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Abstract

In this thesis we aim to describe the spectrum of all possible areas of two dimensional
orbifold, in particular those of negative Euler orbicharacteristic. We will analyse
the spectrum treated both as a subset of R and then study its order type and
topology; and as an image of χorb – Euler orbicharacteristic and then count orbifolds
corresponding to a particular points of a spectrum.



Chapter 1

Introduction

1.1 Motivations
Orbifolds are geometrical spaces that encodes some of group action properties.

They played a crucial role in Thurston’s geometrisation program ([Thu79]). They
are also correlated and find direct use or indirect use (be unintended emergent
occurrence) in different subjects, from geometry, to physics – e.g. with slightly
different definition they are used in modeling the string theory [Phi], music theory –
e.g. in modeling chords and tones [MGM02], [Tym06], and art – e.g. they are visible
on the prints of M.C.Esher ([CBG16] chapter 17).

They are also beautiful symmetry encoding structures on they own, providing
nice and uniform language to describe platonic solids, tilings of the euclidean and
hyperbolic plane, as well as general notion of symmetry

The focus of this thesis is on possible areas of two-dimensional orbifolds. Similar
analysis was performed in dimension three for manifolds, where ([Thu79], [Gro81]) it
was proved, that the spectrum of possible volumes of three dimensional manifolds
form a closed, non-discrete set on the real line, that this set is well ordered, its
ordinal type is ωω and there are only finitely many manifolds with a given volume.
In this thesis similar results are obtained for two-dimensional orbifolds using more
elementary methods (chapter 3).

1.2 Scope
In this thesis we would like to give some description of the spectrum of the volumes
of two dimensional orbifolds, in particular those of negative Euler orbicharacteristic.
We will examine order type and topology of the spectrum (chapter 3) as well as
the structure of the spectrum based on spectra corresponding to different manifolds
(section 1.9), We will also provide tools for determining whether a given number is
in spectrum of areas (chapter 2). (chapter 4) as well as tools to compute how many
orbifolds correspond to a given area in the spectrum (chapter 5).
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1.3 Orbifolds
The definition of the orbifold is taken from Thurston [Thu79] (chapter 13), with slight
modification described in 1.3.3. We briefly recall the concept, but for full discussion
we refer to [Thu79].

An orbifold is a generalisation of a manifold. As manifold, it consists of a Hausdorff
space (which we will call a base space) with some additional structure. Compared
to manifolds, one allows more variety of local behaviour. On a manifold a map is a
homeomorphism between Rn and some open set on a manifold. On an orbifold a map
is a homeomorphism between a quotient of Rn by some finite group and some open
set on an orbifold. In addition to that, the orbifold structure consist the information
about that finite group and a quotient map for any such open set.

We can make an observation, that since in dimension 2, quotient of R2 by a finite
group is topologically always either R2 or R×R­0, we have that in dimension 2, the
underlying Hausdorff space of any orbifold is a topological manifold (possibly with a
boundary).

For an orbifold O we will call this underlying manifold M a base manifold of O
and denote it by |O|, and we will call O an M -orbifold.

In dimension two, only possible groups acting on the map sets are:

• cyclic groups Zn acting by rotations around certain point

• dihedral groups Dn acting by reflections about n different lines crossing at the
certain point

• group Z2 acting as reflection about certain line

Figure 1.3.0.0.1: Actions of Zn, Dn and Z2 on the map sets.

Manifolds without boundary can be treated as orbifolds with trivial group for every
map. Manifolds with boundary can be treated as orbifolds with trivial group on all
maps from the interior and with group Z2 on the boundary, as described in [Thu79]
(example 13.2.2.).
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1.3.1 Terminology

We differ from Thurston in the terms of naming points with every map with non-
trivial groups. We will call them orbipoints. If a cyclic group acts by rotations around
such point, we will call it rotational point. If a dihedral group acts by reflections
about n different lines crossing at such point, we will call them dihedral points. And
if Z2 group acts by reflection about certain line consisting of such point, will call it a
reflection point and such line we will call a reflection line.

If a group associated to the orbipoint has degree n, we will say that the orbipoint
is of degree n.

Through the whole thesis we will consider only two dimensional manifolds and
orbifolds, for this reason, for brevity, words "two-dimensional" will be sometimes
omitted, nevertheless we will always mean only two dimensional manifolds and
orbifolds if not stated otherwise.

1.3.2 Finite number of orbipoints

In this thesis we will consider only orbifolds with finitely many orbipoints and all
orbifolds mentioned from this point are meant as such without further notice. Reason
for this choice will be described in 1.6.2.

1.3.3 Compactness

Orbifold as a topological space is the same as its base manifold. We would like to
restrict our interest only to compact orbifolds. However, noncompact orbifolds, such
as ones from [CBG16] (chapter 18) which are quotients of a group action of an
infinite group acting on R2 (that will be also frequently interpreted in this setting as
a hyperbolic plane H2), also interests us. We would like to accommodate some of
noncompact orbifolds that will satisfy the condition similar to the 1.3.2. To do this
we will slightly expand our definition of an orbifold.

Let us start with a following construction.
For an noncompact orbifold O, let us take it’s one point compactification. Let the

compactification point be named xO. For some set X, let #(X) be the number of
connected components of X. Now let us consider some connected open set U 3 xO.
The set U \ {xO} is not necessarily connected.

Let
C(O) := sup

U3xO
connected,

open

#(U \ {xO}). (1.3.3.0.1)

We will be interested only in the case, when C(O) is finite. If C(O) is finite, we take
some U that realise the supremum and compactify each of connected components of
U \ {xO} with a separate point. We will call these points "cusps". If for some cusp x,
in every U 3 x there are points from the boundary of O, we will call it a cusp on a
boundary. In the other case, we will call it a cusp in the interior.

The result is a compact topological space. We will treat it as an orbifold, with
cusps as orbipoints in extended definition. We extend the definition as such, that the
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map from the compactification of some open subset consisting point x can go to the
quotient of compactification of H2 by S1. The group, we will take to act on H2 will
be:

• in the case of x being in the interior of O – infinite cyclic group Z, where the
generator acts as translation by 1 in the half-plane model of hyperbolic plane

• in the case of x being on the boundary of O – infinite dihedral group D∞,
where generators will be reflections with respect to vertical lines spaced by 1
in a half-plane model of a hyperbolic plane.

Figure 1.3.3.0.1: Actions of Z and D∞ on a half-plane model of a hyperbolic plane.

Note that in both cases, the is exactly one point in the compactification of H, that is
fixed for every element of the acting group – point from the compactification at the
infinity on the top of the plane. This point is will be always mapped to the orbipoint
x. We will call x an, respectively, rotational, or dihedral orbipoint of infinite degree.

1.4 Classification of two dimensional manifolds
In this thesis we aim to better understand possible two dimensional orbifolds. The
foundation that we are relying on is the classification of two dimensional manifolds.

It is phrased as a well known theorem, which can be found, e.g. in [CBG16]:

Theorem 1.4.0.1. Any two dimensional manifold can be obtained from S2 by taking
some number of connected sums with RP 2 and T2, and by cutting out some number
of D2 without boundary.

After [CBG16] we will treat two dimensional manifold as a S2 with a collection
of features made by:

12



• taking a connected sum with RP 2, the corresponding feature, that we will call,
after [CBG16], a cross-cap

• taking connected sum with T2, the corresponding feature, that we will call,
after Conway, a handle

• cutting out D2 without boundary, creating the boundary component.

1.5 Presentations

1.5.1 Manifold presentation

From 1.4 we know, two dimensional manifold can be defined, by specifying:

• how many boundary components it has,

• how many handles it has,

• how many cross-caps it has.

From this, adapting the notation from [CBG16], we will write a two dimensional
manifold as a list:

◦h ∗b×c = ◦ · · · ◦︸ ︷︷ ︸
h times

∗ · · · ∗︸ ︷︷ ︸
b times

× · · ·×︸ ︷︷ ︸
c times

, (1.5.1.0.1)

where each × represents the cross-cap, each ◦ represent one handle and each ∗
represents a boundary component.

This presentation is not necessarily unique, as there is one relation ◦a×b = ×2a+b.
For a more detailed description we refer to [CBG16] (page 101-102).

1.5.2 Orbifold presentation

For the rest of this thesis we will use slightly modified notation from [CBG16],
presented below.

As stated in [CBG16] (chapter 18):

Theorem 1.5.2.1. two two-dimensional orbifolds are isomorphic iff they have:

• the same base manifold,

• the same number of orbipoints for each type and degree

• orbipoints on the boundaries in the pairwise same cyclic orders – up to orienta-
tion of each alone if the base manifold is non-orientable and up to simultaneously
reversing orientation of every if the base manifold is orientable.

From this, adapting the notation from [CBG16], we will write a two dimensional
orbifold as a list:

hcr1 · · · rn ∗ d1
1 · · · d1

m1
· · · ∗ db1 · · · dbmb×

c (1.5.2.1.1)
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where each × represents the cross-cap, each ◦ represent one handle, r1 · · · rn are
degrees of orbipoints in increasing order and ∗d1

1 · · · d1
m1
· · · ∗db1 · · · dbmb are b boundary

components with dihedral orbipoints of degrees dk1 · · · dkmk ordered with the preserva-
tion of the cyclic order on the boundary component. In this notation, the sphere S2

will be denoted as ε – an empty word. This presentation is not necessarily unique for
a given orbifold. We can freely permute boundary components and change dihedral
points inside each boundary component by cyclic permutations.

1.5.3 Feature notation

We will view any two dimensional orbifold as a S2 with added features:

• cross-caps

• handles

• boundary components

• rotational orbipoints

• dihedral orbipoints.

For all these features except dihedral orbipoints the notation for a feature treated
as an object alone (it can be view as a map from orbifolds to orbifolds, that takes
one orbifold O1 defined by some list and returns the other orbifold O2 defined by the
list of O1 with added feature), will be the same as the notation of the feature in the
list. For dihedral points, when they will appear alone, we will write ∗di, instead of di,
to signify, that they are dihedral orbipoints and we will write expressions like ∗2 or
∗3.

For writing a sequence of numbers – ∗d · · ·∗ d︸ ︷︷ ︸
n times

in the power notation, we will use

parenthesis and write (∗d)n instead ∗dn, for example (∗4)5 =∗ 4∗4∗4∗4∗4 for dihedral
orbipoints, or (4)5 = 4 4 4 4 4 for rotational orbipoints, to avoid confusion with
raising the numbers themselves to some power.

We will usually (but not always) separate numbers by spaces not commas in this
context. We will sometimes enclose whole orbifold presentation in the parenthesis
e.g. (2 3 7) instead of writing 2 3 7 for readability.

1.6 Euler (orbi)characteristic

1.6.1 Euler characteristic

On CW-complexes we can define Euler characteristic as additive topological invariant
normalised on simplex.

On a CW-complex it is then an alternating sum of numbers of cells in a consecutive
dimensions:

χ(C) =
n∑
d=0

(−1)dkd (1.6.1.0.1)
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Among other properties we have that if a compact manifold N is a quotient
of a compact manifold M , by the action of a finite group G, that acts properly
discontinuously and freely on M , then

χ(N) =
χ(M)
|G|

(1.6.1.0.2)

1.6.2 Euler orbicharacteristic

We would like to extend the definition of Euler characteristic to orbifolds in a way
that will reflect on their structure. We will call the resulting additive topological
invariant the Euler orbicharacteristic and denote it by χorb.

