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Zagadnienia Dirichleta dla réwnania z utamkowym spektralnym laplasjanem

Rozwazmy zagadnienie brzegowe typu Dirichleta zadane przez réwnanie ze
spektralnym operatorem Laplace’a (fA)a/2, a € (1,2] postaci

(=A)*"? u(x) = f(x, u(x), w(x)) dla x € Q C R"
u(x) =0dla x € 9Q

gdzie
@  jest obszarem ograniczonym o gtadkim (lipschitzowskim) brzegu 912,
o f: QxR xR" — R jest zadang funkcja,
@ w € W jest parametrem funkcyjnym
-W={wel’P(QR"): w(x)eWpw. naQ}dlaWcCR",

u jest stabym rozwiazaniem w H;,"/Z (2, R)

- Hél/z (2, R) jest utamkowa przestrzenia Sobolewa.



Przestrzen Hg‘/2 (Q,R) i operator (—A)*/2
Niech {pk, ¢} bedzie uktadem ortonormalnym zupetnym w L2 (Q,R), gdzie py € C,
pklaa = 0 funkcje wiasne, A\ > 0 wartosci wtasne operatora Laplace’a: —Apy = Agpk.
W przestrzeni

oo oo
&/2(9 R) = u€L2(Q,R):Zu£/\f/2<oodla UZZUkPk
k=1 k=1

2 2
- norma ||u||H(,/2 = Z:il ui)\f/
0

- iloczyn skalarny (u, v)HQ/g = Zi; ukvk)\f/z.
o

Spektralny utamkowy operator Laplace’a (—A)O‘/2 mozemy zdefiniowaé:

a/2

o dlau= Z:‘;l ukpk takich, ze Z:il ui)\k <00,z (—A)a/zu w sensie stabym

oo oo

((—A)a/2u) p= Z Uksﬂk)‘f/z = Z Uk AN Aa”
k=1 k=1
dla dowolnego ¢ = Zk 1 PkPK takiego, ze Zk 1<pk>\a/2 < 00

@ o wartoséciach w L2 dla u = Zk:l ugpy takich, ze Zk:l uk)\f < 0o wzorem

[ee]

(—8)°72u ="y " w2 p

k=1



Przyktad
Dla Q = (0,7) oraz —Au = —u” z u(0) = u(7) = 0 mamy

M = K, pr(x) = \/Esin(kx)

(—0)*?u(x) = Z uk)\i‘/Zpk(x) = \/EZ ukk® sin(kx)
k=1 k=1

:/ u(x)pr(x)dx = \[/ ) sin(kx)dx .

(—A)*"?sin(2x) = 2% sin(2x) .

a zatem

gdzie

W szczegdlnosci




Rozwazmy zagadnienie Dirichleta w (0,7) z —Au = u” oraz réwnaniem z
utamkowym, spektralnym operatorem Laplace’'a

(-A)*Py=1.

Woéwczas rozwijajac 1 w szereg Fouriera w ukfadzie (k?, \/gsin(k-))
otrzymujemy

il = ; %(1 — (1)) sin(kx)
Nastepnie korzystajac z faktu, ze
(—A)*"?sin(k-) = k“sin(k)

otrzymujemy, ze rozwigzanie u dane jest wzorem przez zbiezny jednostajnie
V) Ky
u(x) = ; W(l — (=1)¥)sin(kx), x € (0, )

Funkcja 1 po przedtuzeniu nieparzystym i 2m-okresowym jest H”, v < 1/2.
Z kolei, poniewaz poprawienie regularnosci rozwigzania nastepuje o « (rzad
operatora), rozwiazanie jest klasy H?*® z v < 1/2, a zatem w przestrzeni
Holdera C*[0, 7] (z wtozen Sobolewa). Ponadto zbieznos$¢ szeregu jest
jednostajna, wiec rozwigzanie jest ciagte.




Rozwiazania przyblizone (—A)O‘/zu = const, czyli sumy czesciowe do n
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Rozwiazania przyblizone dla sum do n = 1..20.

X

Przyblizenie statej dla n = 10.



Méwimy, ze u € H;,"/2 (22, R) jest stabym rozwigzaniem réwnania
(—A)*"? u(x) = f(x, u(x), w(x)) dla x € Q

z zerowym warunkiem brzegowym, jesli dla dowolnego h € Hg‘/2 (2,R)

(U, h) yasa = / f(x, u(x), w(x))h(x) dx.
G Q

Funkcjonat K, : H;;‘/Z (2,R) — R postaci

) = 0l [P0, w(0)

gdzie Fu(x, u(x), w(x)) = f(x, u(x), w(x)) nazywamy funkcjonatem dziatania.

Punkty krytyczne funkcjonatu K, tzn. punkty u takie, ze K,,(u) =0,
odpowiadaja stabym rozwigzaniom rozwazanego zagadnienia Dirichleta.

Rozwazymy punkty krytyczne typu minimum funkcjonatu ICw, czyli punkty
krytyczne u™ takie, ze
Kw(u™) = min Ku(p).

a/2
pEH0



Zatozenia

(A1) (regularnos¢) funkcje f, F s3 mierzalne ze wzgledu na x dla dowolnych
(u,w) € R x R™ oraz ciagte ze wzgledu na (u, w) dla p.w. x € Q

(A2) (wzrost) jesli p € (1,00) istnieje ¢ > 0 oraz s € (1,2}) takie, ze
IF (6 u, w)| < e (14 |uf® + [w]?)
|F (6, w)] < e (14 [u* ™+ |w]PmP/?)
dla p.w. x € Q, wszystkich w € R™, u € R;

jesli p = oo to dla dowolnego zbioru ograniczonego W C R istnieje ¢ > 0 oraz
s € (1,2}) takie, ze

|F (x,u,w)| < c(1+ |ul®)
IF (6 u,w) < e (14 [u™?)
dla p.w. x € Q, wszystkich w € W, u € R;
(A3) (podparcie na (-F) z dotu) istnieja funkcje 3 € L? (Q,R), v € L (Q,R) oraz
stata b < %/\f 2 takie, ze
F(x,u,w) < bluf2 + B (x) u+ 7 (x)
dla p.w. x € Q, wszystkich w € R™, u € R, gdzie \; jest pierwsza, dodatnia

wartoscig wiasng operatora Laplace’a (—A) na przestrzeni H} (€, R)

Gdzie 2, = 2n_ jest wyktadnikiem krytycznym Sobolewa, tzn. przestrzen HS‘/Z (2,R)

n—o

wktada sie w sposéb zwarty w L° (Q,R) dla s € [1,2%).




