Dokładna definicja [Kufner,John,Fucik].



Ślad funkcji z H1
(

Ω,RN
)

oraz twierdzenie o przedłużaniu
Niech

R : H1
(

Ω,RN
)
→ H1/2

(
∂Ω,RN

)
będzie liniowym i ciągłym operatorem takim, że

Ru = u|∂Ω

dla u ∈ C∞
(

Ω̄
)
.

Operator R istnieje i jest jednoznacznie wyznaczony (por. Tw. 6.8.13
[Kufner,John,Fucik]).
Wartość Ru nazywamy śladem funkcji u na brzegu ∂Ω i bardzo często
piszemy u zamiast Ru.

Zatem warunek brzegowy u = v na ∂Ω rozumiemy w sensie śladu.
Istnieje liniowe i ciągłe odwzorowanie niejednoznacznie wyznaczone

T : H1/2
(
∂Ω,RN

)
→ H1

(
Ω,RN

)
takie, że Tv = u ∈ H1

(
Ω,RN

)
dla v ∈ H1/2

(
∂Ω,RN

)
oraz ślad u jest

równy v , tzn.
Ru = RTv = v .

(por. Tw. 6.9.2 [Kufner,John,Fucik])
Ponieważ operator T jest ciągły, więc mamy

‖Tv‖H1 ¬ c ‖v‖H1/2

gdzie c > 0 zależy od wyboru operatora T oraz opisu ∂Ω.



Słabe sformułowanie

Dla dowolnego h ∈ H1
0

(
Ω,RN

)
poszukujemy funkcji z = u − Tv ∈ H1

0

(
Ω,RN

)
jako rozwiązania układu równań

〈z + Tv , h〉H1
0

=

∫
Ω

f (x , (z + Tv)(x),w(x))h(x)dx

odpowiadającego punktowi krytycznemu funkcjonału

Kw,v (z) =
1
2
‖z‖2

H1
0
−
∫

Ω

F (x , (z + Tv)(x),w(x))dx + 〈z ,Tv〉H1
0
.

Dla dowolnych wk ∈ W oraz vk ∈ V przez Uk będziemy oznaczać zbiór
punktów krytycznych typu minimumu funcjonału działania Kwk ,vk czyli

Uk =
{
u ∈ H1

0

(
Ω,RN

)
;Kwk ,vk (u) = minKwk ,vk (p); p ∈ H1

0

(
Ω,RN

)}
.



Twierdzenie 3. Zakładamy, że
(1) F spełnia (A1)-(A3) (regularność, wzrost, podparcie na -F z dołu)
(2) wk → w0 w Lp (Ω,Rm)
(3) vk → v0 w H1/2

(
∂Ω,RN

)
.

Wtedy:
(a) dla dowolnych wk oraz vk zbiór Uk punktów krytycznych typu minimum
funkcjonału Kwk ,vk jest niepusty,
(b) istnieje kula Bρ ⊂ H1

0

(
Ω,RN

)
taka, że Uk ⊂ Bρ dla k ∈ N0,

(c) lim supUk 6= ∅ oraz lim supUk ⊂ U0 w H1
0

(
Ω,RN

)
.

Uwagi

Dla α ∈ (1, 2) można rozpatrywać układy równań ”ułamkowych” z
jednorodnym warunkiem brzegowym.

Dla α ∈ (1, 2) rozpatrywanie równań ”ułamkowych” z niejednorodnym
warunkiem brzegowym jest niemożliwe ponieważ zakłada zerowanie funkcji
na brzegu.

Dla α ∈ (0, 1) rozpatrywanie warunku brzegowego w sensie śladu jako
funkcji na ∂Ω nie ma sensu, ponieważ w tym przypadku H

α/2
0 = Hα/2.



Przykład

Rozważmy eliptyczne zagadnienie brzegowe

∆u (x) = a |w (x)|2 |u (x)|2 u (x)− 1
4
u (x) + w (x)

u (x) = v (x) dla x ∈ ∂Ω

gdzie Ω =
{
x ∈ Rn; |x | ¬ 1

2

}
, a ­ 0.

Funkcjonał działania

K (u) =

∫
Ω

1
2
|∇u (x)|2 +

a

4
|w (x)|2 |u (x)|4 − 1

8
|u (x)|2 + w (x) u (x) dx

jest ściśle wypukły oraz spełnione są założenia (A1)-(A3) więc dla dowolnego
w i v istnieje dokładnie jedno stabilne rozwiązanie.
Zauważmy, że dla w0 ≡ 1, v0 ≡ 4 oraz a = 0, wówczas uw0 (x) ≡ 4.
Zatem funkcja uw0 (x) ≡ 4 jest ”dobrą” aproksymacją rozwiązania
zagadnienienia brzegowego

∆u (x) =
1
4
u (x) + wk (x)

u (x) = vk (x) dla x ∈ ∂Ω

dla wk dostatecznie bliskiemu w0 ≡ 1 oraz vk dostatecznie bliskiemu v0 ≡ 4, w
odpowiednich przestrzeniach.