Following [Thu79] (definition 13.3.3.), but extending definition to orbifolds with
cusps, we will define it as follows:

Definition 1.6.2.1. When an orbifold O has a cell-division of the base space X,
such that for each open cell the group associated to the interior points of a cell is
constant, then the Euler number χorb(O) is defined by the formula:

χorb(O) :=
∑
ci

(−1)dim(ci) 1
|Γ(ci)|

, (1.6.2.1.1)

where ci ranges over all cells and |Γ(ci)| is the order of the group Γ(ci) associated
to each cell, if ci is a cusp and |Γ(ci)| = ∞ we put 1

|Γ(ci)| = 0. We will call 1
|Γ(ci)| a

weight of a cell ci.

This definition results in the property, that if an orbifold O2 is a quotient of a
orbifold O1, by the action of the finite group G, that acts properly discontinuously,
but not necessarily freely on O1, then:

χorb(O2) =
χ(O1)
|G|

. (1.6.2.1.2)

For a two dimensional orbifolds, the possible cells with weights different than 1 are
only in dimensions 0 and 1. In dimension 0 they are rotational and dihedral orbipoints.
In dimension 1 they are fragments of the boundary that stabilises reflections. The
weights of these cells are (with the convention that 1

∞ = 0):

• for a rotational point of degree n, the weight is 1
n
,

• for a dihedral point of degree n, the weight is 1
2n ,

• for a reflection line, the weight is 1
2 .

We can see that weights of rotational and dihedral orbipoints are monotonously
decreasing and converges to 0, as degree diverges to infinity. Moreover, the cusps –
orbipoints of an infinite degree, that are stabilised by a groups of infinite degree, has
weight 0.

15



From this we will obtain the formula for an Euler orbicharacteristic of a two
dimensional orbifold with rotational points of degrees r1, r2, · · · , rn and dihedral
points of degrees d1, d2, · · · , dm:

χorb(O) = χ(M)− n+
n∑
i=1

1
ri
− m

2
+

m∑
j=1

1
2dj

(1.6.2.1.3)

= χ(M)−
n∑
i=1

ri − 1
ri
−

m∑
j=1

dj − 1
2dj

(1.6.2.1.4)

For O with only rotational orbipoints:

χorb(O) = χ(M)−
n∑
i=1

ri − 1
ri

. (1.6.2.1.5)

For O with only dihedral orbipoints:

χorb(O) = χ(M)−
m∑
j=1

dj − 1
2dj

. (1.6.2.1.6)

From these formulas we can see, that as number of orbipoints diverges to infinity,
the Euler orbicharacteristic diverges to minus infinity. For this reason, we restrict
ourselves only to orbifolds with finitely many orbipoints.

Observation 1.6.2.2. A M-orbifold that is different than M always have strictly
smaller Euler orbicharacteristic than M .

1.7 Metric structures on the orbifolds and areas of
the orbifolds

1.7.1 Good and bad orbifolds

Definition presented in 1.3 says that an orbifold is locally homeomorphic do the
quotient of Rn by some finite group.

When an orbifold as a whole is quotient of some finite group acting on a manifold
we say, that it is ’good’. Otherwise we say, that it is ’bad’.

In two dimensions there are only four types of bad orbifolds, namely :

• (n) – S2 with only one rotational orbipoint

• (∗n) – D2 with only one dihedral orbipoint

• (n1n2) for n1 < n2 – S2 with two rotational orbipoints of different degrees

• (∗n1n2) for n1 < n2. – D2 with two dihedral orbipoints of different degrees

All other orbifolds are good – [Thu79] (theorem 13.3.6).
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1.7.2 Metric structures

As described and proved in [Thu79] (13.3.6.) orbifold O (in the sense of a non-extended
definition from [Thu79]) is good iff have either :

• if χorb(O) > 0 – an elliptic structure, i.e some metric with constant sectional
curvature equal 1,

• if χorb(O) = 0 – a parabolic structure, i.e some metric with constant sectional
curvature equal 0,

• if χorb(O) < 0 – a hyperbolic structure. i.e some metric with constant sectional
curvature equal −1,

With an elliptic or a hyperbolic metric structure, we can measure the area of the
orbifold as

A(O) =
∣∣∣∣∫
O
KdA

∣∣∣∣ (1.7.2.0.1)

Also, as stated in [Thu79] (13.3.5.), the Gauss-Bonnet theorem works also for orbifolds
and we have that integral over curvature is independent of the particular metric
chosen and is proportional to χorb:∫

O
KdA = 2π

∣∣∣χorb(O)
∣∣∣ , (1.7.2.0.2)

thus having that the area is:

A(O) = 2π
∣∣∣χorb(O)

∣∣∣ . (1.7.2.0.3)

As mentioned in [Thu79] (Theorem 13.3.6), there are only 3 families of elliptical
orbifolds (grouped with respect to base manifolds):

• S2: (ε), (n), (nn), (2 2 n), (2 3 3), (2 3 4), (2 3 5),

• D2: (∗), (∗nn), (∗2 2 n), (∗2 3 3), (∗2 3 4), (∗2 3 5), n∗, 2 ∗m, 3 ∗ 2,

• RP 2: (×), (n×).

only 17 parabolic orbifolds total (with 7 different families, with respect to possible
base manifolds):

• S2: (2 3 6), (2 4 4), (3 3 3), (2 2 2 2),

• D2: (∗2 3 6), (∗2 4 4), (∗3 3 3), (∗2 2 2 2), (2 ∗ 2 2), (3 ∗ 3), (4 ∗ 2), (2 2∗),

• RP 2: (2 2×),

• T2: (◦),

• Klein bottle: (××),

• annulus: (∗∗),
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• Möbius band: (∗×),

and infinitely many families of hyperbolic orbifolds.
The proof from [Thu79] (theorem 13.3.6.) can be also adapted to the case of

orbifolds in a sense of definition extended by subsection 1.3.3, to show that they also
admit metric structure with finite area and that equations 1.7.2.0.1, 1.7.2.0.2 and
1.7.2.0.3 also holds in elliptic and hyperbolic cases. In this case however, the metric
won’t be defined on the cusp points themselves (which lie in the compactification).

Our main goal in this thesis is to describe possible areas of two dimensional
orbifolds, especially those with hyperbolic structure. As from 1.7.2.0.3 we have direct
correspondence between areas and Euler orbicharacteristics, to do this, we will try
to describe possible Euler orbicharacteristic of two dimensional orbifolds.

1.8 Notation and terminology

1.8.1 Difference in Euler orbicharacteristic

We will denote the difference in Euler orbicharacteristic which is made by modifying
an orbifold by a feature α as

∆(α). (1.8.1.0.1)

Let us observe, that this is well defined, since the difference of Euler orbicharacter-
istic between orbifolds O1 and O2, defined by the lists differing by one feature is
independent of O1, nor O2, nor the choice of the list describing them at depends only
on the feature.

1.8.2 Expressions involving ∞
If not stated otherwise, in the expressions containing ∞ symbol, their value is
understood as ϕ(∞) := lim

n→∞
ϕ(n). Only expressions where such limits exists will

occur without further notice.

1.8.3 Sets of numbers

For A,B ⊆ R, we define

A+B := {a+ b | a ∈ A, b ∈ B}, (1.8.3.0.1)
AB := {ab | a ∈ A, b ∈ B}. (1.8.3.0.2)

For A ⊆ R and r ∈ R, we define:

r + A = A+ r := {a+ r | a ∈ A}, (1.8.3.0.3)
rA = Ar := {ar | a ∈ A}. (1.8.3.0.4)
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1.9 Spectra
We will call the set of all possible Euler orbicharacteristic of a M -orbifolds, the
spectrum of M and we will denote it by σ(M). We will denote the set of all possible
Euler orbicharacteristic of a M -orbifolds that have only rotational orbipoints by
σr(M). We would denote the set of all possible Euler orbicharacteristic of a M -
orbifolds that have only dihedral orbipoints by σd(M), but from this section, it
follows that we always have σd(M) = σ(M).

We will also denote the sum of spectra of all two dimensional manifolds by:

σ :=
⋃
M

σ(M), (1.9.0.0.1)

where sum is taken other all compact two dimensional manifolds possibly with
boundary. This will be the main interest of this thesis.

Now we want to derive the form of the σ(M). For a manifold M with h handles,
c cross-cups and b boundary components, it’s Euler characteristic is given by:

χ(M) = 2− 2h− c− b. (1.9.0.0.2)

The sets of ∆ for possible orbifold features are:
• for b 6= 0:

{−n− 1
2n

∣∣∣ n ∈ N>0 ∪ {∞}} (1.9.0.0.3)

• for b = 0:
{−n− 1

n

∣∣∣ n ∈ N>0 ∪ {∞}}. (1.9.0.0.4)

Thus, we have that:

Observation 1.9.0.1. The form of the spectrum of two dimensional manifold M is:
• for b 6= 0:

σ(M) = χ(M)−
{

n∑
i=1

di − 1
2di

∣∣∣ n ∈ N0, di ∈ N>0 ∪ {∞}
}

(1.9.0.1.1)

• for b = 0:

σ(M) = χ(M)−
{

n∑
i=1

ri − 1
ri

∣∣∣ n ∈ N0, ri ∈ N>0 ∪ {∞}
}
. (1.9.0.1.2)

Observation 1.9.0.2. We have that σ(S2) = 2σ(D2).

Proof.

Indeed, since:

σ(S2) = 2−
{

n∑
i=1

ri − 1
ri

∣∣∣ n ∈ N0, ri ∈ N>0 ∪ {∞}
}

(1.9.0.2.1)

and

σ(D2) = 1−


m∑
j=1

dj − 1
2dj

∣∣∣ m ∈ N0, dj ∈ N>0 ∪ {∞}

 .� (1.9.0.2.2)
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Observation 1.9.0.3. For every two dimensional manifold M , we have that σ(M)
is homeomorphic to σ(D2). This homeomorphism is:
• for b 6= 0:

σ(M) = σ(D2) + χ(M)− 1, (1.9.0.3.1)

• for b = 0:
σ(M) = 2σ(D2) + χ(M)− 2. (1.9.0.3.2)

Proof.

For a manifold M with h handles, c cross-cups and b boundary components, it’s
σ(M) is given by:
• for b 6= 0:

σ(M) = χ(M)−
{

n∑
i=1

di − 1
2di

∣∣∣ n ∈ N0, di ∈ N>0 ∪ {∞}
}

(1.9.0.3.3)

• for b = 0:

σ(M) = χ(M)−
{

n∑
i=1

ri − 1
ri

∣∣∣ n ∈ N0, ri ∈ N>0 ∪ {∞}
}
. (1.9.0.3.4)

On the other hand, we have that:

σ(D2) = 1−
{

n∑
i=1

di − 1
2di

∣∣∣ n ∈ N0, di ∈ N>0 ∪ {∞}
}

(1.9.0.3.5)

σ(S2) = 2−
{

n∑
i=1

ri − 1
ri

∣∣∣ n ∈ N0, ri ∈ N>0 ∪ {∞}
}

(1.9.0.3.6)

and
σ(S2) = 2σ(D2). (1.9.0.3.7)

From this, the observation follows immediately. �

Observation 1.9.0.4. For every manifold M , for every x ∈ σ(M), we have that
x ¬ χ(M).

1.10 Egyptian fractions
Egyptian fraction is a finite sum of fractions, all with numerators one and positive
denominators. Most of the time it is also required, that the fractions in the sum have
pairwise distinct denominators. We will however take less usual convention and will
drop that requirement, calling an Egyptian fraction any sum of unitary fractions.

As a side remark, we can say, that even in case of the usual, more strict definition,
every positive rational number can be expressed as an Egyptian fraction. One of the
methods to do so was described in [Eng13].