Pierwsza warto$¢ wtasna spektralnego utamkowego operatora Laplace’a z a € (1, 2]
rozwazanego na przestrzeni funkcji z zerowymi warunkami brzegowymi jest postaci
2
[lull

A2 = inf W;ue HE? (Q,R),u #0
LZ

Jesdli warunki (A1) (regularno$¢) oraz (A2) (wzrost) sa spetnione to funkcjonat Ky, jest
dobrze okreslony oraz rézniczkowalny w sensie Frecheta oraz

Ky (u)h=(u,h) o/ — / f(x,u(x),w(x))h(x)dx
0 Q
dla dowolnego h € Hy/? (2, R).

Jesli warunki (A1) (regularno$¢) oraz (A2) (wzrost) sa spetnione to funkcjonat Ky, jest
stabo pétciagty z dotu.

Jesli warunki (A1) (regularnos¢), (A2) (wzrost) oraz (A3) (podparcie na (-F) z dotu)
sg spetnione to funkcjonat Ky, jest koercytywny.



Zbiory punktéw krytycznych
Dla dowolnego parameteru

wew

niech
Un C HY? (Q,R)

oznacza zbiér punktéw krytycznych typu minimum funkcjonatu ICy,, tzn.
Uy = {u € H? (QR) ; Ko (u) = min Ku(p); p € HC2 (Q,R)} :

Dla dowolnego w € W, jesli (Al),(A2),(A3) sa spetnione
@ to zbiér U, jest niepusty.
@ i dodatkowo jezeli funkcjonat IC,, jest Scisle wypukty, to zbiér U, jest
zbiorem jednoelementowym.
Nastepnie, niech
o {wi} C W bedzie ciagiem parametréw
e {Uuy} C Hoo‘/2 (22, R) bedzie odpowiadajacym mu ciagiem zbioréw

punktéw krytycznych typu minimum funkcjonatu K, .

Czy jesli wx — wp, to czy Uy, — Uy, (w jakim sensie)?



Gérna granica zbioréw

Niech X oznacza refleksywng przestrzen Banacha (np. Hg‘/2 (Q,R))

Definicja gérnej granicy zbioréw w sensie Painlevé-Kuratowskiego

Gobrna granica zbioréw Uk w sensie Painlevé-Kuratowskiego nazywamy zbiér

wszystkich punktéw skupienia w sensie T7—topologii X ciagéw {ux} takich, ze
ue € Ug, k=0,1,2,....

Gorna granice zbioréw Ux w T—topologii X oznaczamy przez 7 — lim sup Uk.

Ponadto méwimy, ze ciag zbioréw Uy zbiega do Uy w T—topologii X wtedy,
gdy 7 — limsup Ux C Up.

W przypadku, gdy zbiory Uy, k =0,1,2,... s3 jednoelementowe tzn.

Uc = {uk}, k=10,1,2, ... zbiezno$¢ zbioréw jest réwnowazna zbieznosci ciagu
{ur} w T—topologii X.

Czy jesli wx — wo, to czy limsup Uy, C Uy, o ile limsup Uy, # 0n?



Stabilnos¢ rozwigzan - zbiezno$¢ parametrow w mocnej topologii

Twierdzenie 1. Zaktadamy, ze

(1) F spetnia (A1)-(A3) (regularnos¢, wzrost, podparcie na -F z dotu),
(2) wk — wo w LP(Q,R™), p > 1.

Woéwczas:

(a) dla dowolnego wy zbiér U, punktéw krytycznych typu minimum
funkcjonatu ICy, jest niepusty,

(b) istnieje kula B, C H:/z (2, R) taka, ze Uy, C B, dla k € N,

(c) limsup Uy, # 0 oraz limsup Uy, C Uy, W Hg‘/2 (2,R).

@ Zauwazmy, ze (c) wraz z (2) oznacza, ze multifunkcja
LP(Q,R™) 3 w i Uy € HY/? (Q,R)
jest potciagta z gory, ze zbieznoscia zbioréw w sensie Painlevé-Kuratowskiego.
@ Jesdli dla dowolnego w funkcjonat dziatania Ky jest $cisle wypukty, to uw, — tw,
w st/2 (2, R) o ile wx — wp w LP (2,R™).

@ Jesli dla dowolnego w, dodatkowo funkcjonat dziatania Ky, jest wypukty, to zbiér
jego miniméw pokrywa sie ze zbiorem jego punktéw krytycznych, a zatem takze
zbiorem stabych rozwigzan w Hgn (2, R) zagadnienia Dirichleta dla réwnania
(—A)*/? u(x) = f(x, u(x), w(x)) dla x €Q .



Przyktad. Brak ciggtej zaleznoSci.

Rozwazmy rodzine rozwigzan

Uy = 3 sin(x1) sin(x2), w < 2

—w
zagadnienia Dirichleta dla réwnania w Q = (0, 7)?

—Au = wu + sin(xi) sin(x), w < 2
z jednorodnym warunkiem brzegowym
ulag = 0.

Mnozac, dla w = 2, réwnanie rézniczkowe przez funkcje sin(x1) sin(x2) oraz
catkujac stronami, a nastepnie przez czesci otrzymujemy sprzecznosé

0 :/ / sin2(x1)sin2(X2)dx1dX2 >0
o Jo

co dowodzi braku rozwigzan dla granicznej wartosci parametru. Z kolei
wspomniana rodzina rozwiagzan dla w < 2 "wybucha” w normach L*(Q) oraz
L*(Q) w granicy, tzn.

||uw]|oe — 00, ||uw|l2 — oo jesli w — 27.




Powyzsze rozumowanie mozna przeprowadzi¢ takze w jednowymiarowym
przypadku z rozwigzaniem postaci

Uy = sin(x),w < 1

a takze w tréjwymiarowym przypadku dla rodziny rozwigzan

1 . . .
Uy = sin(x1) sin(x2) sin(x3), w < 3
3—w
czy tez uogdlnionym n wymiarowym przypadku dla w < n

1

n—w

Uy, = M7y sin(x;).

Zjawisko braku ciagtej zaleznosci zwigzane jest tu z interakcja prawej strony
réwnania z jadrem operatora samosprzezonego, gdy rozwigzalnosé zagadnienia
liniowego wymaga ortogonalnosci prawej strony do jadra tu reprezentowanego
przez funkcje wtasne dla krytycznej wartosci parametru, czyli pierwszej wartosci
wtasnej, por. alternatywe Fredholma.