Twierdzenie o górskiej przełęczy

Funkcjonał K : E → R jest klasy C 1. E jest przestrzenią Banacha.

Punkt z∗ ∈ E jest punktem krytycznym funkcjonału K jeśli K′ (z∗) = 0
ponadto c = K (z∗) nazywamy wartością krytyczną.

Ciąg {zk} jest ciągiem Palais-Smale’a dla funkcjonału K, jeśli istnieje stała
M > 0 taka, że dla wszystkich k ∈ N, |K(zk)| ¬ M oraz K′(zk)→ 0 jeśli
k →∞.

Funkcjonał K spełnia warunek Palais-Smale’a jeśli dowolny ciąg
Palais-Smale’a zawiera podciąg zbieżny w mocnej topologii E .

Twierdzenie (Ambrosetti-Rabinowitz) Jeśli K : E → R jest funkcjonałem
klasy C 1 oraz
10 istnieją z0, z1 ∈ E oraz otoczenie B elementu z0 takie że z1 ∈ E\B
20 infy∈∂B K (y) > max {K (z0) ,K (z1)} ,
30 c = infg∈M maxt∈[0,1]K (g (t)) gdzie
M = {g ∈ C ([0, 1] ,E) : g (0) = z0, g (1) = z1} ,
40 K spełnia warunek (PS),
to c jest wartością krytyczną oraz c > max {K (z0) ,K (z1)} .



Struktura przełęczy górskiej w przypadku dwuwymiarowej dziedziny:
K(0, 0) = 0 > −1/e = max {K(0, 1),K(0,−1)},K(x , y) ­ K(0, y)

K(x , y) = (x2 − y 2)e−x2−y2



Struktura przełęczy górskiej w przypadku dwuwymiarowej dziedziny:

(x2 − y2 − 0.2)e−x
2−y2



Struktura przełęczy górskiej w przypadku dwuwymiarowej dziedziny:

(x2 − y2)e−4x2−4y2+x4+y4



Nieliniowe zagadnienie Dirichleta dla rówania eliptycznego

Równanie eliptyczne z niejednorodnym warunkiem brzegowym

−∆u(x) = f (x , u(x),w(x)) dla x ∈ Ω ⊂ Rn

u(x) = v(x) dla x ∈ ∂Ω

gdzie

f : Ω× R× Rm → R jest zadaną funkcją,

w ∈ W ⊂ L∞ (Ω,Rm) jest parametrem funkcyjnym,

v ∈ V ⊂ H1/2 jest warunkiem brzegowym,

u jest słabym rozwiązaniem zagadnienia brzegowego takim, że
u − Tv ∈ H1

0 (Ω,R).



Słabe sformułowanie

Dla dowolnego h ∈ H1
0 (Ω,R), puszukujemy funkcji z = u − Tv ∈ H1

0 (Ω,R)
jako rozwiązania równania

〈z + Tv , h〉H1
0

=

∫
Ω

f (x , (z + Tv)(x),w(x))h(x)dx

odpowiadającego punktowi krytycznemu funkcjonału

Kw,v (z) =
1
2
‖z‖2

H1
0
−
∫

Ω

F (x , (z + Tv)(x),w(x))dx + 〈z ,Tv〉H1
0
.

w ∈ W =
{
w ∈ L∞ (Ω,Rm) : w (x) ∈W dla p.w. x ∈ Ω oraz ‖w‖L∞ ¬ k2

}
v ∈ V =

{
v ∈ H1/2 (∂Ω,R) : ‖v − v0‖H1/2(∂Ω,R) ¬ k1

}
dla k1 > 0, k2 > 0, W ⊂ Rm oraz v0 ∈ H1/2 (∂Ω,R).



Założenia
(B1) (regularność) funkcje f , F są mierzalne ze względu na x dla dowolnych

(u,w) ∈ R× Rm oraz ciągłe ze względu na (u,w) dla p.w. x ∈ Ω

(B2) (wzrost) dla dowolnego zbioru ograniczonego W ⊂ Rm istnieją c > 0 oraz oraz
s ∈
(

2, 2∗2
)

takie, że

|F (x , u,w)| ¬ c (1 + |u|s)

|f (x , u,w)| ¬ c
(

1 + |u|s−1
)

dla p.w. x ∈ Ω, wszystkich w ∈W, u ∈ R.