In our less strict definition, we can always have m
n

=
1
n

+ · · ·+ 1
n︸ ︷︷ ︸

m times

.
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1.10.1 Connection between spectra and Egyptian fractions

The terms − ri−1
ri

in the sum 1.6.2.1.5 can be expressed as −1 + 1
ri

and the term
−dj−1

2dj
in the sum 1.6.2.1.6 can be expressed as −1

2 + 1
2dj

. Then the sums become:

χ(M)− n+
n∑
i=1

1
ri︸ ︷︷ ︸

Egyptian
fraction

(1.10.1.0.1)

and
χ(M)− m

2
+

1
2

m∑
j=1

1
dj︸ ︷︷ ︸

Egyptian
fraction

. (1.10.1.0.2)

In this form, the Egyptian fractions are explicitly present in expressions of points
in σ(M).

The −n and −m
2 terms provide constraints on the number of fractions that can

appear in the sum.
We will now translate the questions of being in the spectrum to the questions of

being expressible as Egyptian fraction with the particular number of summands. It
will be used in 3.3.1.1, 5.1.0.4 and 5.2.1.1.

We will now state two corollaries that follows immediately from the form of
expressions 1.10.1.0.1 and 1.10.1.0.2, and from 1.9.0.1.

Corollary 1.10.1.1. If x can be expressed as an Egyptian fraction with n summands,
then for any two dimensional manifold M we have:

χ(M)− n+ x ∈ σ(M) (1.10.1.1.1)

and, if M has at least one boundary component also:

χ(M)− n

2
+

1
2
x ∈ σ(M). (1.10.1.1.2)

Corollary 1.10.1.2. If for some two dimensional manifoldM we have that y ∈ σ(M)
as an Euler orbicharacteristic of an orbifold which has n rotational orbipoints and
not any other, then

y + n− χ(M) (1.10.1.2.1)

can be expressed as an Egyptian fraction with n (not necessarily distinct) summands.
If for some two dimensional manifold M with at least one boundary component

we have that y ∈ σ(M) as an Euler orbicharacteristic of an orbifold which has m
dihedral orbipoints and not any other, then

2y +
m

2
− 2χ(M) (1.10.1.2.2)

can be expressed as an Egyptian fraction with m (not necessarily distinct) summands.

Theorem 1.10.1.3. For any q ∈ Q and any k ∈ N0, there are only finitely many
Egyptian fractions equal to q with k summands.
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Proof.

Let 1
n1

+ · · ·+ 1
nk

be the Egyptian fraction of q, such that 1
n1
­ · · · ­ 1

nk
.

Let us observe, that then 1
n1
­ q

k
. From, this, we have that n1 ¬ k

q
, so there are

only finitely many values, that n1 can take. Let n′1 be the smallest value n1 can take,
such that 1

n′1
< q. Then, we have that 1

n2
­ · · · ­ 1

nk
­ q − 1

n′1
.

We can make an inductive argument, that if n′1, n′2, · · · , n′i−1 are such smallest
values for n1, n2, · · · , ni−1, that for every 1 ¬ j ¬ i− 1 we have that

1
n′j

< q − 1
n′1
− 1
n′2
− · · · − 1

n′j−1
, (1.10.1.3.1)

then we have, that 1
ni

+ · · ·+ 1
nk
­ q − 1

n′1
− 1

n′2
− · · · − 1

ni−1
. As such, we have, that

1
ni
­ 1
k − i+ 1

(
q − 1

n′1
− 1
n′2
− · · · − 1

ni−1

)
, (1.10.1.3.2)

so we have that
ni ¬

k − i+ 1
q − 1

n′1
− 1

n′2
− · · · − 1

ni−1

, (1.10.1.3.3)

so for every 1 ¬ i ¬ k. there only finitely many values, that ni can take. As such,
there are only finitely many Egyptian fractions of q of k summands. �

1.11 Operations on orbifolds
As stated in section 1.5 we will often see two dimensional orbifold as a sphere S2 with
a collection of features. Throughout the thesis we will frequently refer to performing
the "operation" on an orbifold consisting of removing and adding those features.
What we mean by this is giving as a result of an operation on one orbifold, defined
by some list of features on a sphere, another one with a modified list of features
according to the described operation.

When we will be talking about "adding" or "removing" a feature from an orbifold,
we will mean adding or removing this feature from a list defining this orbifold and
taking the orbifold defined by resulting list as a result of the operation.

As our main interest is to determine, for a given rational number p
q
which orbifolds

have p
q
as their Euler orbicharacteristic and for a given orbifold O, which orbifolds

have the same Euler orbicharacteristic as O, we will be particularly interested in
such operations that do not change Euler orbicharacteristic, which will be used in
section 2.2.

1.12 Questions asked
There will be two main parts of question:
• Ones regarding σ as a set, where we will be asking of its order type and topology

and relation to other sets such as σ(D2) and σ(S2). We will focus on these questions
in chapter 3.
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• Ones regarding σ as an image of a χorb, sending orbifolds to their Euler
orbicharacteristics. There, we will ask for example how many orbifolds have particular
Euler orbicharacteristic and related questions. We will focus on these questions in
the chapter 5.
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Chapter 2

Reduction to arithmetical questions

Reductions presented in this chapter will be more in the spirit of chapter 3, in the
sense that for now, until chapter 5 , we will not pay attention to how many orbifolds
have the same Euler orbicharacteristic, only whether a particular number is an Euler
orbicharacteristic for at least one orbifold or not.

In chapter 5 we will explain how these reductions will be relevant to the discussion
held there.

2.1 Reductions of cases
The aim of following reductions is to make it easier to answer the question of which
points lie in σ and which not.

The first aspect of the structure of σ that we would like to simplify is that it is
the sum of σ(M), for every two dimensional manifold M .

σ =
⋃
M

σ(M), (2.1.0.0.1)

where the sum is taken other all compact, two dimensional manifolds, possibly with
boundary.

We aim to find a minimal setM of base manifolds such that:

σ =
⋃

M∈M
σ(M). (2.1.0.0.2)

It will turn out thatM = {S2, D2} satisfies 2.1.0.0.2 and that both S2 and D2

are necessarily.

2.2 Sufficiency of S2 and D2

Given an orbifold O1, we want to perform some operations from 1.11 on it, such that
the resulting orbifold O2 will have the same Euler orbicharacteristic, but the base
manifold of O2 would be S2 or D2. We would then say, that O1 got reduced to O2.
In following subsection, we allow only such operations, that do not change Euler
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orbicharacteristic. When writing that we "can" do something we mean that there is
possible one of the operations from 1.11.

The Euler characteristic of base manifold depends only on the number of handles,
cross caps and boundary components. And, as stated in 1.6 it is:

2− 2h− c− b, (2.2.0.0.1)

for h - number of handles, c - number of cross-caps, b - number of boundary compo-
nents.

For every such a manifold feature we want to find an orbifold features with the
same Euler orbicharacteristic delta.

We will take two approaches, depending on whether the orbifold in question has
a boundary or not.

2.2.1 Orbifold without boundary

We can observe that:

∆(◦) = −2 = ∆(24) (2.2.1.0.1)
∆(×) = −1 = ∆(22) (2.2.1.0.2)

From this we can see that we can remove handles and cross-caps from any orbifold
without the boundary. After such reductions we are left with a S2 orbifold with all
orbipoints being rotational in the interior.

2.2.2 Orbifold with boundary

We can observe that:

∆(◦) = −2 = ∆((∗2)8) (2.2.2.0.1)
∆(∗) = −1 = ∆((∗2)4) (2.2.2.0.2)

∆(×) = −1 = ∆((∗2)4) (2.2.2.0.3)

From this we can see that we can remove handles and cross-caps from any orbifold
with a boundary. We can also remove all boundary components except one. We can
further observe that:

∆(n) =
n− 1
n

= 2
n− 1

2n
= ∆((∗n)2) (2.2.2.0.4)

From this we see that we can remove all the rotational orbipoints in favor for dihedral
orbipoints. After such reductions we are left with a D2 orbifold with all orbipoints
being dihedral on the boundary or being reflectional on the boundary.

As a fact not necessary for our reductions, but interesting on its own, we can
furthermore, observe that:

Observation 2.2.2.1. If O1 has not S2 as its base manifold it can be reduced to a
D2-orbifold.
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Proof.

If O1 has not S2 as its base manifold M , then M has at least one handle or a
cross-cup. We can observe that:

∆(◦) = −2 = ∆(∗(∗2)4) (2.2.2.1.1)
∆(×) = −1 = ∆(∗). (2.2.2.1.2)

From this we have that the handle or the cross-cap can be replaced by a boundary
component and some number of boundary orbipoints. After this reduction, we can
proceed with all the other reductions from the 2.2.2 and obtain an D2-orbifold with
the same Euler orbicharacteristicas the original one. �

The results of our reductions, can be summarised as:

Observation 2.2.2.2. If two-dimensional manifold M has no boundary, then

σ(M) ⊆ σ(S2) (2.2.2.2.1)

If, in addition, M 6= S2, then

σ(M) ⊆ σ(D2). (2.2.2.2.2)

Observation 2.2.2.3. If two-dimensional manifold M has a boundary, then

σ(M) ⊆ σ(D2) (2.2.2.3.1)

Corollary 2.2.2.4. We have that σ = σ(S2) ∪ σ(D2).

Observation 2.2.2.5. If a two-dimensional manifold M has a boundary, then:

σ(M) = σd(M). (2.2.2.5.1)

We will postpone our discussion of necessity of both S2 and D2 to 2.5, after the
section 2.3 which will provide us with more convenient language.

2.3 Reduction to arithmetical questions
As written in 1.9, we can express an Euler orbicharacteristicof a M -orbifold O as:

χorb(O) = χ(M)−
n∑
i=1

ri − 1
ri
−

m∑
j=1

dj − 1
2dj

, (2.3.0.0.1)

where ri and dj are degrees of the, respectively, rotational and dihedral orbipoints of
O.

From this we can express σ(M) as:

σ(M) = χ(M)−
{

n∑
i=1

ri − 1
ri

∣∣∣ n ∈ N0, ri ∈ N>0 ∪ {∞}
}

+ (2.3.0.0.2)

−


m∑
j=1

dj − 1
2dj

∣∣∣ m ∈ N0, dj ∈ N>0 ∪ {∞}

 . (2.3.0.0.3)
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As from 2.2 we know that σ = σ(S2)∪σ(D2), and that χ(S2) = 2 and χ(D2) = 1,
we can express σ as a sum (∪) of two sets:

2−
{

n∑
i=1

ri − 1
ri

∣∣∣ n ∈ N0, ri ∈ N>0 ∪ {∞}
}

= σ(S2) (2.3.0.0.4)

and

1−


m∑
j=1

dj − 1
2dj

∣∣∣ m ∈ N0, dj ∈ N>0 ∪ {∞}

 = σ(D2). (2.3.0.0.5)

From this we see, that the core of understanding σ through arithmetical viewpoint
is to understand possible values of expression:

2−
n∑
i=1

ri − 1
ri

(2.3.0.0.6)

and
1−

m∑
j=1

dj − 1
2dj

, (2.3.0.0.7)

with ri and dj ranging over N>0 ∪ {∞}.

2.3.1 Remark about cusps

As ∆(∞) = 1 = ∆(22) and ∆(∗∞) = 1
2 = ∆((∗2)2), we could perform further

reductions to have an orbifold with particular orbicharacteristic without cusps (if
needed) and then (after these reductions) we can analyse only expressions with ri
and dj ranging over N>0 and they will still give us full spectrum.

2.4 Hurwitz theorem
One of the well known facts about two-dimensional orbifolds comes from [Hur93]
(page 424):

Theorem 2.4.0.1. The number of automorphisms which a smooth, connected Rie-
mann surface of genus g > 1 can have, amounts at maximum to 84(g − 1).