Przyktad

Niech Q = (0,7r)2. Pierwsza warto$¢ wtasna operatora Laplace’a —A na
przestrzeni Hg (2, R) wynosi
A1=3

natomiast odpowiadajaca funkcja wtasna
p1 = sin(x1) sin(x2) sin(x3).

Natomiast )\f/2 = 3%/2 jest pierwsza wartoécia wtasng oraz

p1 = sin(x1) sin(x2) sin(x3) odpowiadajaca funkcja wtasna utamkowego
operatora Laplace’a (—A)®/? na przestrzeni Hg‘/z (2,R).

Zatozenia twierdzenia 1 spetnia nastepujace réwnanie

(—A)*? u(x) = au(x) — s |xP u*H (x) w! (x) + |x| w? (x) x € Q
u(x) =0 x € 90

oilel1<s<6/(3—a), p>1 dostatecznie duze, a < 3*/2 oraz
0<w!(x)<1,0<w?(x)<1dlaxeQ.




Stabilnos$¢ rozwigzan - zbiezno$¢ parametréw w stabej topologii

Uzyskanie wynikéw dotyczacych stabilnosci rozwigzan wzgledem stabej
topologii LP w przestrzeni parametréw jest mozliwe, o ile prawa strona
réwnania jest liniowa ze wzgledu na parametr w, tzn. rozwazamy wtedy

(—A)a/2 u(x) = F(x, u(x)) + <f2(x, u(x)), W(x)> dlaxeQcCR’
u(x) =0dla x € 9Q

gdzie f1: QxR —R, f2: QxR —R"oraz w: Q — R™.

Funkcjonat dziatania jest wéwczas postaci
1
Kow(u) = EHUIIi,;/z —/FI(X, u(x)) + (F*(x, u(x)), w (x)) dx
Q

gdzie Fi(x,u) = f1(x, u) oraz F2(x, u) = f3(x, u).



Zatozenia

(A0) (postad) F jest postaci F (x,u, w) = F1(x,u) + <F2(><7 u), w>;

(AL1’) (regularno$é) funkcje f1, f2,F1 F2 s3 mierzalne ze wzgledu na x dla dowolnych
u € R oraz ciagte ze wzgledu na u dla p.w. x € Q;

(A2’) (wzrost) dla 1 < p < oo istniejg stata ¢ > 0 oraz s € (1 + ﬁﬂ;) takie, ze

|f1 (x, u)| <c (1 + |u‘s—1)
‘f2 (x, u)‘ <c (1 + |u‘s—175/p)
dla p.w. x € Q, wszystkich u € R.

Twierdzenie 2. Jedli

(1) spetnione sa warunki: (A0), (A1), (A2"), (A3),

(2) wk — wp (stabo) w LP (Q,R™).

Witedy:

(a) dla dowolnego wy zbiér U, punktéw krytycznych typu minimum
funkcjonatu ICy, jest niepusty,

(b) istnieje kula B, C HZ/? (2, R) taka ze U, C B, dla k € No,

(c) 0 # limsup U, C Uy W H5¥/2 (€2, R) oraz mocna i staba granica gérna
zbioréw U, w HS‘/2 (2, R) pokrywaja sie.




Niejednorodny warunek brzegowy

Rozwazmy uktad réwnan eliptycznych z niejednorodnym warunkiem brzegowym

—Au(x) = f(x,u(x),w(x)) dla x e Q CR"
u(x) = v(x) dla x € 99

gdzie
o f:QxRYxR™— R jest zadanym potencjalnym polem wektorowym,
- istnieje funkcja F : Q x RY x R™ — R taka, ze
f(x,u,w)=F,(x,u,w)

co oznacza fi(x,u,w) = Fy(x,u,w) dlai=1,2,..., N.
@ w € W jest parametrem funkcyjnym,
veVcH/(09,RY),
o u stabe rozwiazanie w H* (Q,RN) takie, ze u — Tv € H} (Q,RN)

- operator T jest przedtuzeniem v takim, ze Tv € H* (QJRN).



Przestrzer H/2 <8Q, RN>

Niech Q C R” oznacza zbiér ograniczony o brzegu klasy C%!, wéwczas przez
H/? (Q,]RN) oznaczamy podprzestrzefi przestrzeni L (Q,]RN) funkgji

z:Q — R" takich, ze
[Z]n1—//‘z(x_ zng\ dxdy < oo

z norma okreslona wzorem
12l[ar2 = Nl2ll2 + [2]n1-

Poniewaz Q € C%!, wiec istnieje skoficzone pokrycie U;, i = 1,2, ...k, brzegu
9 takie, ze 99 C |J*, Us oraz 89 = |Ji, T, gdzie
M={xeR":x=(xX,x"), x"=a (x)}, x' € R"™! natomiast a;: D; —» R
jest funkcja spetniajaca warunek Lipschitza na D;, i =1,2,....,k z D; C R""%,

Funkcja
ve HY? (0Q,RY)

wtedy i tylko wtedy, gdy funkcja
g (x') =v (x'7 aj (x')) e HY/? (D,-JRN)

dla i =1,2,..., k. Doktadna definicja [Kufner,John,Fucik].



Slad funkcji z H! (Q,RN) oraz twierdzenie o przedtuzaniu
Niech
R:H' (Q,R"Y) — H'? (80, R")
bedzie liniowym i ciggtym operatorem takim, ze
Ru = ulaa
dla ue C*(Q).
@ Operator R istnieje i jest jednoznacznie wyznaczony (por. Tw. 6.8.13
[Kufner,John,Fucik]).
o Warto$¢ Ru nazywamy $ladem funkgji u na brzegu 90 i bardzo czesto
piszemy u zamiast Ru.
@ Zatem warunek brzegowy u = v na 99 rozumiemy w sensie $ladu.
@ Istnieje liniowe i ciaggte odwzorowanie niejednoznacznie wyznaczone

T:HY? (09,R") — H' (Q,R")
takie, ze Tv = u € H' (Q,R") dla v € H"/? (9Q,R") oraz $lad u jest
réwny v, tzn.
Ru=RTv =wv.
(por. Tw. 6.9.2 [Kufner,John,Fucik])
@ Poniewaz operator T jest ciagty, wiec mamy
[TVl < cllvilie

gdzie ¢ > 0 zalezy od wyboru operatora T oraz opisu 0.