(B3) (superliniowość) istnieją stałe p > 2, a > 0 oraz R > 0 takie że

a < pF (x , u,w) ¬ 〈f (x , u,w) , u〉
dla p.w. x ∈ Ω, wszystkich w ∈W oraz |u| ­ R

(B4) (geometria) istnieją ξ > 0 oraz 0 < b < 1 takie, że∣∣∣F (x , u,w) +
1

2
|u|2
∣∣∣ ¬ b

2
|u − Tv0 (x)|2

dla |u| ¬ ξ, wszystkich w ∈W, p.w. x ∈ Ω gdzie T jest prawą odwrotnością
operatora śladu taką, że H1 (Ω,R) = H1

0 (Ω,R)⊕ ImT ,

(B5) (Lipschitz po w) dla dowolnego w0 ∈W i ε > 0 istnieje stała c > 0 taka, że

|F (x , u,w1)− F (x , u,w2)| ¬ c
(

1 + |u|2
)
|w1 − w2|

|f (x , u,w1)− f (x , u,w2)| ¬ c (1 + |u|) |w1 − w2|
dla p.w. x ∈ Ω, wszystkich u ∈ R oraz w1,w2 ∈W takich, że
|w1 − w0| < ε i |w2 − w0| < ε.



Niech

{wk} ⊂ W oznacza ciąg parametrów funkcyjnych

{vk} ⊂ V oznacza ciąg wartości brzegowych

{Zk} ⊂ H1
0 (Ω,R) oznacza ciąg zbiorów punktów krytycznych typu górskiej

przełęczy funkcjonału Kwk ,vk postaci

Zk =
{
z ∈ H1

0 (Ω,R) ;Kwk ,vk (z) = ck oraz K′wk ,vk (z) = 0
}

gdzie
ck = inf

g∈M
max
t∈[0,1]

Kwk ,vk (g (t))

M =
{
g ∈ C

(
[0, 1] ,H1

0 (Ω,R)
)

: g (0) = z0, g (1) = z1

}
, z0, z1 ∈ H1

0 (Ω,R)

Twierdzenie 4. Zakładamy, że
10 warunki (B1)-(B5) są spełnione,
20 vk → v0 w H1/2 (∂Ω,R) oraz wk → w0 w L∞ (Ω,Rm) ,
Wtedy:
(a) dla odpowiednio dużych k zbiór Zk jest niepusty,
(b) istnieje kula Bρ ⊂ H1

0 (Ω,R) taka, że Zk ⊂ Bρ dla k ∈ N0,
(c) lim supZk 6= ∅ oraz lim supZk ⊂ Z0 w H1

0 (Ω,R) .



Lematy pomocnicze

Lemat 1. Jeśli funkcja F spełnia założenia (B1)-(B2), to istnieje kula Bρ w
H1

0 (Ω,R) taka, że Zk ⊂ Bρ dla dowolnych wk ∈ W, vk ∈ V.

Lemat 2. Jeśli funkcja F spełnia założenia (B1)-(B4), to dla dowolnego k ∈ N0

funkcjonał Kwk ,vk spełnia warunek (PS).

Lemat 3. Zakładamy, że
10 warunki (B1)-(B4) są spełnione
20 vk → v0 w H1/2 (∂Ω,R) dla {vk} ∈ V oraz ciąg {wk} ⊂ W jest ograniczony.
Wówczas dla z0 = 0 istnieją kula Bη ⊂ H1

0 (Ω,R) i element z1 /∈ Bη takie, że
inf∂Bη Kwk ,vk > 0 oraz Kwk ,vk (z1) < 0 dla dostatecznie dużych k.

Lemat 4. Zakładamy, że
10 warunki (B1)-(B2),(B5) są spełnione
20 vk → v0 w H1/2 (∂Ω,R) oraz wk → w0 w L∞ (Ω,Rm) .
Wówczas Kwk ,vk ⇒ Kw0,v0 oraz K′wk ,vk ⇒ K′w0,vk na dowolnych kulach z
H1

0 (Ω,R) .



Zagadnienie Dirichleta dla rówania z całkowym ułamkowym laplasjanem
Równanie z całkowym ułamkowym operatorem Laplace’a (−∆)α/2 z α ∈ (1, 2)
oraz niejednorodnym warunkiem zewnętrznym

(−∆)α/2 u(x) = f (x , u(x),w(x)) dla x ∈ Ω ⊂ Rn

u(x) = v(x) dla x ∈ Rn \ Ω

gdzie

f : Ω× R× Rm → R jest zadaną funkcją,

w ∈ W ⊂ L∞ (Ω,Rm) jest parametrem funkcyjnym,

v ∈ V ⊂ Hα/2 jest warunkiem brzegowym lub zewnętrznym,

u jest słabym rozwiązaniem zagadnienia zewnętrznego takim, że
u − v ∈ H

α/2
0 (Ω,R).