Since all hyperbolic orbifolds are good, the quotient of a smooth hyperbolic
manifold by some automorphism is a hyperbolic orbifold and 1.6.2.1.2, above theorem
is equivalent to the one, that the orbifolds with hyperbolic structure can have an Euler
orbicharacteristic at most − 1

84 . Here we will present the proof of this formulation of
this result.

Theorem 2.4.0.2. If a two dimensional orbifold admits hyperbolic structure, then
the maximal Euler orbicharacteristic it can have is − 1

84 and the only orbifold that
realises this Euler orbicharacteristic is ∗2 3 7.
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Proof.

From 2.2 we know, that to check whether − 1
84 is maximal negative Euler orbicharac-

teristic a two dimensional orbifold can have, we only need to check possible Euler
orbicharacteristics of S2 orbifolds and D2 orbifolds.

Firstly, we will show, that ∗2 3 7 has biggest negative Euler orbicharacteristic
from all D2 orbifolds and its the only one with this Euler orbicharacteristic from D2

orbifolds.
We have that

χorb(∗2 3 7) = 1− 1
4
− 2

6
− 6

14
= − 1

84
. (2.4.0.2.1)

From 1.9 we know, that σ(D2) = σd(D2), so we can consider only dihedral orbipoints.
Let us observe, that since max{∆(∗n) | n ∈ N>0 ∪ {∞}} = 1

2 , we have, that to have
Euler orbicharacteristic < 0, D2 orbifold has to have at least 3 orbipoints.

Let us observe, that for any D2 orbifold that have 5 orbipoints or more, it has
an Euler orbicharacteristicequal at most 1− 51

4 = −1
4 < −

1
84 . So we can restrict our

search only to orbifolds with at most 4 orbipoints.
Let us observe, that ∗2 2 2 3 and ∗3 3 4 are D2 orbifolds with the biggest

negative Euler orbicharacteristic among orbifolds, respectively, with four orbipoints,
and, without any point of degree 2. The proof of this observation is, that any other
orbifold of these respective kinds, would need to have all degrees of orbipoints (when
ordered in increasing manner) pairwise ­ than ∗2 2 2 3 or ∗3 3 4.

Let us observe, that

χorb(∗2 2 2 3) = 1− 1
4
− 1

4
− 1

4
− 2

6
= − 1

12
< − 1

84
(2.4.0.2.2)

and
χorb(∗3 3 4) = 1− 2

6
− 2

6
− 3

8
= − 1

24
< − 1

84
, (2.4.0.2.3)

From this, we can conclude, that we can restrict our search only to orbifolds with
exactly 3 orbipoints, where at least one of them is equal to 2.

Let us observe, that for such orbifold to have negative Euler orbicharacteris-
tic, it needs to have at two orbipoints of order at least 3, otherwise it has Euler
orbicharacteristic at most

χorb(∗2 2 ∞) = 1− 1
4
− 1

4
− 1

2
= 0. (2.4.0.2.4)

Further, let us observe, that ∗2 4 5 has the greatest negative Euler orbicharacter-
istic among orbifolds that have no orbipoint of degree 3. The proof of this observation
is similar to the proof of the previous one – any other orbifold of this kind, would
need to have all degrees of orbipoints (when ordered in increasing manner) pairwise
­ than ∗2 4 5.

Let us observe, that

χorb(∗2 4 5) = 1− 1
4
− 3

8
− 4

10
= − 1

40
< − 1

84
. (2.4.0.2.5)
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From this, we conclude, that we can restrict our search to the orbifolds of the form
∗2 3 n. We can also observe, that all orbifolds of the form ∗2 3 n have unique Euler
orbicharacteristic among this group. The one with the biggest Euler orbicharacteristic
among them is ∗2 3 7.

Let us observe that no D2 orbifold with rotational orbipoints can’t have such
Euler orbicharacteristic. For the sake of contradiction, let us assume that there is
some orbifold r1 · · · rn ∗ d1 · · · dm, with n 6= 0, with Euler orbicharacteristic equal to
− 1

84 . However, then also ∗r1r1 · · · rnrnd1 · · · dm, with only dihedral orbipoints, would
have Euler orbicharacteristic equal to − 1

84 . However, ∗2 3 7 is unique one with this
Euler orbicharacteristic and it have no repeated degree, so it can’t be expressed in
the form ∗r1r1 · · · rnrnd1 · · · dm with n 6= 0.

Let us also observe, that the same argument shows that RP 2 orbifolds can’t have
Euler orbicharacteristic equal to − 1

84 , since χRP
2 = χD2 and RP 1 has no boundary,

so RP 2 orbifold can have only rotational orbipoints.
Now, we will prove, that no S2 orbifold has Euler orbicharacteristic − 1

84 . Since
we have 1.9.0.2 We can perform following argument:

For the sake of contradiction let us assume, that − 1
84 ∈ σ(S2), then, from 1.9.0.2

we know, that 1
2

(
− 1

84

)
∈ σ(D2). This is a contradiction as 0 > 1

2

(
− 1

84

)
> − 1

84 . As
such, we ruled out all manifolds with Euler characteristic > 0.

For two dimensional manifolds with Euler characteristic ¬ 0, we have that
orbifolds having them as a base manifolds have Euler orbicharacteristicat most
−1

4 < −
1
84 . �

2.5 Necessity of S2 and D2

As we know from 1.11 adding an orbipoint to a manifold decreases it’s orbicharacter-
istic. As S2 has the highest Euler characteristic: 2 of all two dimensional manifolds,
there is no other orbifold with Euler orbicharacteristic equal to 2. S2 is then necessary
to include 2.

As known from 2.4, the number − 1
84 ∈ σ(D2), it is the greatest negative Euler

orbicharacteristicany two dimensional orbifold can have and − 1
84 6∈ σ(S2). �

Further examination of connections between σ(D2) and σ(S2) is performed in
3.3.2.
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Chapter 3

Order type and topology

In this chapter we will discuss that both the order type and the topology inherited
from R of the set σ of all possible Euler orbicharacteristics of two-dimensional
orbifolds are that of ωω.

This ωω will lie in R in reverse order, i.e. for x, y ∈ σ, such that such that x <R y,
we will have x >ωω y. As such, set σ will be treated as having the order type ωω in
the sense of having order type ωω inherited from the reversed order in R. However,
when referring to a particular elements of σ as "greater" or "smaller" with respect
to each other, we will use the usual order from R.

To determine order type and topology of σ we will first study how σ(D2) looks
like. Then, remembering that σ = σ(S2) ∪ σ(D2) and σ(S2) = 2σ(D2) we will make
an argument for σ.

3.1 Order type and topology of σ(D2)

In this section we will also describe precisely where accumulation points of σ(D2) lie
and of which order (see below 3.1.1 or A.1) they are. Analysis of locations of those
accumulation points, as interesting as it is alone will also be necessary for providing
our argument about order type and topology of σ(D2).

3.1.1 Definition of order of accumulation points

These definitions are exactly the same as from appendix A.1 and are repeated here
only for the readers convenience.

We start with definition of being "at least of order n" that will be almost what we
want and then, there will be the definition of being "order", which is the definition
that we need.
For a given set we define as follows:

Definition 3.1.1.1. (Inductive). We say that the point x is an accumulation point
of a set X of order at least 0, when it belongs to the set X. We say that the point x
is an accumulation point of a set of order at least n+ 1, when it is an accumulation
point (in the usual sense) of the accumulation points each of order at least n i.e. in
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every neighbourhood of x there is at least one accumulation point of a set X of order
at least n, distinct from x.

Definition 3.1.1.2. We say that the point is an accumulation point of order n iff it
is an accumulation point of order at least n and it is not an accumulation point of
order at least n+ 1. If the point is an accumulation point of order at least n for an
arbitrary large n we say that the point is an accumulation point of order ω.

When we will say that a point is an accumulation point of some set without
specifying an order then we will mean being an accumulation point in the usual
sense; from the point of view of above definitions, that is, an accumulation point of
order at least one.

3.1.2 Analysis of locations of accumulation points of σ(D2)
with respect to their order

We want to determine where exactly are accumulation points of the set σ(D2) with
respect to their orders.

For this we will use a handful of observations and lemmas.

Observation 3.1.2.1. Let us observe, that lim
n→∞

∆(∗n) = −1
2 . From that, we see,

that for every point x ∈ σ(D2), the point x − 1
2 is an accumulation point. Let us

observe, that also, for every point x ∈ σ(D2), we have that x− 1
2 ∈ σ(D2), because

∆(∗∞) = −1
2 .

Lemma 3.1.2.2. For all n ∈ N­2 and x ∈ (−∞, 1] there are only finitely many
Euler orbicharacteristics in the interval [x, 1]∩ σ(D2) of orbifolds that have points of
order equal at most n.

Proof.

Let x ∈ (−∞, 1]. There can be at most b4(1 − x)c orbipoints on the D2 orbifold
with an Euler orbicharacteristic y ∈ [x, 1] since each orbipoint decreases an Euler
orbicharacteristic by at least 1

4 and the Euler characteristic of D2 is 1.
There are only (n− 1)b4(1−x)c possible sets of b4(1− x)c orbipoints’ orders that

are less or equal than n. Hence, there are only at most (n− 1)b4(1−x)c possible Euler
orbicharacteristics.

Lemma 3.1.2.3. If x is an accumulation point of the set σ(D2) of order n, then
x− 1

2 is a accumulation point of the set σ(D2) of order at least n+ 1.

Proof.

Inductive.
• n = 0: If x is an isolated point of the set σ(D2), then x ∈ σ(D2). From that,

we have, that points x− k−1
2k are in σ(D2) for all k ­ 1, from that, that x− 1

2 is a
accumulation point of σ(D2).
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• inductive step: Let x be an accumulation point of the set σ(D2) of an order
n > 0. Let ak be a sequence of accumulation points of order n− 1 convergent to x.
From the inductive assumption, we have, that ak − 1

2 is a sequence of accumulation
points of order at least n. From the basic sequence arithmetic it is convergent to
x− 1

2 . From that, we have that x− 1
2 is an accumulation point of the set σ(D2) of

order at least n+ 1. �

Lemma 3.1.2.4. If x is an accumulation point of the set σ(D2) of order n, then
x+ 1

2 is an accumulation point of the set σ(D2) of order at least n− 1.

Proof.

Inductive
• n = 1: We assume, that x is an accumulation point of isolated points of the

set σ(D2). From 3.1.2.2 we know, that for all m there are only finitely many Euler
orbicharacteristics in the interval [x, 1] of orbifolds that have dihedral points of order
equal at most m.

From that, for arbitrary small neighborhood U 3 x and arbitrary large m there
exist an orbifold that has a dihedral point of period grater than m, whose Euler
orbicharacteristic lies in U . Let us take a sequence of such Euler orbicharacteristics
ak convergent to x, that we can choose a divergent to infinity sequence of degrees of
dihedral points bk of orbifolds of Euler orbicharacteristics equal ak.

Let us observe, that for all k, the number ak + bk−1
2bk

is in σ(D2). It is so, because
ak is an Euler orbicharacteristic of an orbifold that have a dihedral point of period bk,
so identical orbifold, only without this dihedral point, has an Euler orbicharacteristic
equal to ak + bk−1

2bk
.

Figure 3.1.2.4.1: Sequences {an} and {an + bn−1
2bn
}.

The sequence ak + bk−1
2bk

converge to x+ 1
2 . From that we have, that x+ 1

2 is an
accumulation point of the set σ(D2) of order at least 0.
• inductive step: Let x be an accumulation point of the set σ(D2) of order n > 1. Let
ak be a sequence of accumulation points of the set σ(D2) of order n−1 convergent to
x. From the inductive assumption the sequence ak+ 1

2 is a sequence of an accumulation
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points of the set σ(D2) of order n− 2 convergent to x + 1
2 . From that x + 1

2 is an
accumulation point of the set σ(D2) of order at least n− 1. �

Lemma 3.1.2.5. If x is an accumulation point of the set σ(D2) of order n+ 1, then
x− 1

2 is an accumulation point of the set σ(D2) of order n+ 2 and
x+ 1

2 is an accumulation point of the set σ(D2) of order n.