Stabe sformutowanie

Dla dowolnego h € Hy (Q,RN) poszukujemy funkcji z = u — Tv € H} (Q, RN)
jako rozwiazania uktadu réwnan

(z+ Tv,hyp = / f(x, (z+ Tv)(x), w(x))h(x)dx
0
Q
odpowiadajacego punktowi krytycznemu funkcjonatu

Ku(2) = 2y / F(x, (2 + T)(x), w(x)) e + (2, Tv) .
Q

Dla dowolnych wy € W oraz v € V przez Ux bedziemy oznaczaé zbiér
punktéw krytycznych typu minimumu funcjonatu dziatania K., ., czyli

U = {u € Hy (QRY); Kuy v (1) = minKu, v, ()i p € Ho (QRY)}.




Twierdzenie 3. Zaktadamy, ze

(1) F spetnia (A1)-(A3) (regularnos¢, wzrost, podparcie na -F z dotu)

(2) wk — wo w LP(Q,R™)

B) vk —wvow HY/? (GQ,RN) .

Witedy:

(a) dla dowolnych wy oraz vk zbiér Ux punktéw krytycznych typu minimum
funkcjonatu K., v, jest niepusty,

(b) istnieje kula B, C H§ (Q,R") taka, ze Ux C B, dla k € Ny,

() lim sup Uk # @ oraz limsup Ux C Up w Hj (Q,RN) .

UWwAGI
e Dla a € (1,2) mozna rozpatrywaé uktady réwnan " utamkowych” z
jednorodnym warunkiem brzegowym.

e Dla a € (1,2) rozpatrywanie réwnan " utamkowych” z niejednorodnym
warunkiem brzegowym jest niemozliwe poniewaz zakfada zerowanie funkcji
na brzegu.

e Dla a € (0, 1) rozpatrywanie warunku brzegowego w sensie $ladu jako
funkcji na 99 nie ma sensu, poniewaz w tym przypadku H§/2 = H/?,



Przyktad

Rozwazmy eliptyczne zagadnienie brzegowe
1
Au(x) alw () [u () u(x) = 7u(x) +w(x)
u(x) = v(x) dlaxedQ
~ %} b a

gdzie Q = {x € R |x
Funkcjonat dziatania

K(w) = / SV GR + 2 1w (P [ Gl = & [0 (P +w (x) u (x) o

jest Scisle wypukty oraz spetnione s3 zatozenia (A1)-(A3) wiec dla dowolnego
w i v istnieje dokfadnie jedno stabilne rozwiazanie.

Zauwazmy, ze dla wp = 1, vo = 4 oraz a = 0, wdwczas uw, (x) = 4.

Zatem funkcja uy, (x) = 4 jest "dobra” aproksymacja rozwiazania
zagadnienienia brzegowego

Au(x) = %U(X)+Wk(x)
u(x) = w(x) dlaxeadQ

dla wy dostatecznie bliskiemu wy = 1 oraz vi dostatecznie bliskiemu vp = 4, w
odpowiednich przestrzeniach.




Twierdzenie o gérskiej przeteczy
Funkcjonat K : E — R jest klasy C*. E jest przestrzenia Banacha.

@ Punkt z* € E jest punktem krytycznym funkcjonatu K jesli K’ (z*) =0
ponadto ¢ = K (z*) nazywamy wartoscia krytyczna.

o Ciag {z«} jest ciagiem Palais-Smale’a dla funkcjonatu K, jedli istnieje stata
M > 0 taka, ze dla wszystkich k € N, |K(z«)| < M oraz K'(zx) — 0 jesli

k — oo.

@ Funkcjonat IC spetnia warunek Palais-Smale’a jesli dowolny ciag
Palais-Smale’a zawiera podciag zbiezny w mocnej topologii E.

Twierdzenie (Ambrosetti-Rabinowitz) Jesli £ : E — R jest funkcjonatem
klasy C* oraz

1° istnieja 20,21 € E oraz otoczenie B elementu z takie ze z; € E\B

2% inf,cap K (y) > max{K (z), K (z1)},

3% ¢ = infgem maxeeo,1 K (g (t)) gdzie

M={geC(0,1],E): g(0) = 20,8 (1) = 1},

4° K spetnia warunek (PS),

to ¢ jest wartoscig krytyczng oraz ¢ > max {K (z), K (z1)} .




Struktura przeteczy gérskiej w przypadku dwuwymiarowej dziedziny:
K(0,0) =0> —1/e = max{K(0,1), K(0,—1)}, K(x,y) = K(0,y)
K(x,y) = (= y?)e "




Struktura przeteczy gorskiej w przypadku dwuwymiarowej dziedziny:
(x2 = y2 —0.2)e "’




Struktura przeteczy gorskiej w przypadku dwuwymiarowej dziedziny:
(X2 _ y2)ef4x274y2+x4+y4




Nieliniowe zagadnienie Dirichleta dla réwania eliptycznego

Réwnanie eliptyczne z niejednorodnym warunkiem brzegowym

—Au(x) = f(x, u(x),w(x)) dla x € Q CR"
u(x) = v(x) dla x € 9Q

gdzie
o f: QxR xR"™ — R jest zadang funkcja,
e weEWCL®(QR") jest parametrem funkcyjnym,

oveVcHY? jest warunkiem brzegowym,

U jest stabym rozwigzaniem zagadnienia brzegowego takim, ze
u—Tv € Hy (Q,R).



Stabe sformutowanie

Dla dowolnego h € H3 (2, R), puszukujemy funkcji z = u — Tv € H} (2, R)
jako rozwiazania réwnania

(z+ Tv, h>Hé = / f(x, (z+ Tv)(x), w(x))h(x)dx
Q
odpowiadajacego punktowi krytycznemu funkcjonatu

Ku(2) = 3l - / F(x, (2 + To)(x), w(x))dx + (2, Tv) .

weWw :{w €L (Q,R™): w(x) e Wdla pw. x € Qoraz |w]]; < kz}
vey :{v c Hl/2 (GQ,R) : ||V— vO”Hl/Z(@Q’R) < kl}
dla k1 >0, ko >0, W C R™ oraz vy € H/2 (99, R).