Dla α ∈ (1, 2) oraz funkcji dostatecznie gładkich np. C 2 i o kontrolowanym
wzroście w nieskończoności np. wolniejszym niż |x |α ułamkowy całkowy
operator Laplace’a definujemy wzorem

(−∆)α/2u (x) = c (n, α)

∫
Rn

2u (x)− u (x + y)− u (x − y)

|y |n+α dy

gdzie c(n, α) = α2α−2 Γ((n+α)/2)

πn/2Γ(1−α/2)
.



Zagadnienia Dirichleta dla równania z całkowym ułamkowym Laplasjanem
Funkcja u(x) = (1− x2)

α/2
+ ∈ Cα/2 rozwiązaniem (−∆)α/2u(x) = 1



Przestrzenie funkcyjne
Ze względu na nielokalny charakter całkowego ułamkowego laplasjanu wprowadzimy
następujące przestrzenie dostosowane do słabego sformułowania

Xα/2 =

{
u : Rn → R : u|Ω ∈ L2 (Ω) oraz

u (x)− u (y)

|x − y |
n+α

2

∈ L2 (Q)

}
gdzie Q = R2n\ ((Rn\Ω)× (Rn\Ω)), z normą określoną wzorem

‖u‖Xα/2 = ‖u‖L2(Ω) + [u]n,α = ‖u‖L2(Ω) +

(∫
Q

|u (x)− u (y)|2

|x − y |n+α dxdy

) 1
2

.

Zdefinujmy podprzestrzeń liniową przestrzeni Xα/2

X
α/2
0 =

{
u ∈ Xα/2 : u = 0 p.w. na Rn\Ω

}
z normą

‖u‖
X
α/2
0

= [u]n,α

Przestrzenie Xα/2, X
α/2
0 są niepuste ponieważ C2

0 (Ω) ⊆ X
α/2
0 .

Przestrzeń X
α/2
0 jest przestrzenią Hilberta z iloczynem skalarnym

(u1, u2)
X
α/2
0

=

(∫
Q

(u1 (x)− u1 (y)) (u2 (x)− u2 (y))

|x − y |n+α dxdy

) 1
2

.

Zachodzą następujące relacje:

Xα/2 ⊂ Hα/2 (Ω)

Hα/2 (Rn) ⊂ Xα/2

X
α/2
0 ⊂ Hα/2 (Rn) ∩ H

α/2
0 (Ω)



W przypadku niejednorodnych warunków zewnętrznych zadanych przez funkcję
v : Rn → R potrzebujemy przestrzeni Hilberta zanurzającej się w Xα/2 postaci

Yα/2 = Xα/2 ∩ L2 (Rn)

z normą
‖u‖Yα/2 = ‖u‖L2(Rn) + [u]n,α

Yα/2 jest ośrodkową przestrzenią Hilberta z iloczynem skalarnym

(u1, u2)Yα/2 = (u1, u2)L2(Rn) + (u1, u2)
X
α/2
0

.

Z definicji wprowadzonych przestrzeni mamy następujące zanurzenia

Hα/2 (Rn) ⊂ Yα/2 ⊂ Xα/2.

Dla ograniczonego obszaru w Rn z lipschitzowskim brzegiem, przestrzeń X
α/2
0 zanurza

się w sposób zwarty w Ls (Ω) dla s ∈ [1, 2∗α) oraz

‖u‖Ls (Ω) ¬ C ‖u‖
X
α/2
0

dla dowolnego u ∈ X
α/2
0 .



Poszukujemy słabych rozwiązań w Xα/2 zagadnienia zewnętrznego{
(−∆)α/2u (x) = f (x , u (x) ,w (x)) na Ω ⊂ Rn

u (x) = v (x) w Rn\Ω

gdzie u − v ∈ X
α/2
0 , v ∈ V ∩

(
X
α/2
0

)⊥
, w ∈ W, f : Ω× R× Rm → R .

Ustalamy v0 ∈ Y α/2 i definujemy zbiór

V =
{
v ∈ Y α/2 : ‖v − v0‖Yα/2 ¬ l1

}
dla l1 > 0 oraz zbiór

W =
{
w ∈ L∞ : w (x) ∈W ⊂ Rm dla p.w. x ∈ Ω oraz ‖u‖L∞ ¬ l2

}
dla l2 > 0 oraz ustalonego W podzbioru Rm z m ­ 1.