Proof.

Let x be an accumulation point of the set σ(D2) of order n + 1. From the lemma
3.1.2.3 we know, that x − 1

2 is an accumulation point of the set σ(D2) of order at
least n+ 2. Now let us assume (for a contradiction), that x− 1

2 is an accumulation
point of the set σ(D2) of order k > n+ 2. But then from the lemma 3.1.2.4 we have
that x is an accumulation point of the set σ(D2) of order at least n+ 2 and that is a
contradiction.

Analogously, from the lemma 3.1.2.4 we know, that x+ 1
2 is a accumulation point

of the set σ(D2) of order at least n. Let us assume (for a contradiction), that x+ 1
2

is an accumulation point of the set σ(D2) of order k > n. But then from the lemma
3.1.2.3 we have that x is an accumulation point of the set σ(D2) of order at least
n+ 2 and that is a contradiction. �

Lemma 3.1.2.6. For all n ∈ N all accumulation points of the set σ(D2) of order n
are in σ(D2).

Proof.

Inductive
• n = 0: Clear, as they are isolated points of σ(D2).
• inductive step: Let x be a accumulation point of the set σ(D2) of order n > 0.

From the lemma 3.1.2.5 point x + 1
2 is an accumulation point of the set σ(D2) of

order n− 1. From the inductive assumption x+ 1
2 ∈ σ(D2). Then, from 3.1.2.1, we

have that x ∈ σ(D2). �

Corollary 3.1.2.7. Set σ(D2) is closed in R.

Theorem 3.1.2.8. The greatest accumulation point of the set σ(D2) of order n is
1− n

2 .

Proof.

Inductive
• n = 0: We know, that 1 ∈ σ(D2) and 1 is the greatest element of σ(D2).
• an inductive step: From the inductive assumption we know that 1− n

2 is the
greatest accumulation point of the set σ(D2) of order n. From the lemma 3.1.2.5 we
have then that 1− n+1

2 is a accumulation point of the set σ(D2) of order n+ 1. Let
us assume (for a contradiction), that there exist a bigger accumulation point of order
n+ 1 equal to y > 1− n+1

2 . But then, from lemma 3.1.2.5, point y + 1
2 would be an

accumulation point of order n, what gives a contradiction, because y + 1
2 > 1− n

2 . �
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From the above discussion we can also formulate following corollary that will be
useful later:

Corollary 3.1.2.9. Let x ∈ σ(D2). Then:

• there exists n1 ∈ N such that x+ n1
2 ∈ σ(D2) but x+ n1+1

2 6∈ σ(D2).
In other words, there exist y ∈ σ(D2) and n1 ∈ N such that y + 1

2 6∈ σ(D2) and
such that x = y − n1

2 ;

• there exists n2 ∈ N such that x is an accumulation point of the set σ(D2) of
order n2

and n1 = n2.

3.1.3 Proof that σ(D2) is well ordered

Definition 3.1.3.1. Let B0 = {1}. For an n ∈ N>0, let Bn be the set of all possible
Euler orbicharacteristic realised by orbifolds of type ∗∗b1, · · · ,∗ bn. For a given n these
are D2 orbifolds with precisely n non trivial orbipoints on their boundary.

Observation 3.1.3.2. There is a recursive relation, that Bn+1 = Bn+{−n−1
2n | n ­ 2}

Proof.

It is so, because every orbifold with n+ 1 orbipoints can be obtained by adding one
point to an orbifold with n orbipoints and the set {−n−1

2n | n ­ 2} = {∆(∗b) | b ­ 2}.
�

Observation 3.1.3.3. Observe that, as any orbifold has only finitely many orbipoints,
we have that σ(D2) ⊆

∞⋃
n=0

Bn. We defined σ(D2) as a set of all possible Euler

orbicharacteristic of disk orbifolds, so σ(D2) ⊇
∞⋃
n=0

Bn. From this we have that

σ(D2) =
∞⋃
n=0

Bn.

Lemma 3.1.3.4. For any given n ∈ N the set Bn is a subset of the interval
[1− n

2 , 1−
n
4 ].

Proof.

Take x ∈ Bn. There exists an orbifold O with signature ∗b1, · · · , bn, such that
χorb(O) = x. We have that ∀i− 1

2 ¬ ∆(∗bi) ¬ −1
4 . From this −n

2 ¬ ∆(∗b1, · · · ,∗ bn) ¬
−n

4 , so χ
orb(O) ∈ [1− n

2 , 1−
n
4 ]. �

Observation 3.1.3.5. From 3.1.3.2 and A.2.0.1, we have that Bn do not have
infinite ascending sequence for all n.

Further, from A.2.0.2 we conclude, that
N⋃
n=0

Bn do not have infinite ascending

sequence for all N .

Theorem 3.1.3.6. In σ(D2) there are no infinite strictly ascending sequences, hence,
it is well ordered.
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Proof.

For the sake of contradiction lets assume that cn is an infinite strictly ascending
sequence in σ(D2). As cn is bounded from below by c0 and whole σ(D2) is bounded
from above by 1, all elements of cn are in the interval [c0, 1]. From 3.1.3.3 we have,
that σ(D2) =

∞⋃
n=0

Bn.

Lemma 3.1.3.4 says that for all n we have Bn ⊂ [1 − n
2 , 1 −

n
4 ]. From this, we

know, that for any n such that 1− n
4 < c0 we have, that Bn ∩ [c0, 1] = ∅. Let n0 be

the smallest such that 1− n0
4 < c0 (so n0 > 4(1− c0)). Then for all n > n0 we have

1− n
4 < c0, meaning, that for all n > n0 we have Bn ∩ [c0, 1] = ∅, so all elements of

cn are in
n0⋃
n=0

Bn. But this contradicts 3.1.3.5. �

3.1.4 Proof that order structure and topology of σ(D2) are
those of ωω

Theorem 3.1.4.1. Order type and topology inherited from R of σ(D2) are ωω.

Proof.

We will first prove, that the order type of σ(D2) is ωω.
• Order type of σ(D2) is at least ωω.
From 3.1.2.8 we know, that for every n ∈ N, in σ(D2) there are accumulation

points of order n. From this, and from A.2.0.4 we know that σ(D2) has an order
type at least ωn, for all n ∈ N. The smallest ordinal number equal at least ωn, for all
n ∈ N is ωω. Thus, the order type of σ(D2) is at least ωω.

• Order type of σ(D2) is at most ωω.
For the sake of contradiction, let us suppose, that the order type η of σ(D2) is

strictly greater than ωω. Then, σ(D2) has a set A of an order type ωω as it’s prefix.
The set A is bounded, as the ωω + 1st element of σ(D2) is greater than any element
of A. Let n, be such that 1− n

2 is smaller than any element of A. As A is of order
type ωω it has a prefix B of order type ωn. From A.2.0.4 we know, that B has an
accumulation point b of order n. This gives us a contradiction, as b > 1 − n

2 , and
from 3.1.2.8 we know, that 1−n

2 is the greatest accumulation point of order n in σ(D2).

Now, we will prove, that the topology inherited from R on σ(D2) is that of ωω.
From 3.1.2.6 we know that every accumulation point of σ(D2) is in σ(D2). Thus,

σ(D2) satisfies the assumptions of the lemma A.2.0.3 and we have that the topology
of σ(D2) inherited from R is ωω.

3.2 Order type and topology of σ
Theorem 3.2.0.1. The order type of the set and topology inherited from R of the
set of possible Euler orbicharacteristics of two-dimensional orbifolds σ is ωω.
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Proof.

From 2.2 we know, that σ = σ(D2) ∪ σ(S2).
From 3.1.4.1 and 1.9.0.2, we have that order types and topologies of σ(D2) and

σ(S2) both are ωω and that σ(S2) = 2σ(D2).
We will now prove that the order type of σ is ωω.
From 3.1.2.8 we know, that the largest accumulation point of the set σ(D2) of

order n is 1− n
2 . From, this and from the fact that σ(S2) = 2σ(D2) we know that

that the largest accumulation point of the set σ(S2) of order n is 2− n.
From this, we have, that for every m ∈ N>0, order type of (−m,∞) ∩ σ(D2)

is ω2m+2 and that order type of (−m,∞) ∩ σ(S2) is ωm+2 (if −m = 1 − n
2 , then

n = 2m+ 2 and if −m = 2− n, then n = m+ 2).
Thus, for every m ∈ N>0, we have that (−m,∞) ∩ σ(D2) and (−m,∞) ∩ σ(S2)

satisfies assumptions of A.2.0.8, thus, we have that (−m,∞)∩ (σ(D2)∪ σ(S2)) have
an order type ω2m+2.

From this we have that

σ = σ(D2) ∪ σ(S2) =
∞⋃
m=1

(
(−m,∞) ∩ (σ(D2) ∪ σ(S2))

)
(3.2.0.1.1)

have an order type ωω.
Now we will prove, that the topology inherited from R on σ is that of ωω.
We have that for σ(D2)

[
σ(S2)

]
every accumulation point of σ(D2)

[
σ(S2)

]
is in

σ(D2)
[
σ(S2)

]
. From this and from A.2.0.7 we have, that all accumulations points of

σ are in σ. From this, from lemma A.2.0.3 we have that the topology of σ is ωω. �

3.3 More about how this σ, σ(S2) and σ(D2) lie in R
This section consists of rather loose assembly of remarks and observations about
some relations between σ, σ(S2), σ(D2) and how they all lie in R.

Observation 3.3.0.1. The first (greatest) negative accumulation point of the set of
σ is − 1

12 . It is the accumulation point of order 1.

Proof.

We will show, that − 1
12 is the greatest negative accumulation point of the set σ(D2).

From this we will obtain the thesis, as the set of all possible Euler orbicharacteristics
of two-dimensional orbifolds is equal to σ(S2) ∪ σ(D2) and σ(S2) = 2σ(D2), so
the greatest negative point of the set σ(S2) is smaller than the greatest negative
accumulation point of the set σ(D2).
• − 1

12 = χorb((2, 3))− 1
2 , from this, from 3.1.2.5, we have that − 1

12 an accumulation
point of the set σ(D2) of order at least 1.
• Let us assume for a contradiction, that there exist bigger, negative accumulation

point of the set σ(D2) of order at least 1. Let us denote it by x.
However, then, from the lemma 3.1.2.5 point x + 1

2 is the accumulation point
of the set σ(D2). What is more, since x ∈ (0,− 1

12), then x+ 1
2 ∈ (1

2 ,
5
12). From the
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lemma 3.1.2.6 we have that x is in σ(D2). But orbifolds of the type ∗d1 can have
Euler orbicharacteristic only greater or equal 1

2 . Orbifolds of the type ∗d1d2 can
only have Euler orbicharacteristic 1

2 ,
5
12 and some smaller. Orbifolds of the type

∗d1d2d3 · · · can have Euler orbicharacteristic only lower than 1
4 . This analysis of the

cases leads us to the conclusion, that (1
2 ,

5
12) ∩ σ(D2) = ∅ and to the contradiction.

• Above analysis of the cases leads us also to the conclusion, that 5
12 is an isolated

point of the set σ(D2), from this − 1
12 is an accumulation point of order 1 of the set

σ(D2). �

3.3.1 Saturation theorem

Theorem 3.3.1.1. For any rational number p
q
, for any two dimensional manifold

M there exists N ∈ Z such that for all n ­ N , we have that p
q
− n ∈ σ(M).

Proof.