Zatozenia
(B1) (regularnos¢) funkcje f, F s3 mierzalne ze wzgledu na x dla dowolnych
(u,w) € R x R™ oraz ciagte ze wzgledu na (u, w) dla p.w. x € Q
(B2) (wzrost) dla dowolnego zbioru ograniczonego W C R™ istnieja ¢ > 0 oraz oraz
s e (2,2;) takie, ze
|F (¢, u,w) < e (1 [ul)
I (6 u,w) < e (14 Jul*™t)
dla p.w. x € Q, wszystkich w € W, u € R.
(B3) (superliniowos¢) istnieja state p > 2, a > 0 oraz R > 0 takie ze
a < pF (x,u,w) < {f(x,u,w),u)
dla p.w. x € Q, wszystkich w € W oraz |u| > R
(B4) (geometria) istniejg £ > 0 oraz 0 < b < 1 takie, ze

<
<

1 b
F(x,u,w)+ 5 |u\2 < > lu—Tw (X)\2

dla Ju| < &, wszystkich w € W, p.w. x € Q gdzie T jest prawa odwrotnoscia
operatora $ladu taka, ze H! (,R) = H} (Q,R) ® Im T,

(B5) (Lipschitz po w) dla dowolnego wy € W i & > 0 istnieje stata ¢ > 0 taka, ze
|F(x,u,wi) — F (x,u,wn)| < ¢ (1 + |u\2) w1 — wo|
[f (x,u,wy) = (x,u,w2)| < c(1+ |u]) w1 — wa|

dla p.w. x € Q, wszystkich u € R oraz wy, wy € W takich, ze
lwi —wp| < ei|wo —wp| <e.



Niech
{wi} C W oznacza ciag parametréw funkcyjnych
{vk} C V oznacza ciag wartosci brzegowych

{Z} C Hj (2, R) oznacza ciag zbioréw punktéw krytycznych typu gérskiej
przeteczy funkcjonatu KCy, ., postaci

= {z € Hg (,R); K, v, (2) = ck oraz K, (2) = 0}

gdzie
= inf max ’ka,vk (g(t))

geEM tel0,1]

M={geC([0,1],H (ALR)) :g(0) =20,8(1) =21}, 20,21 € Hy (A, R)

Twierdzenie 4. Zaktadamy, ze

1% warunki (B1)-(B5) sa spetnione,

20 v, — vy w HY/? (0, R) oraz wx — wo w L™= (,R™),
Wtedy:

(a) dla odpowiednio duzych k zbiér Zi jest niepusty,

(b) istnieje kula B, C Hj (2, R) taka, ze Zx C B, dla k € Ny,
() limsup Zx # 0 oraz limsup Zx C Zo w Hy (Q,R).




Lematy pomocnicze

Lemat 1. Jesli funkcja F spetnia zatozenia (B1)-(B2), to istnieje kula B, w
Ha (9, R) taka, ze Zx C B, dla dowolnych wx € W, v, € V.

Lemat 2. Jesli funkcja F spetnia zatozenia (B1)-(B4), to dla dowolnego k € N
funkcjonat KCy,,, spetnia warunek (PS).

Lemat 3. Zaktadamy, ze

1° warunki (B1)-(B4) sa spetnione

2° vy — vo w HY2(OQ,R) dla {v} € V oraz ciag {wx} C W jest ograniczony.
Wéwczas dla zo = 0 istnieja kula B,y C Hy (2, R) i element z ¢ B, takie, ze
infag, Kw,v, > 0 oraz Ku,,y, (z1) < 0 dla dostatecznie duzych k.

Lemat 4. Zaktadamy, ze

1% warunki (B1)-(B2),(B5) sa spetnione

20 v — vo w HY? (09, R) oraz wx — wo w L™ (,R™).

Woéwezas Kuw,,v, =% Kuy,v, oraz Ky, ,, = K, ., na dowolnych kulach z
H (Q,R).



Zagadnienie Dirichleta dla réwania z catkowym utamkowym laplasjanem
Réwnanie z catkowym utamkowym operatorem Laplace’a (—A)a/2 za € (1,2)
oraz niejednorodnym warunkiem zewnetrznym

(—A)*? u(x) = F(x, u(x), w(x)) dla x € Q C R"
u(x) = v(x) dlax e R"\ Q

gdzie
o f: QxR xR"™— R jest zadang funkcja,
e weWCL®(QR") jest parametrem funkcyjnym,
o v eV C H? jest warunkiem brzegowym lub zewnetrznym,
@ u jest stabym rozwigzaniem zagadnienia zewnetrznego takim, ze
u—ve H§/2(Q,R).
Dla « € (1,2) oraz funkgji dostatecznie gtadkich np. C? i o kontrolowanym

wzroscie w nieskoficzonosci np. wolniejszym niz |x|® utamkowy catkowy
operator Laplace’a definujemy wzorem

(_A)O‘/2u(x) — C(n,oz)/n 2U(X)_ U(Ty—‘:{o)é_U(X_y)dy

_ a2a72 M((n+a)/2)

gdzie c(n, o) /T (=a/2)"



Zagadnienia Dirichleta dla réwnania z catkowym utamkowym Laplasjanem
Funkcja u(x) = (1 — x?)?/? € C*/? rozwigzaniem (—A)*/2u(x) = 1
a = 4958333333

05 1



Przestrzenie funkcyjne
Ze wzgledu na nielokalny charakter catkowego utamkowego laplasjanu wprowadzimy
nastepujace przestrzenie dostosowane do stabego sformutowania

nta

Ix—yl™2
gdzie @ = R?"\ ((R™\Q) x (R"\R)), z normg okreélona wzorem

1
2 2
u(x)—u(y
u||xa/z—||u||Lz(m+[u1n,a—||u||Lz(m+( / lu( — uln)l dxdy) .
Q Ix -yl

X/? = {UZR"HRZ ulg € LQ(Q) oraz 7u(x)7u(y) S LZ(Q)}

Zdefinujmy podprzestrzen liniowag przestrzeni Xa/?
X(;)‘/Qz {UEXO‘/2 tu=0pw. na R"\Q}
z norma
lull o2 = [ulna
0
Przestrzenie X/2, Xél/2 s3 niepuste poniewaz CO2 () C Xoa/z.