Mówimy, że z = u − v ∈ Xα/2 jest słabym rozwiązaniem rozważanego
równania jeśli dla dowolnego h ∈ X

α/2
0

c(n, α) 〈z + v , h〉
X
α/2
0

=

∫
Ω

f (x , (z + v)(x),w(x))h (x) dx .



Funkcjonał działania jest postaci

Kw,v (z) =
c(n, α)

2
‖z‖2

X
α/2
0

−
∫

Ω

F (x , (z + v)(x),w(x))dx + c(n, α)〈z, v〉
X
α/2
0

co oznacza

Kw,v (z) =
c (n, α)

2

∫
Q

|z (x)− z (y)|2

|x − y |n+α dxdy −
∫

Ω

F (x , (z + v) (x) ,w (x)) dx

+ c(n, α)

∫
Q

(v (x)− v (y)) (z (x)− z (y))

|x − y |n+α dxdy

Dla zbiorów punktów krytycznych typu górskiej przełęczy zachodzi następujące

Twierdzenie 5. Zakładamy, że
10 odpowiedniki warunków (B1)-(B5) są spełnione,
20 vk → v0 w Y α/2 oraz wk → w0 w L∞ (Ω,Rm) , {wk} ⊂ W, {vk} ∈ V.
Wtedy:
(a) dla odpowiednio dużych k zbiór Zk jest niepusty,
(b) istnieje kula Bρ ⊂ X

α/2
0 taka, że Zk ⊂ Bρ dla k ∈ N0,

(c) lim supZk 6= ∅ oraz lim supZk ⊂ Z0 w X
α/2
0 .



Przykład.
Założenia twierdzenia 5 są spełnione dla zewnętrznego zagadnienia postaci{

(−4)3/4 u (x) = 7
2u

5
2 (x)− γw (x) u (x)− 5

2w (x) u
3
2 (x) sin2 |x | na Ω ⊂ R3

u (x) = v (x) na R3\Ω,

gdzie Ω = (0, 1)3, w ∈ W taki, że

W = {w ∈ L∞ (Ω,R) : w (x) ∈W ⊂
(
ĉ − b

γ
,
ĉ + b

γ

)
p.w.

}
gdzie γ > 0, ĉ = c

(
3, 3

2

)
oraz 0 < b < ĉ natomiast v ∈ V postaci

V =
{
v ∈ Y 3/4 : v (x) ∈ [0, 1] , ‖v‖ ¬ 1

}
.



Twierdzenie o globalnym dyfeomorfizmie

Twierdzenie: Idczak, Skowron, Walczak (2012)

Niech U będzie rzeczywistą przestrzenią Banacha, H będzie rzeczywistą
przestrzenią Hilberta. Jeśli

V : U → H

jest operatorem klasy C 1 takim, że
(a1) dla dowolnego u ∈ U, równanie

V ′ (u) h = g

posiada jednoznaczne rozwiązanie dla dowolnego g ∈ H,
(a2) dla dowolnego ψ ∈ H, funkcjonał

Fψ (u) =
1
2
‖V (u)− ψ‖2

H

spełnia warunek Palais-Smale’a,
to V jest dyfeomorfizmem.

Operator V : U → H jest dyfeomorfizmem, jeśli jest na, jest różniczkowalny na
U oraz operator odwrotny V−1 : H → U jest różniczkowalny na H.

D. Idczak, A. Skowron and S. Walczak; On the diffeomorphisms between
Banach and Hilbert spaces”. Advanced Nonlinear Studies 12(1) (2012)



Równania całkowe
Zauważmy, że dla rozważanego zagadnienia z całkowym ułamkowym
laplasjanem {

(−∆)α/2 u = f (x , u,w) na Ω
u = 0 w Rn\Ω

ponieważ 0 /∈ σ
(

(−∆)α/2
)

w odpowiednich przestrzeniach i przy odpowiednich
założeniach mamy

u =
(

(−∆)α/2
)−1

f (x , u,w)

Operator odwrotny do ułamkowego operatora Laplace’a złożony z
nieliniowością f jest postaci Hammersteina(

(−∆)α/2
)−1

f (x , u,w) =

∫
Ω

G (x , y) f (y , u(y),w) dy

gdzie G jest funkcją Greena.
Rozważenie Ω = [−1, 1], λ 6= 0 oraz nieliniowości

f (x , u,w) =
1
λ

(
−h (x , u) + (−∆)α/2 w(x)

)
prowadzi do równania całkowego z parametrem w postaci

λu (x) +

∫ 1

−1

G (x , y) h (y , u (y)) dy = w (x)