Let us take p
q
∈ Q. From 1.10.1, we know that every rational number is expressible

as an Egyptian fraction. Let us name the number of summands in some Egyptian
fraction of p

q
as k. From 1.10.1.1 we know that then χ(M)− k + p

q
∈ σ(M). From

3.1.2.1 and 1.9.0.3 we also know, that if x ∈ σ(M), then x− l ∈ σ(M), for any l ∈ N0.
From this, we have, that k − χ(M) is our N . �

Corollary 3.3.1.2. For any finite set of rational numbers {(p
q
)i}ki=1, for any finite

set of two dimensional manifolds {Mj}lj=0, there exists a N ∈ N0 such that for all
n ­ N , for all i ∈ {1 . . . k}, for all j ∈ {1 . . . l} we have that (p

q
)i − n ∈ σ(Mj).

Proof.

For each pair of (p
q
)i and Mj we apply 3.3.1.1, obtaining Ni,j . we take N as a minimal

from {Ni,j}i∈{1...k},j∈{1...l}. �

3.3.2 Connections between σ(S2) and σ(D2)

In this section we would like to answer some questions about relations between σ(S2)
and σ(D2).

From 2.5 we know that both σ(S2) and σ(D2) are necessarily in expressing σ =
σ(S2)∪σ(D2). It is shown by giving examples of two points one from σ(S2)\σ(D2) 3 2
and one from σ(D2) \ σ(S2) 3 − 1

84 . We found it interesting to ask further questions
about the sets σ(S2) \ σ(D2) and σ(D2) \ σ(S2) such as what points exactly lie
in one of σ(S2) and σ(D2) and not in the other, does it have any connection to
the previously described order and topological structure or if the σ(S2) and σ(D2)
overlap from some sufficiently distant point. This subsection is a meager attempt to
answer some of these questions.
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Accumulation points of the σ(S2)

We will first state some observations that will be useful in this subsubsection.

Observation 3.3.2.1. If an Euler orbicharacteristic x is an accumulation point of
order n in σ(D2)

[
respectively σ(S2)

]
, then there exist an D2

[
resp. S2

]
orbifold with

n dihedral
[
resp. rotational

]
points with that Euler orbicharacteristic.

Proof.

From 3.1.2.9, we know, that then x + n
2 ∈ σ(D2)

[
resp. x + n ∈ σ(S2)

]
. Let O, be

an orbifold with Euler orbicharacteristic equal to x+ n
2

[
resp. x+ n

]
. Then O with

n dihedral
[
resp. rotational

]
orbipoints of degree ∞ added is the orbifold we are

looking for.

Observation 3.3.2.2. If x ∈ σ(D2)
[
respectively σ(S2)

]
, then 1− x

[
resp. 2− x

]
is a difference in Euler orbicharacteristic resulting from some set of dihedral

[
resp.

rotational
]
points. From that 1− n(1− x) ∈ σ(D2)

[
resp. 2− n(2− x) ∈ σ(S2)

]
for

all n ∈ N.

Theorem 3.3.2.3. All accumulation points of the σ(S2) are in σ(D2).

There are two proofs of this theorem showing nice correspondence – one arith-
metical and one geometrical.

Proof I. Arithmetical reason

We assume that x ∈ σ(S2) is an accumulation point of the set σ(S2).
By 1.9.0.2 we have, that x

2 ∈ σ(D2) is an accumulation point of the set σ(D2).
From 3.1.2.5 we have that x

2 + 1
2 ∈ σ(D2). From that, from 3.3.2.2 we have, that

1−

”n” from
3.3.2.2︷︸︸︷

2 (

”1−x” from
3.3.2.2︷ ︸︸ ︷

1− (
x

2
+

1
2

) ) ∈ σ(D2). (3.3.2.3.1)

But 1− 2(1− (x2 + 1
2)) = x, so x ∈ σ(D2). �

Proof II. Geometrical reason

We assume that x ∈ σ(S2) is an accumulation point of the set σ(S2).
From 3.1.2.9 and 1.9.0.2 we know, that x can be expressed as y − 1 for some

y ∈ σ(S2). Let O be an orbifold with the base manifold S2, such that χorb(O) = y.
Let Oc be the orbifold created from O by adding one cusp. Then χorb(Oc) = y−1 = x.
Topologically Oc with the cusp point removed is R2. We can compactify it with S1.
This operation of removing cusp point and replacing it by S1 will not change an
Euler orbicharacteristic since χorb(S1) = 0, Euler orbicharacteristic is additive and
∆(∞) = ∆(∗) = 1.
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What we get is an orbifold OD with the base manifold D2 and the same orbipoints
as O. Since orbipoints of O create a difference in Euler orbicharacteristic equal to
2 − y, we have that χorb(OD) = 1 − (2 − y) = y − 1 = x. We can then replace all
orbipoints from the interior of OD by twice as many of the same degrees on its
boundary 1.11, so x ∈ σ(D2). �
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Chapter 4

Algorithm for searching for the
spectrum

In the previous chapter we answered the questions about how σ looks like – in
particular what is it’s order type and topology. In this chapter we would like to
develop a methods for answering the following question:

"For a given rational number, is it in σ?"
We have some sort of answer to this question – an algorithm.
It is not an ideal answer as it gives little insight of what is a general structure of

the spectrum. Nevertheless it is a constructive and computable answer.
The exact question we will provide algorithm to answer here is:
For a given rational number r and manifold M , is there at least one M orbifold

with r as its Euler orbicharacteristic?
We start with r = p

q
, where p ∈ Z, q ∈ N>0 and a manifold M .

4.1 Reduction from arbitrary M to D2

This reduction is based on 1.9.0.3. Note, that this is a different reduction than the
one in chapter 2. In chapter 2 we are saying that for any M , we have σ(M) ⊆
σ(S2) ∪ σ(D2). In 1.9.0.3 on the other hand we have, that for a manifold M with h
handles, c crosscaps and b boundary components:
for b 6= 0:

σ(M) = σ(D2) + χ(M)− 1 = σ(D2)− 2h− c− (b− 1) (4.1.0.0.1)

and for b = 0:

σ(M) = 2σ(D2) + χ(M)− 2 = 2σ(D2)− 2h− c. (4.1.0.0.2)

We conclude that the problem of deciding whether p
q
is in σ(M) is equivalent to

deciding:
for b 6= 0 if:

p

q
− χ(M) + 1 =

p

q
+ 2h+ c+ (b− 1) (4.1.0.0.3)
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is in σd(D2);
for b = 0 if:

1
2
p

q
+ χ(M) + 2 =

1
2
p

q
+ h+

c

2
(4.1.0.0.4)

is in σd(D2).
Considering this fact, from this point, WLOG we will assume that M = D2 and,

following 2.2.2.5, we will be concerned only with dihedral orbipoints.

4.2 Special cases
In the case that p

q
is of the form l 1

4 , for some l ∈ Z we can give the answer right
away. For l > 4 we have that l 1

4 is not in the set and for l ¬ 4 it is (see 3.1.2.8).
Moreover for an even l we have that l 1

4 is an accumulation point of order 4−l
2 and

for an odd l it is an accumulation point of order 3−l
2 (see 3.1.2.8 and 3.1.2.9).

In the case, where p
q
> 1, we also can give answer right away and this answer is

"no".
Now we will consider only cases when p

q
is not of the form l 1

4 and is ¬ 1.

4.3 Regular cases
First we will describe what we use in the algorithm, giving the brief semantics. The
detailed semantics are given in 4.4.

4.3.1 What we use

We use:

• N>0 counters c1, c2, · · · with values ranging on N>0 ∪ {∞}. Each counter
correspond to one dihedral point on the boundary of the disk of period equal
to the value of the counter (with the note, that if counter is set to 1 it means a
trivial dihedral point - namely a non-orbi point, a normal point).

We will write the state of the counters without commas, using the letter d.
Note that with this convention, ci will refer to the i-th counter and di will refer
to the value of the i-th counter.

So the state of the counters d1d2 · · · correspond to the orbifold ∗d1d2 · · · (where
the trailing 1’s are truncated).

We will refer to the counters being "to the left" or "to the right" of each other,
as the numbering would go from left to right.

• a pivot pointing at some counter

• a flag that can be set to: "Greater", "Searching" or "Less" corresponding to
what was the outcome of comparing Euler orbicharacteristic of the orbifold
corresponding to counters’ state and p

q
or to the fact, that there is a need for a

search of the next state of counters to compare with p
q
.
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4.3.2 What state are we starting our algorithm with

We start with:

• all counters set to 1.

• pivot pointing at the c1

• flag set to "Greater"

4.3.3 Invariants claims

Now we will state the claims of what properties the state of the counters will maintain
during all the execution of the algorithm. The proof, that this is indeed the case will
be performed in 4.5

Claim 4.3.3.1. We will do our computation such that:

• every state of the counters during runtime of the algorithm will have only
finitely many counters with value non-1.

• every state in the runtime of the algorithm will have values on consecutive
counters ordered in weakly decreasing order.

From now we will consider only such states.

4.3.4 The algorithm for searching for a spectrum

When the algorithm is in the state:

• counters with values: d1d2 · · ·

• pivot: at the counter cp

• flag: set to the value flag_value,

we proceed as follows :

1 In the case , the flag_value i s equal to :
2 {
3 "Greater " , then
4 {
5 I f χorb(∗d1 · · · dp−1∞dp+1 · · · ) = p

q
then

6 {
7 We found an o r b i f o l d and we are ending the whole
8 a lgor i thm with answer "yes , ∗d1 · · · dp−1∞dp+1 · · ·" .
9

10
11
12 }
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13 I f χorb(∗d1 · · · dp−1∞dp+1 · · · ) > p
q

then
14 {
15 We se t dp to ∞ .
16 We se t the f l a g to "Greater " .
17 We put the p ivot at the cp+1 .
18 We go to the 1 s t l i n e .
19 }
20 I f χorb(∗d1 · · · dp−1∞dp+1 · · · ) < p

q
then

21 {
22 We se t the f l a g to " Search ing " .
23 We go to the 1 s t l i n e .
24 }
25 }
26
27 " Search ing " , then
28 {
29 We search one by one
30 f o r the va lue d′p o f the cp such that
31 χorb(∗d1 · · · dp−1d

′
pdp+1 · · · ) ¬ p

q
and

32 χorb(∗d1 · · · dp−1(d′p − 1)dp+1 · · · ) > p
q
.

33 We se t cp and a l l o f the counter s
34 to the l e f t o f cp to the value d′p .
35 i f χorb(∗d1d2d3 · · · ) = p

q
then

36 {
37 We found an o r b i f o l d and we are ending the whole
38 a lgor i thm with answer "yes , ∗d1d2 · · ·" .
39
40
41
42 }
43 I f χorb(∗d1d2d3 · · · ) > p

q
then

44 {
45 We se t the f l a g to "Greater " .
46 We put the p ivot at the c1 .
47 We go to the 1 s t l i n e .
48 }
49 I f χorb(∗d1d2d3 · · · ) < p

q
then

50 {
51 We se t the f l a g to "Less " .
52 We put the p ivot at the cp+1 .
53 We go to the 1 s t l i n e .
54 }
55 }
56

43



57 "Less " , then
58 {
59 I f dp = 1 and the va lue s o f a l l the counter s
60 on the l e f t o f cp are equal to 2 then
61 {
62 We end the whole a lgor i thm with the answer "no " .
63 }
64 We in c r e a s e cp by one (dp := dp + 1) and
65 we s e t the value o f a l l counter s on the l e f t o f cp to dp .
66 I f χorb(∗d1d2d3 · · · ) = p

q
then

67 {
68 We found an o r b i f o l d and we are ending the whole
69 a lgor i thm with answer "yes , ∗d1d2 · · ·" .
70
71
72
73 }
74 I f χorb(∗d1d2d3 · · · ) > p

q
then

75 {
76 We se t the f l a g to "Greater " .
77 We put the p ivot at the c1 .
78 We go to the 1 s t l i n e .
79 }
80 I f χorb(∗d1d2d3 · · · ) < p

q
then

81 {
82 We se t the f l a g to "Less " .
83 We put the p ivot at the cp+1 .
84 We go to the 1 s t l i n e .
85 }
86 }
87 }

4.4 The idea of the algorithm
We will now present in more detail what the algorithm is indented to do. To do this
and for the later sections, we will first introduce an order on the states of counters
satisfying 4.3.3.1 (as mentioned in 4.3.3.1 we will consider only such states) and
prove several lemmas about it.