Przestrzen Xél/Z jest przestrzenia Hilberta z iloczynem skalarnym

(u1, 2) o2 = (/ (u1 (x) —u1(y)) (lﬁgx) — (y))dxdy> > ‘
0 Q

Ix — I

Zachodza nastepujace relacje:
e X/2 C HY/?(Q)
o H/2(RM) C X/2

o X2 ¢ Ha/2 (RP) N HY? ()



W przypadku niejednorodnych warunkéw zewnetrznych zadanych przez funkcje
v : R” — R potrzebujemy przestrzeni Hilberta zanurzajacej sie w X@/2 postaci

Ya/2 XO‘/ZOLZ (Rn)
z norma
lellyasz = 4l 2y + [na

ya/2 jest osrodkowa przestrzenig Hilberta z iloczynem skalarnym
(U1, 12)yas2 = (u1, u2) 2gey + (U1, Uz)XOa/z .
Z definicji wprowadzonych przestrzeni mamy nastepujace zanurzenia
H*/2(R") € Yo/2 ¢ x*/2,

Dla ograniczonego obszaru w R"” z lipschitzowskim brzegiem, przestrzen X(;l/2 zanurza
sie w sposéb zwarty w L® (Q2) dla s € [1,2%) oraz
lull sy < € ||U||X0a/2

dla dowolnego u € Xa/2



Poszukujemy stabych rozwigzan w X/? zagadnienia zewnetrznego

{ (=A)*"%u(x) = f (x,u(x),w(x)) naQCR"
u(x)=v(x) wR"\Q

€L
gdzieufveXoa/z,vEVﬂ(Xoaﬂ) CWEW, fiQXxRXR" SR

Ustalamy vo € Y/2 i definujemy zbiér
V={veY" v~ wlyas < h}
dla 1 > 0 oraz zbiér
W= {W €L”:w(x)e WCR"dlapw. x € Qoraz |jull;cc < /2}

dla h > 0 oraz ustalonego W podzbioru R™ z m > 1.

Méwimy, ze z = u — v € X%/2 jest stabym rozwiazaniem rozwazanego
, LT a/2
réwnania jedli dla dowolnego h € X,

c(n0) 2+ vihlyn = [ e (z-+ )0 w00 () .




Funkcjonat dziatania jest postaci

c(n, o
Kul2) = LD g2 / FOx (2 4+ )0, W)+ €(,0) 2, ) o
0 Q
CO Oznacza

Kooz :c na)/ |Z|;<_ |Zn+}; dxdy—/F(x,(z—i—v)(x),w(x))dx
Q

t o / (v () = v () = 2(¢))

_y‘n+a

dxdy
Dla zbioréw punktéw krytycznych typu goérskiej przeteczy zachodzi nastepujace

Twierdzenie 5. Zaktadamy, ze

1° odpowiedniki warunkéw (B1)-(B5) sa spetnione,

2% vi — ww Y2 oraz wy — wo w L (Q,R™), {wi} C W, {w} € V.
Witedy:

(a) dla odpowiednio duzych k zbiér Zj jest niepusty,

(b) istnieje kula B, C X/? taka, ze Zx C B, dla k € Ny,

(c) limsup Zx # () oraz limsup Zx C Zo w Xa/2




Przyktad.
Zatozenia twierdzenia 5 s3 spetnione dla zewnetrznego zagadnienia postaci

{ (=D u(x) = %u% (x) —yw (x) u(x) — 2w (x) u? (x)sin? |x| na Q C R?
u(x) = v(x) na R*\Q,

gdzie Q = (0,1)%, w € W taki, ze

={w 0 s w(x Gl) Epl w
W={weL?(QR): ()eWc( Pt )p. }

gdziey >0, =c (3, %) oraz 0 < b < ¢ natomiast v € V postaci

v={ve Y’ :v(x)eo,1], |v|<1}.




Twierdzenie o globalnym dyfeomorfizmie

Twierdzenie: Idczak, Skowron, Walczak (2012)

Niech U bedzie rzeczywista przestrzenig Banacha, H bedzie rzeczywista
przestrzenig Hilberta. Jesli
V:U—-H

jest operatorem klasy C! takim, ze
(al) dla dowolnego u € U, réwnanie

V' (nh=g

posiada jednoznaczne rozwigzanie dla dowolnego g € H,
(a2) dla dowolnego ¢ € H, funkcjonat

Fow) =3 IV () — 9,

spetnia warunek Palais-Smale’a,
to V jest dyfeomorfizmem.

v

Operator V : U — H jest dyfeomorfizmem, jedli jest na, jest rézniczkowalny na
U oraz operator odwrotny V! : H — U jest rézniczkowalny na H.

@ D. Idczak, A. Skowron and S. Walczak; On the diffeomorphisms between
Banach and Hilbert spaces”. Advanced Nonlinear Studies 12(1) (2012)



Réwnania catkowe
Zauwazmy, ze dla rozwazanego zagadnienia z catkowym utamkowym
laplasjanem

(—A)a/2 u="f(x,u,w) naQ
u=0wR"\Q

poniewaz 0 ¢ o ((—A)O‘/2) w odpowiednich przestrzeniach i przy odpowiednich
zatozeniach mamy

u= ((fA)o‘/z)_1 f(x,u,w)
Operator odwrotny do utamkowego operatora Laplace'a ztozony z
nieliniowo$cia f jest postaci Hammersteina

(“)) " (x, 0, w) = / 6 () f (v, uly), w) dy

Q
gdzie G jest funkcja Greena.

Rozwazenie Q = [—1,1], A # 0 oraz nieliniowosci
F(x,u,w) = % (=h(x 1) + (~B)* w(x))

prowadzi do réwnania catkowego z parametrem w postaci

Nl +/ S ) = e

1



Zagadnienie Dirichleta z jednowymiarowym catkowym utamkowym laplasjanem,
mozna sprowadzi¢ do réwnania catkowego postaci

Au(x) + ((=A)272) 7 h(x, u(x)) = w(x) w (=1,1)
u(x)=0 w (—o0,—1]U]J1,0c0)

gdzie A € R
1

((=8)*2) " g (x) :/ G(x,y)g(y)dy,

-1
G jest funkcja Greena, wyznaczong dla utamowego catkowego laplasjanu

_ r(/2) wr [T a/2-1 —1/2
G(x,y) = le—ﬂ ; r (r+1)~"*dr,
gdzie
(1-x)(1-y?)

x—yP
Rozwazane réwnanie jest szczegdlnym przypadkiem réwnania Urysohna z
nieliniowym operatorem catkowym postaci

W(va) =

1

V (1) () = Au(x) + / G G s il

—1

u € H}([-1,1],R").



Zatozenia: regularnos$é oraz lokalna ograniczonosé

(A1) (a) v(-,y,-) jest ciagta na G :=[-1,1] x R" dla p.w. y € [-1,1],
(b) istnieja vk (5, ¥,°), vu (5, ¥,*), vxu (v, ¥, ) ciagte na G dla p.w. y € [-1,1];

(A2) (a) v(x,-,u), vx(x,u), vu(x,-,u), v (X,-, u) sa mierzalne dla (x,u) € G,
(b) v(x,,u), v (X, u), vu(x,-,u), vxu (X, -, u) sa lokalnie ograniczone ze
wzgledu na x, tzn. dla dowolnego p > 0 istnieje /, > O takie, ze (x,y) € P i
x € By = {x € R"; x| < p} mamy |v (x,y, u)| < |, |vx (x,y, u)| < o,
|VU (X9y’ u)| < Ip» |qu (nyvu)| < lp;

(A3) v(—-1,y,u)=v(1,y,u) =0 oraz vy,(—1,y,u) = vu(1,y, u) = 0 dla wszystkich
x €R"ipw. ye€[-1,1];

(A4) |vux(x,y, u)| < |A|/2 dla wszystkich x € R" i pw. y € [-1,1];

Jesli v spetnia (A1), (A2) oraz (A3), to V : Hy — H} jest
* dobrze okreslony,
* rézniczkowalny w sposéb ciagly w sensie Fréchet'a oraz

V' (u0) h(x) = A (x) + / va (35 10 (1)) h () dy, x € [=1,1].