Zagadnienie Dirichleta z jednowymiarowym całkowym ułamkowym laplasjanem,
można sprowadzić do równania całkowego postaci

λu(x) +
(

(−∆)α/2
)−1

h(x , u(x)) = w(x) w (−1, 1)

u (x) = 0 w (−∞,−1] ∪ [1,∞)

gdzie λ ∈ R (
(−∆)α/2

)−1
g (x) =

∫ 1

−1

G (x , y) g (y) dy ,

G jest funkcją Greena, wyznaczoną dla ułamowego całkowego laplasjanu

G(x , y) =
Γ(1/2)

2απ1/2Γ2(α/2)
|x − y |α−1

∫ w(x,y)

0

rα/2−1(r + 1)−1/2dr ,

gdzie

w(x , y) =
(1− x2)(1− y 2)

|x − y |2 .

Rozważane równanie jest szczególnym przypadkiem równania Urysohna z
nieliniowym operatorem całkowym postaci

V (u) (x) = λu (x) +

∫ 1

−1

v (x , y , u (y)) dy , x ∈ [−1, 1]

u ∈ H1
0 ([−1, 1],Rn).



Założenia: regularność oraz lokalna ograniczoność
(A1) (a) v (·, y , ·) jest ciągła na G := [−1, 1]× Rn dla p.w. y ∈ [−1, 1],

(b) istnieją vx (·, y , ·) , vu (·, y , ·) , vxu (·, y , ·) ciągłe na G dla p.w. y ∈ [−1, 1];

(A2) (a) v (x , ·, u) , vx (x , ·, u) , vu (x , ·, u), vxu (x , ·, u) są mierzalne dla (x , u) ∈ G ,
(b) v (x , ·, u) , vx (x , ·, u) , vu (x , ·, u), vxu (x , ·, u) są lokalnie ograniczone ze
względu na x , tzn. dla dowolnego ρ > 0 istnieje lρ > 0 takie, że (x , y) ∈ P i
x ∈ Bρ = {x ∈ Rn; |x | ¬ ρ} mamy |v (x , y , u)| ¬ lρ, |vx (x , y , u)| ¬ lρ,
|vu (x , y , u)| ¬ lρ, |vxu (x , y , u)| ¬ lρ;

(A3) v(−1, y , u) = v(1, y , u) = 0 oraz vu(−1, y , u) = vu(1, y , u) = 0 dla wszystkich
x ∈ Rn i p.w. y ∈ [−1, 1];

(A4) |vux (x , y , u)| < |λ|/2 dla wszystkich x ∈ Rn i p.w. y ∈ [−1, 1];

Jeśli v spełnia (A1) , (A2) oraz (A3), to V : H1
0 → H1

0 jest

* dobrze określony,

* różniczkowalny w sposób ciągły w sensie Fréchet’a oraz

V ′ (u0) h (x) = λh (x) +

∫ 1

−1

vu (x , y , u0 (y)) h (y) dy , x ∈ [−1, 1] .

Przykład funkcji spełniającej (A1)-(A4): v (x , y , u) = A (x , y) ln
(

1 + B (x , y) u2
)

,

gdzie A,B ∈ C1 (P,R) takie że A (−1, y) = A (1, y) = 0 dla y ∈ [−1, 1] and
B (x , y) > 0 na [−1, 1]2.



Równanie zlinearyzowane

Lemat o istnieniu i jednoznaczności rozwiązań
Jeśli v spełnia (A1) , (A2), (A3) oraz (A4), to dla dowolnych u0, g ∈ AC 2

0

równanie

λh (x) +

1∫
−1

vu (x , y , u0 (y)) h (y) dy = g (x)

posiada jednoznacze rozwiązanie w H1
0 .

Dla v (x , y , u) = A (x , y) ln
(

1 + B (x , y) u2
)

,
równanie liniowe dla ustalonego u0

λh (x) +

1∫
−1

A (x , y)
2B (x , y) u0 (y)

1 + B (x , y) u2
0 (y)

h(y)dy = g (x)

posiada jednoznaczne rozwiązanie h dla dowolnego g .



Warunek Palais-Smale’a
Dla dowolnej funkcji ψ ∈ H1

0 , rozważmy funkcjonał Fψ : H1
0 → R+ postaci

Fψ (u) =
1
2
‖V (u)− ψ‖2

H1
0

Fψ (u) =
1
2

∫ 1

−1

∣∣∣∣λu′(x) +

∫ 1

−1

vx (x , y , u (y)) dy − ψ′ (x)

∣∣∣∣2 dx .
Lemat o spełnieniu warunku (PS) Załóżmy że (A1)-(A4) są spełnione oraz

(A5) istnieją funkcje c, d ∈ L2
(
P;R+

)
,

|vx (x , y , u)| ¬ c (x , y) |u|+ d (x , y)

dla (x , y) ∈ P oraz ‖c‖L2(P;R+) <
√

2|λ|
4 .