4.4.1 Order on the space of states of the counters

Definition 4.4.1.1. We define a linear order � on the states of counters as follows:
Let D1 be a state of counters equal to d1

1d
1
2 · · · and D2 be a state of counters equal

to d2
1d

2
2 · · · . Let i be the greatest index where D1 and D2 differ, then:
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bullet If d1
i ¬ d2

i then D1 � D2.

This is a suborder of the lexicographical order of states of counters after truncation
of trailing 1’s with the counters to the right being more significant.

Observation 4.4.1.2. In general it is not true that if D1 � D2 then χorb(∗D1) ¬
χorb(∗D2) nor that if D1 � D2 then χorb(∗D1) ­ χorb(∗D2).

Observation 4.4.1.3. Since � is a suborder of a lexicographical order it is a good
order.

Let us use S(a) for a successor of a. We can explicitly write the form of the
successor of any state d1d2d3 · · · in �:

Observation 4.4.1.4. The successor of the state d1d2d3 · · · , of the form

∞∞· · ·∞︸ ︷︷ ︸
k−1 times

dkdk+1dk+2 · · · , (4.4.1.4.1)

where k is such that ck is the first counter from the left that is not set to ∞, is

(dk + 1)(dk + 1) · · · (dk + 1)︸ ︷︷ ︸
k−1 times

(dk + 1)dk+1dk+2 · · · , (4.4.1.4.2)

Definition 4.4.1.5. We will call the state d1d2d3 · · · , such that no dk is equal to ∞
a finite state.

We will call the state d1d2d3 · · · , such that at least one of dk is equal to ∞ an
infinite state.

Observation 4.4.1.6. Using 4.3.3.1 we have that for the state d1d2d3 · · · to be finite
(resp. infinite), it is equivalent to d1 being different from (resp. being equal to) ∞.

Observation 4.4.1.7. For any state D, we have that S(D) is a finite state.

Definition 4.4.1.8. We will call the ascending sequence {Dn} in �, such that for
all n, we have that S(Dn) = Dn+1, a connected sequence in �.

Observation 4.4.1.9. Every connected sequence of the finite states is of the form
{(d1 + n)d2d3 · · · }, where all dn are different from ∞.

Lemma 4.4.1.10. Let D1 and D2 be finite states and let S(D1) = D2 in �. Then
χorb(∗D1) > χorb(∗D2).

Proof.

From 4.4.1.4 we know, that taking the successor of the finite state always changes
only first counter and it is changing it by increasing it by 1. Increasing the order of
the orbipoint decreases Euler orbicharacteristic. �

Corollary 4.4.1.11. The sequence {χorb(∗Dn)} is descending for every connected
sequence of finite states {Dn} in �.

Lemma 4.4.1.12. Let D1 be infinite state and let D2 := S(D1) in �. Then
χorb(∗D1) ¬ χorb(∗D2). Furthermore there is only one element in � for which
the equality holds: ∞ 1 1 1 · · · , for all the rest the inequality is strict.
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Proof.

For the state
∞d2d3d4 · · · (4.4.1.12.1)

and its successor

S(∞d2d3d4 · · · ) = (d2 + 1)(d2 + 1)d3 · · · , (4.4.1.12.2)

we have that:

χorb(∗∞d2d3d4 · · · )− χorb((d2 + 1)(d2 + 1)d3d4 · · · ) =
1 + ∆(∞d2) + ∆(d3d4 · · · )− (1 + ∆((d2 + 1)(d2 + 1)) + ∆(d3d4 · · · )) =

∆(∞d2)−∆((d2 + 1)(d2 + 1)) =

−1
2
− d2 − 1

2d2
+ 2

(d2 + 1)− 1
2(d2 + 1)

= (4.4.1.12.3)

−d2(d2 + 1)− (d2 − 1)(d2 + 1) + 2d2
2

2d2(d2 + 1)
=
−d2 − d2 + d2 + 1

2d2(d2 + 1)
=

1− d2

2d2(d2 + 1)
.

So the difference is not negative only for d2 = 1 and for d2 = 1 it is equal to 0. �

Lemma 4.4.1.13. The supremum of the connected sequence of finite states

{(d1 + n)d2d3 · · · } (4.4.1.13.1)

is
∞d2d3 · · · (4.4.1.13.2)

, and the infimum of the corresponding sequence

{χorb(∗(d1 + n)d2d3 · · · )} (4.4.1.13.3)

is
χorb(∗∞d2d3 · · · ). (4.4.1.13.4)

Proof.

For every n we have that

(d1 + n)d2d3 · · · � ∞d2d3 · · · . (4.4.1.13.5)

Furthermore for every
d′1d
′
2d
′
3 · · · (4.4.1.13.6)

such that
d′1d
′
2d
′
3 · · · � ∞d2d3 · · · , (4.4.1.13.7)

there exists n, such that

d′1d
′
2d
′
3 · · · � (d1 + n)d2d3 · · · . (4.4.1.13.8)
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Thus,
∞d2d3 · · · (4.4.1.13.9)

is the supremum of
{(d1 + n)d2d3 · · · }. (4.4.1.13.10)

For every n we have that:

χorb(∗(d1 + n)d2d3 · · · ) = χorb(∗d1d2d3 · · · )−
(d1 + n)− 1

2(d1 + n)
+
d1 − 1

2d1

= χorb(∗d1d2d3 · · · )−
1

2d1
+

1
2(d1 + n)

. (4.4.1.13.11)

We also have that:

χorb(∗∞d2d3 · · · ) = χorb(∗d1d2d3 · · · )−
1
2

+
d1 − 1

2d1

= χorb(∗d1d2d3 · · · )−
1

2d1
+ 0. (4.4.1.13.12)

Thus χorb(∗∞d2d3 · · · ) is the infimum of {χorb(∗(d1 + n)d2d3 · · · )}. �

Observation 4.4.1.14. We have that for dn 6=∞:

χorb(∞∞· · ·∞dndn+1dn+2 · · · ) > χorb(∞∞· · ·∞(dn + 1)dn+1dn+2 · · · ).
(4.4.1.14.1)

As increasing the counter increases corresponding Euler orbicharacteristic.

Lemma 4.4.1.15. The supremum of the sequence of states

{∞∞· · ·∞(dn +m)dn+1dn+2 · · · }m (4.4.1.15.1)

is
∞∞· · ·∞∞dn+1dn+2 · · · , (4.4.1.15.2)

and the infimum of the corresponding sequence

{χorb(∗∞∞· · ·∞(dn +m)dn+1dn+2 · · · )}m (4.4.1.15.3)

is
χorb(∗∞∞· · ·∞∞dn+1dn+2 · · · ). (4.4.1.15.4)

Proof.

The proof will be analogous to 4.4.1
For every m we have that

∞∞· · ·∞(dn +m)dn+1dn+2 · · · � ∞∞· · ·∞∞dn+1dn+2 · · · . (4.4.1.15.5)

Furthermore for every d′1d′2d′3 · · · such that

d′1d
′
2d
′
3 · · · � ∞∞· · ·∞∞dn+1dn+2 · · · , (4.4.1.15.6)
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there exists m, such that

d′1d
′
2d
′
3 · · · � ∞∞· · ·∞(dn +m)dn+1dn+2 · · · . (4.4.1.15.7)

Thus,
∞∞· · ·∞∞dn+1dn+2 · · · (4.4.1.15.8)

is the supremum of

{∞∞· · ·∞(dn +m)dn+1dn+2 · · · }m. (4.4.1.15.9)

For every m we have that:

χorb(∗∞∞· · ·∞(dn +m)dn+1dn+2 · · · ) = (4.4.1.15.10)

χorb(∗∞∞· · ·∞dndn+1dn+2 · · · )−
(dn +m)− 1

2(dn +m)
+
dn − 1

2dn
=

χorb(∗∞∞· · ·∞dndn+1dn+2 · · · )−
1

2dn
+

1
2(dn +m)

(4.4.1.15.11)

We also have that:

χorb(∗∞∞· · ·∞∞dn+1dn+2 · · · ) = (4.4.1.15.12)

χorb(∗∞∞· · ·∞dndn+1dn+2 · · · )−
1
2

+
dn − 1

2dn
=

χorb(∗∞∞· · ·∞dndn+1dn+2 · · · )−
1

2dn
+ 0. (4.4.1.15.13)

Thus
χorb(∗∞∞· · ·∞∞dn+1dn+2 · · · ) (4.4.1.15.14)

is the infimum of

{∞∞· · ·∞(dn +m)dn+1dn+2 · · · }m.� (4.4.1.15.15)

Lemma 4.4.1.16. The state of the counters in the algorithm is weakly increasing
with respect to order �.

Proof.

The state of the counters is changed only in lines 15, 33-34, 64-65. In each of these
lines the counter with the greatest index of all changed counters increases in value,
so the resulting state is bigger with respect to order �. �

4.4.2 Basic idea

The basic idea of the algorithm is to search through all the states of the counters
going from the smallest (in the sense of �) state of counters, which will be when
all counters are set to 1, up to some upper limit beyond which we are sure that no
configuration of counters will yield the Euler orbicharacteristic that we are looking
for.

Now we will go through several obstacles of how to do so and solutions for them,
answering for example the questions how we go through all the states and what can
be this upper limit.
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4.4.3 Checking all the states

This can’t be done directly as there are infinite ascending sequences in �. However,
it can be done with some use of the properties we derived in the previous subsection.

4.4.4 Checking infinite connected sequences in finitely many
steps

We will now present the method how to check any infinite connected sequence for
solutions in finite number of steps.

First, we will perform a reduction from arbitrary infinite connected sequence to
the infinite connected sequence of finite states.

Let us observe, that, by 4.4.1.7, there can be at most one infinite state in any
connected sequence, and if it is present it must be the first one. If such state D0 is
present, we can check it whether χ(∗D0)) is equal to p

q
or not (one step), and then

all states that are left to be checked are finite and form infinite connected sequence
of finite states, thus ending our reduction.

As this from this point we will present a method or checking for solutions any
infinite connected sequence of finite states.

First, let us observe that thanks to 4.4.1.11, when we are searching through the
infinite connected sequence of finite states in �, once we get (without finding any
solution) to the state Dn for which χorb(∗Dn) < p

q
, we know that no state Dm with

m > n can have χorb(∗Dm) = p
q
and we can disregard whole sequence.

There is, however, another problem, namely, that when we are searching through
the infinite connected sequence of the finite state, initially, we don’t now, whether there
will be any state Dk = (d1 + k)d2d3 · · · in it, that will have χorb(∗(d1 + k)d2d3 · · · ) ¬
p
q
. However, thanks to 4.4.1.13 we can check for this, by first comparing p

q
with

χ(∗∞d2d3 · · · ). Since from 4.4.1.13, we have that χ(∗∞d2d3 · · · ) is the infimum of
{∗(d1 + n)d2d3 · · · }, we have that if χ(∗∞d2d3 · · · ) < p

q
, then there must be state

(d1 + n)d2d3 · · · such that χ(∗(d1 + n)d2d3 · · · ) < p
q
, for some n and we can proceed

to look for it one by one through the sequence.
One case that is left, is when χ(∗∞d2d3 · · · ) > p

q
, but then we can disregard the

whole sequence right away, since χ(∗∞d2d3 · · · ) is the infimum of {∗(d1 +n)d2d3 · · · }.