-1

Przykfad funkgcji spetniajacej (Al)-(A4): v (x,y,u) = A(x,y)In (1 + B (x,y) uz),
gdzie A, B € C1 (P,R) takie ze A(—1,y) = A(1,y) =0dla y € [-1,1] and
B(x,y) > 0na[-1,1]%




Réwnanie zlinearyzowane

Lemat o istnieniu i jednoznaczno$ci rozwigzan
Jedli v spetnia (A1), (A2), (A3) oraz (A4), to dla dowolnych ug, g € ACE

réwnanie
1

Ah(x) + / e = 569

posiada jednoznacze rozwiazanie w Hj.

Dla v (x,y,u) = A(x,y)In (1 + B(x,y) u2),
réwnanie liniowe dla ustalonego up

1

2B (x,y) o (y) _
Ah(x) + /A(x,y) Wy)ug(y)h()’)dy =g (x)

-1

posiada jednoznaczne rozwiazanie h dla dowolnego g.




Warunek Palais-Smale’a
Dla dowolnej funkgji 1 € Hg, rozwazmy funkcjonat F, : Hy — R™ postaci

Fulw) =3 IV () vl
Fw=3 [

Lemat o spefnieniu warunku (PS) Zatézmy ze (Al)-(A4) s3 spetnione oraz

(A5) istnieja funkcje c,d € L* (P;R"),

2

Au'(x) +/ Vi (x,y,u(y)) dy — ¢’ (x)

1

v (v, )| S € (%) |ul +d (x,y)

dla (x,y) € P oraz ||c[|2(pp+) < ‘[IM

Witedy dla dowolnego ¥ € Hi funkcjonat F,, spetnia warunek Palais-Smale’a.

Fy(u) = %/
-1

By (x,y) u* (v) ,
+A(x,y) 1+B(x,y)u2(y)) dy — 9’ (x)

4

1
Au' (x) +/ (AX (x,y)In (1 + B (x,y) v? (y))

1

2




Twierdzenie o globalnym dyfeomorfizmie

Jedli v spetnia (A1)-(A5), to nieliniowy operator catkowy V : H3 — Hj jest
dyfeomorfizmem.

WNIOSEK O GLOBALNEJ ROZWIAZYWALNOSCI
Jedli v spetnia (A1)-(A5), to dla dowolnego w € HZ nieliniowe catkowe

réwnanie
1

A () / v (o, () dy = ()
=il
posiada jednoznaczne rozwiazanie u,, € Hj oraz operator

H&aw—>uW€H3

jest rézniczkowalny w sensie Frécheta.

W przypadku nieliniowej zalezno$ci od parametru w mozna skorzystaé z
Twiedzenia o globalnej funkcji uwiktanej z pracy

@ D. Idczak, A global implicit function theorem and its applications to functional equations.
Discrete and Continuous Dynamical Systems Series B, 19 (2014)



Motywacje zagadnien z utamkowym operatorem Laplace’a

@ generatory péfgrup stabilnych proceséw Lévy'ego

o METZLER, KLAFTER, PHYS. REP. 2000
"The random walk’s guide to anomalous diffusion: a frac. dynamics
approach’

o APPLEBAUM, NOTICES AMS 2004
'Lévy processes - from probablility to quantum groups’,

e BoaGDAN, Byczkowskl, KULCZYCKI, RYZNAR, SONG, VONDRACEK, 2009
'Potential Analysis of Stable Processses and its Extensions’

@ kwazi-geostroficzne réwnanie Naviera-Stokesa

o CAFFARELLI, VASSEUR, ANNALS OF MATH. 2010

'Drift diffusion eqs with fractional diffusion and quasi-geostrophic equation’
o KISELEV, NAZAROV, VOLBERG, INVENTIONES MATH. 2007

'Global well-posedness for the critical 2D dissipative quasi-geostrophic eqs’
o CORDOBA, ANNALS OF MATH. 1998

'Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic eqn’

@ zagadnienie przeszkody Signoriniego w teorii sprezystosci

o PETROSYAN, GAROFALO, INVENTIONES MATH. 2009
'Some new monotonicity formulas and the singular set in the lower
dimensional obstacle problem’

o CAFFARELLI, SALSA, SILVESTRE, INVENTIONES MATH. 2008
'Regularity estimates for the solution and the free boundary of the obstacle
problem for the fractional Laplacian’

o CAFFARELLI, SILVESTRE, COMMUNICATIONS PDE’s 2007
'An extension problem related to the fractional Laplacian’



osrodki porowate i przemiany fazowe
o CAFFARELLI, VAZQUEZ, ARCH. RAT. MECH. ANAL. 2011
'Nonlinear porous medium flow with fractional potential pressure’
o GIACOMIN, LEBOWITZ, J. STAT. PHYS. 1997
'Phase segregation dynamics in particle systems with long range
interactions’
o SERFATY, VAZQUEzZ, CALC. VAR. PDEs 2014
'A mean field equation as limit of nonl. diffusions with fract. Laplacian’
dyslokacje w krysztatach
e ToLAND, J. FuNCcT. ANAL. 1997
"The Peierl-Nabarro and Benjamin-Otto equations’
e DIPIERRO, FicaLLI, PALaTUCCI, COMM. PDEs 2014
'Strongly nonlocal dislocation dynamics in crystals’
o DIPIERRO, PALATUCCI, VALDINOCI, COMM. MATH. PHYS. 2015
Dislocation dynamics in crystals. A macroscopic th. in fract. Laplace setting.
fale gtebokie wewnetrzne i grawitacyjne
o GERMAIN, MASMOUDI, SHATAH, ANNALS OF MATH. 2012
Global solutions for the gravity surface water waves equation in dimension 3
energia relatywistyczna
o LiEB, BULLETIN AMS 1990
'"The stability of matter: from atoms to stars’
przetwarzanie obrazéw

o GILBOA, OSHER, MULTISCALE MODEL. SIMUL. 2008
Nonlocal operators with applications to image processing
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LOKALNE ISTNIENIE, WYBUCHY ROZWIAZAN W SKONCZONYM CZASIE

x'(t) = x(t)?