Wtedy dla dowolnego ψ ∈ H1
0 funkcjonał Fψ spełnia warunek Palais-Smale’a.

Fψ (u) =
1

2

∫ 1

−1

∣∣∣∣λu′ (x) +

∫ 1

−1

(
Ax (x , y) ln

(
1 + B (x , y) u2 (y)

)
+A (x , y)

Bx (x , y) u2 (y)

1 + B (x , y) u2 (y)

)
dy − ψ′ (x)

∣∣∣∣2 dx



Twierdzenie o globalnym dyfeomorfizmie

Jeśli v spełnia (A1)-(A5), to nieliniowy operator całkowy V : H1
0 → H1

0 jest
dyfeomorfizmem.

Wniosek o globalnej rozwiązywalności

Jeśli v spełnia (A1)-(A5), to dla dowolnego w ∈ H1
0 nieliniowe całkowe

równanie

λu (x) +

1∫
−1

v (x , y , u (y)) dy = w (x)

posiada jednoznaczne rozwiązanie uw ∈ H1
0 oraz operator

H1
0 3 w → uw ∈ H1

0

jest różniczkowalny w sensie Frécheta.

W przypadku nieliniowej zależności od parametru w można skorzystać z
Twiedzenia o globalnej funkcji uwikłanej z pracy

D. Idczak, A global implicit function theorem and its applications to functional equations.
Discrete and Continuous Dynamical Systems Series B, 19 (2014)
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R. Bañuelos and T. Kulczycki, The Cauchy process and the Steklov problem, J. Funct.
Anal., 211 (2004), 355–423.

A. Bermudez and C. Saguez, Optimal control of a Signorini problem, SIAM J. Control
Optim., 25 (1987), 576–582.

M. Bonforte and J. L. Vázquez, A priori estimates for fractional nonlinear degenerate
diffusion equations on bounded domains, The Royal Swedish Academy of Sciences,
Mittag-Leffler Institute, 21 (2013/14).
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Lokalne istnienie, wybuchy rozwiązań w skończonym czasie

x ′(t) = x(t)2

x(t) = −1/(t + c)

x(0) = 1, x(t) = 1/(1− t)→∞, t → 1−

ut = ∆u + u2

−∆ρ1 = λ1ρ1

d

dt

∫
Ω

uρ1 =

∫
∆uρ1 +

∫
Ω

u2ρ1 ­
(∫

Ω

uρ1

)2(
|ρ1|−1

1 − λ1/

∫
Ω

uρ1

)
∫

Ω

uρ1 →∞, t → T

Rt ­ ∆R + R2, gdzie R = trRij skalarna krzywizna, zaś Rij Ricci tensor. Jeśli
rozmaitość M = R2 i metryka g0 = ρ2(dx2 + dy 2) to Ric(g0) = 2

1+x2+y2 g0



Ułamkowy spektralny Laplasjan (−∆)α/2 w H
α/2
0

W wersji słabej o wartościach w przestrzeni dualnej do H
α/2
0

(−∆)α/2 : H
α/2
0 → (H

α/2
0 )∗ = H−α

W wersji mocnej z wartościami w L2

(−∆)α/2 : Hα ∩ H
α/2
0 → L2

W ogólności, gdy zamiast do L2 prawa strona równania f ∈ Ls/(s−1) z s < 2∗α

(−∆)α/2u = f

to rozwiązania są w W α,s/(s−1) (jeśli s ¬ 2, to s/(s − 1) ­ 2), a zatem

(−∆)α/2 : W α,s/(s−1) ∩ H
α/2
0 → Ls/(s−1)



Rozkład spektralny

Twierdzenie (o rozkładzie spektralnym przestrzeni Hilberta)

Niech przestrzeń Hilberta H będzie ośrodkowa oraz operator T : H → H zwarty
oraz samosprzężony. Wówczas istnieje baza Hilberta z wektorów własnych T .