x(t) = —-1/(t+ c)
x(0)=1,x(t)=1/(1—t) — o0, t — 1"
ur = Au + v
—Ap1 = Aip1

2
d _
F/uplz/AUp1+/u2p12 (/ um) (lpul—/\l//um)
t Q Q Q Q

/uplﬂoo,tHT
Q

R: > AR+ R?, gdzie R = trR; skalarna krzywizna, za$ R; Ricci tensor. Jedli
rozmaitos¢ M = R? i metryka go = p°(dx* 4 dy?) to Ric(go) = ﬁgo




ULAMKOWY SPEKTRALNY LAPLASJAN (—A)*/? w H§/2
W wersji stabej o wartosciach w przestrzeni dualnej do Hg‘/Q

(=A)*2 HY? — (HS?)* = H™®
W wersji mocnej z wartosciami w L2
(=A)*2 H* N HS? — 12

= 25 <28

W ogélnosci, gdy zamiast do L? prawa strona réwnania f € L5/
(~D)*Pu=f
to rozwiazania sg w W/~ (jedli s < 2, to s/(s — 1) > 2), a zatem

(7A)a/2 : Wa,s/(sfl) n Héx/2 _ Ls/(sfl)



ROZKELAD SPEKTRALNY

Twierdzenie (o rozktadzie spektralnym przestrzeni Hilberta)

Niech przestrzen Hilberta H bedzie osrodkowa oraz operator T : H — H zwarty
oraz samosprzezony. Wéwczas istnieje baza Hilberta z wektoréw wtasnych T.

Przyktad: (—Ap)~*: L2(Q) — H*(Q) N H3(Q) C L*(Q) z symetryczna G

(_AD)ilf = / G(,y)f(y)dy = Zﬂkfkpka f = (f, PkLZ fk2 < 00
Q

k=1 k=1

Wartoéci wiasne gy > 0 i funkcje wiasne pi: (—=Ap) tpx = prpx.

Zatem A = 1/pk, k > 1 to wartosci wtasne operatora Laplace’a z warunkami
Dirichleta: A\xkpx = —Appk, poniewaz px € C*. Ponadto Ax ~ k2.

Jesli Q = (0,7), to ux = k™2, k > 1 oraz pi(x) = 1/2/m sin(kx).

Przykfad spektralny: ((7A5)a/2)—1 CL2(Q) — H:/Z(Q) NH*(Q) C L2(Q).
Wartosci wtasne: ,ufp i funkcje wtasne pi jak powyzej.

Przyktad catkowy: ((~Ac)*/?) ™" : L2(Q) — Xo/2 N X* € L3(Q).

Wartosci whasne dla (—A¢)®/2 naleza do (A\x/2, Ax), gdzie Ak odp. (—As)*/2.



SPACERY LOSOWE Rozwiazanie réwnania
2
u = —(—A)*"?y

mozna uzyskaé w granicy rozwazajac spacer losowy po kracie Z" z
prawdopodobienstwem

u(x, t+s) =Y N(k)u(x + hk, t)
kezn
z gestoscia rozktadu prawdopodobienstwa

1
My)= C————
(v) ly[ree

gdzie prawdopodobiefistwo u(x, t) odnosi sie do tego, ze czastka znajdzie sie w
chwili t € 7Z w pozycji x € hZ" oraz z odpowiednim skalowaniem kraty i kroku
czasowego W przejsciu granicznym

T=h"—0.
W przypadku, gdy n =11 a = 2 oraz I jest réwna 1/2 jedynie przy przejsciu
do sasiedniej pozycji, t.zn. M(1) = M(—1) = 1/2 otrzymujemy w granicy

réwnanie, czyli jednowymiarowy odpowiednik dla o = 2

U = Uxx.



RUCH BROWNA, PROCES LEVY'EGO, STABILNY PROCES LEVY’EGO
Wzér Levy'ego-Chinczyna dla generatora procesu Levy'ego

Lu=3ayugy +u- Vb / (u(x — y) — u(y))N(dy)

iJ

gdzie a; dodatnio okreslona, a 1 miara Borelowska taka, ze

/ min 1, ly[*M(dy) < oo
Rn

jedlia=b=0 oraz
N(dy) = c(e)ly|™"“dy

to otrzymujemy generator a-stabilnego procesu Levy'ego,

(—A)*2u = / (u(x — y) — u(y))N\(dy)

np. ruch Browna sktadamy z podporzadkowanym procesem Levy'ego. Jesli
aij =1 oraz dla i # j mamy a;j = b =I1 = 0 to otrzymujemy Laplasjan.



PUNKTY KRYTYCZNE
Punktem krytycznym funkcjonatu K nazywamy u takie, ze

K'(uy=0
gdzie K’'(u) definiujemy np. dla K € C* oraz normy |- | w Hg‘/2 jako
lim (K(u+ h) = K(u) = K'(u)h)/|h] = 0
Réwnanie
K'(u)h=0

dla dowolnego h € H§/2 oznacza wtasnie krytyczno$¢ punktu v i odpowiada
stabemu sformutowaniu odpowiedniego réwnania Eulera-Lagrange’'a w
zaleznosci od postaci K.



ZBIEZNOSC SZEREGOW FUNKCYJNYCH, T.ZN. CIAGOW SUM CZESCIOWYCH
Szereg o wyrazach ciagtych gi:

> ax)

jest jednostajnie zbiezny do funkgcji ciagtej jesli, na przyktad, istnieje
oszacowanie jednostajne ze wzgledu na x

|gk(x)| < Ak

ew. przez inny szereg liczbowy niz AZ:L k™17 < o0 ale tez zbiezny.
Zbieznos¢ szeregu w L2 w przypadku szeregu Fouriera

f = i fkpk
k=1

jest rébwnowazna zbieznosci szeregu liczbowego

oo
Z 2 < .
k=1

Zbieznoé¢ jednostajna pociagga za soba zbieznos¢ L2, Rézniczkowanie wyrazu
po wyrazie mozliwe jest, gdy szereg pochodnych jest zbiezny, np. jednostajnie,
ew. w L? i wtedy mamy pochodna funkcji granicznej danej przez szereg
zdefiniowana klasycznie lub odpowiednio w L2.
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