Przykład: (−∆D)−1 : L2(Ω)→ H2(Ω) ∩ H1
0 (Ω) ⊂ L2(Ω) z symetryczną G

(−∆D)−1f =

∫
Ω

G(·, y)f (y)dy =

∞∑
k=1

µk fkρk , fk = (f , ρk),

∞∑
k=1

f 2
k <∞

Wartości własne µk > 0 i funkcje własne ρk : (−∆D)−1ρk = µkρk .
Zatem λk = 1/µk , k ­ 1 to wartości własne operatora Laplace’a z warunkami
Dirichleta: λkρk = −∆Dρk , ponieważ ρk ∈ C∞. Ponadto λk ∼ k2.
Jeśli Ω = (0, π), to µk = k−2, k ­ 1 oraz ρk(x) =

√
2/π sin(kx).

Przykład spektralny:
(

(−∆S)α/2
)−1

: L2(Ω)→ H
α/2
0 (Ω) ∩ Hα(Ω) ⊂ L2(Ω).

Wartości własne: µα/2
k i funkcje własne ρk jak powyżej.

Przykład całkowy:
(

(−∆C )α/2
)−1

: L2(Ω)→ X
α/2
0 ∩ Xα ⊂ L2(Ω).

Wartości własne dla (−∆C )α/2 należą do (λk/2, λk), gdzie λk odp. (−∆S)α/2.



Spacery losowe Rozwiązanie równania

ut = −(−∆)α/2u

można uzyskać w granicy rozważając spacer losowy po kracie Zn z
prawdopodobieństwem

u(x , t + s) =
∑
k∈Zn

Π(k)u(x + hk, t)

z gęstością rozkładu prawdopodobieństwa

Π(y) = C
1

|y |n+α

gdzie prawdopodobieństwo u(x , t) odnosi się do tego, że cząstka znajdzie się w
chwili t ∈ τZ w pozycji x ∈ hZn oraz z odpowiednim skalowaniem kraty i kroku
czasowego w przejściu granicznym

τ = hα → 0.

W przypadku, gdy n = 1 i α = 2 oraz Π jest równa 1/2 jedynie przy przejściu
do sąsiedniej pozycji, t.zn. Π(1) = Π(−1) = 1/2 otrzymujemy w granicy
równanie, czyli jednowymiarowy odpowiednik dla α = 2

ut = uxx .



Ruch Browna, proces Levy’ego, stabilny proces Levy’ego
Wzór Levy’ego-Chinczyna dla generatora procesu Levy’ego

Lu =
∑
i,j

aijuxi xj + u · ∇b −
∫

(u(x − y)− u(y))Π(dy)

gdzie aij dodatnio określona, a Π miara Borelowska taka, że∫
Rn

min 1, |y |2Π(dy) <∞

jeśli a = b = 0 oraz
Π(dy) = c(α)|y |−n−αdy

to otrzymujemy generator α-stabilnego procesu Levy’ego,

(−∆)α/2u = −
∫

(u(x − y)− u(y))Π(dy)

np. ruch Browna składamy z podporządkowanym procesem Levy’ego. Jeśli
aii = 1 oraz dla i 6= j mamy aij = b = Π = 0 to otrzymujemy Laplasjan.



Punkty krytyczne
Punktem krytycznym funkcjonału K nazywamy u takie, że

K ′(u) = 0

gdzie K ′(u) definiujemy np. dla K ∈ C 1 oraz normy | · | w H
α/2
0 jako

lim
|h|→0

(K(u + h)− K(u)− K ′(u)h)/|h| = 0

Równanie
K ′(u)h = 0

dla dowolnego h ∈ H
α/2
0 oznacza właśnie krytyczność punktu u i odpowiada

słabemu sformułowaniu odpowiedniego równania Eulera-Lagrange’a w
zależności od postaci K .



Zbieżność szeregów funkcyjnych, t.zn. ciągów sum częściowych
Szereg o wyrazach ciągłych gk :

∞∑
k=1

gk(x)

jest jednostajnie zbieżny do funkcji ciągłej jeśli, na przykład, istnieje
oszacowanie jednostajne ze względu na x

|gk(x)| ¬ Ak−1−α

ew. przez inny szereg liczbowy niż A
∑∞

k=1 k
−1−α <∞ ale też zbieżny.

Zbieżność szeregu w L2 w przypadku szeregu Fouriera

f =

∞∑
k=1

fkρk

jest równoważna zbieżności szeregu liczbowego
∞∑
k=1

f 2
k <∞.

Zbieżność jednostajna pociąga za sobą zbieżność L2. Różniczkowanie wyrazu
po wyrazie możliwe jest, gdy szereg pochodnych jest zbieżny, np. jednostajnie,
ew. w L2 i wtedy mamy pochodną funkcji granicznej danej przez szereg
zdefiniowaną klasycznie lub odpowiednio w L2.


	Spektralny ułamkowy operator Laplace'a
	Spektralny ułamkowy operator Laplace'a

	anm0: 
	anm1: 