4.4.5 What after we checked infinite connected sequence?

Let us suppose that we just checked the infinite connected sequence, together with
its supremum.

The supremum is of the form ∞d2d3d4 · · · . Then, trying to perform 4.4.2, we
continue with the successor S(∞d2d3d4 · · · ) = (d2 + 1)(d2 + 1)d3d4 · · · (4.4.1.4).
Provided the successor is not our solution, there are two options:

1. χorb(∗(d2 + 1)(d2 + 1)d3d4 · · · ) > p
q
,

2. χorb(∗(d2 + 1)(d2 + 1)d3d4 · · · ) < p
q
.
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4.4.6 Case when χorb(∗(d2 + 1)(d2 + 1)d3d4 · · · ) > pq
We could start checking through the connected sequence starting at

(d2 + 1)(d2 + 1)d3d4 · · · , (4.4.6.0.1)

however, if
χorb(∗∞(d2 + 1)d3d4 · · · ) >

p

q
, (4.4.6.0.2)

we would end up in the same place that we are now, only with

(d2 + 2)(d2 + 2)d3d4 · · · . (4.4.6.0.3)

Without further changes, this will lead to possibly checking one by one of infinitely
many states of the form

∞(d2 + n)d3d4 · · · . (4.4.6.0.4)

We can solve this problem, by checking the state

∞∞d3d4 · · · , (4.4.6.0.5)

that have corresponding Euler orbicharacteristic lower than all of 4.4.6.0.4. If it will
happen that

χorb(∗∞∞d3d4 · · · ) >
p

q
, (4.4.6.0.6)

we ruled out all states of the form

∞(d2 + n)d3d4 · · · , (4.4.6.0.7)

and we can continue this pattern on further coordinates, checking:

∞∞· · ·∞dk · · · , (4.4.6.0.8)

until we find some n, such that

χorb(∗∞∞· · ·∞dn+1 · · · ) <
p

q
. (4.4.6.0.9)

We always find n like that, because at all time only finitely many counters are set to
non-1 value, so from some point moving to next coordinate will result in comparing
to p

q
the number 1

2 smaller than from previous coordinate.
Once we find such n, we need to perform actions described in 4.4.8.

4.4.7 Case when χorb(∗(d2 + 1)(d2 + 1)d3d4 · · · ) < pq
In this case, we know that every state D such that:

(d2 + 1)(d2 + 1)d3d4d5 · · · � D ≺ (d3 + 1)(d3 + 1)(d3 + 1)d4d5 · · · (4.4.7.0.1)
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have χorb(D) < p
q
, since for any such state D, we have that counter c3 and all to the

right of it are the same as in

(d2 + 1)(d2 + 1)d3d4d5 · · · , (4.4.7.0.2)

but counters c1 and c2 are at least equal to d2 + 1. For this reason, we can go to

(d3 + 1)(d3 + 1)(d3 + 1)d4d5 · · · , (4.4.7.0.3)

as we ruled out all the sates smaller than 4.4.7.0.3. Then, we can continue from this
state.

This behaviour can be generalised – whenever, in our algorithm we will have
counters if the state

(dn + 1)(dn + 1) · · · (dn + 1)dn+1dn+2dn+3 · · · , (4.4.7.0.4)

and we will know that

χorb(∗(dn + 1)(dn + 1) · · · (dn + 1)dn+1dn+2dn+3 · · · ) <
p

q
, (4.4.7.0.5)

we can rule out all the states up to (but not including) state:

(dn+1 + 1)(dn+1 + 1) · · · (dn+1 + 1)(dn+1 + 1)dn+2dn+3 · · · (4.4.7.0.6)

by the analogous reasoning as for n = 2 and continue from state 4.4.7.0.6.

4.4.8 Searching

We are in the state, as described in 4.4.6, that we found n, such that

χorb(∗∞∞· · ·∞dn+1 · · · ) <
p

q
. (4.4.8.0.1)

The idea of algorithm at this point was, to rule out all the states that have corre-
sponding Euler orbicharacteristicgreater than p

q
. We ruled out all smaller or equal to

(in the sense of �) than
∞∞· · ·∞1dn+1 · · · . (4.4.8.0.2)

At this point, we can use a procedure analogous to the one from 4.4.4, checking
through the sequence (iterated with respect to m)

∞∞· · ·∞mdn+1 · · · , (4.4.8.0.3)

that at some m0 is guaranteed to have

χorb(∞∞· · ·∞m0dn+1 · · · )) ¬
p

q
, (4.4.8.0.4)

since
χorb(∞∞· · ·∞∞dn+1 · · · )) <

p

q
(4.4.8.0.5)
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and we have that 4.4.1.15.
This way, we know that no state smaller or equal than

∞∞· · ·∞(m0 − 1)dn+1 · · · (4.4.8.0.6)

is the solution. We know that m0 ­ 2, since we know from the procedure 4.4.6 that

χorb(∞∞· · ·∞1dn+1 · · · )) >
p

q
(4.4.8.0.7)

We know proceed to check from the successor:

S(∞∞· · ·∞(m0 − 1)dn+1 · · · ) = m0m0 · · ·m0m0dn+1 · · · (4.4.8.0.8)

and up.
This presents the idea of the algorithm.

4.4.9 Three "modes" of the algorithm

The algorithm has three distinct fragments that coincide with the description of the
idea above:

• fragment in the lines 3-35. that will be called the "Greater" part, that corre-
sponds to 4.4.6

• fragment in the lines 27-55, that will be called the "Searching" part, that
corresponds to 4.4.4 and 4.4.8

• fragment in the lines 57-86, that will be called the "Less" part, that corresponds
to 4.4.7.

The control flow of the parts can be seen on the diagram (numbers above arrow
indicate lines):
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Figure 4.4.9.0.1: Diagram of the control flow of the algorithm. Numbers above arrow
indicate lines.

The execution of the algorithm then goes as follows:
We start at "Greater" and proceed to do the procedure from 4.4.6. Once the

procedure stops, we do procedure from 4.4.8, then dependent whether the result
have corresponding Euler orbicharacteristic greater or smaller than p

q
, we perform,

respectively – again procedure from 4.4.6 or the procedure from ??. We repeat ?? as
long as necessarily. Once it gives the state that have Euler orbicharacteristic greater
than p

q
we set the flag to "Greater" again and repeat the whole process starting from

the procedure in 4.4.6. In the case that repeating the procedure from 4.4.7 won’t give
any state with corresponding Euler orbicharacteristic greater than p

q
the algorithm

will hit its stopping condition and answer "no" as written in the algorithm 4.3.4
itself.
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4.5 Proof of the correctness of the algorithm

4.5.1 Lemmas

Firstly, we will prove that our invariants indeed are conserved during the execution of
the algorithm. We will also proof some other lemmas regarding the state of memory
during the algorithm.

Lemma 4.5.1.1. During any time of the execution of the algorithm, there are only
finitely many counters that have non-1 value.

Proof.

We start with the state that have only finitely many non-1 value. Let us observe,
that all three of the places – lines: 15, 33-34, 64-65, where the counters are changed,
change them in the way that preserves this state. As during any time of execution,
there were only finitely many changes, we have the thesis. �
Lemma 4.5.1.2. When control is at the line 15. and the pivot is at the counter cp,
all counters to the left of cn are set to ∞.

Proof.

We can get to the line 15th only in two ways: from line 18 in "Greater" section or
from line 47 in "Searching" section. In this process "Searching" moves pivot to the
first counter and "Greater" moves pivot one counter to the right. As long as the
pivot is not on the 1st counter, control flow must have came then to the line 15th
from "Greater" section and if pivot is at the 1st counter it must have came from the
"Searching" section. From this we have, that for the pivot, to get to the counter cp,
it would need to go through all the counters to the left of cp while being on the line
15th and setting them to ∞.

Lemma 4.5.1.3. When control is at the line 33rd and the pivot is then at the counter
cp, all counters to the left of cp are set to ∞ and the counter cp is not set to ∞.

Proof.

The only way to get to the line 33rd is from line 23rd in "Greater" section. From
4.5.1.2 we know, that then all the counters to the left of cp are set to ∞. Counter cp
on the other hand can not be set to infinity, since, from the fact that control flow
was at the block from line 21st, we know that

χorb(∗d1d2 · · · dp−1∞dp+1 · · · ) <
p

q
(4.5.1.3.1)

and from the fact, that control flow was in the "Greater" block we know, that

χorb(∗d1d2d3 · · · ) >
p

q
.� (4.5.1.3.2)

Lemma 4.5.1.4. For any state of counters during the execution of the algorithm
D = d1d2d3 · · · we have that d1 ­ d2 ­ d3 ­ · · · .
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Proof.

We start with the state where d1 ­ d2 ­ d3 ­ · · · . Let us observe, that, by 4.5.1.2,
changing at line 15 preserves this state. Changing at lines 33-34 or 64-65, preserve
this state as they increase the value of the counter at which pivot is by one (to some
dp + 1) and change all counters to the left of the pivot to dp + 1. �

Lemma 4.5.1.5. When control is at the line 66th and the pivot is then at the counter
cp, all counters to the left of cp, are set to the same value dp−1 and the counter cp is
not set to the value dp−1.

Proof.

The only way for the control flow to get to the line 66th is from line 53th or 84th.
In both of these cases, the counters to the left of cp were set to the same value
on, respectively lines 33-34 or 64-65. Also, on lines 33-34 or 64-65, the value of the
counter cp−1 was increased by 1. From this and from 4.5.1.4, we know, that dp−1 > dp
.�

Lemma 4.5.1.6. All counters strictly to the left to the pivot have the same value at
any stage of the execution of the algorithm.

Proof.

As state of the counters changes only on lines 15, 33-34 or 64-65, and the pivot is
moving at most by one position to the right between the changes to the state of the
counters, this is the corollary from 4.5.1.2, 4.5.1.3 and 4.5.1.5. �

Lemma 4.5.1.7. Searching procedure from lines 29-32 always terminates.

Proof.

Let cp be the counter at which pivot is, when the searching procedure from lines 29-32
stars. Control flow can get to the lines 29-32 only from line 23rd. This guarantees,
that when starting the searching procedure, we have that:

χorb(∗d1d2 · · · dp−1∞dp+1 · · · ) <
p

q
(4.5.1.7.1)

and
χorb(∗d1d2d3 · · · ) >

p

q
. (4.5.1.7.2)

From this and from 4.4.1.15, we know, that there exists some d′p <∞ such that

χorb(∗d1d2 · · · dp−1d
′
pdp+1 · · · ) <

p

q
(4.5.1.7.3)

As such, the searching procedure stops. �

Lemma 4.5.1.8. There are always only finitely many steps in execution of the
algorithm before it changes the state of the counters.
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Proof.

The only steps not explicitly listed in the algorithm are from the searching procedure
from lines 29-32. From 4.5.1.7 we know, that this procedure always terminates. All
other control flow can be check explicitly to have always only finitely many steps
between the change of the counters. The change of the counters itself is also a finite
procedure, as we are always only changing the counters at pivot or at and to the left
of the pivot, and there are only finitely many such counters. �

Lemma 4.5.1.9. For any state D1 that is a state of counters at some point of the
execution of the algorithm and D2 such that D1 is changed to D2 during the execution,
we have that D1 ≺ D2.

Proof.

Let us observe that in each instance of changing the counters – in lines 15, 33-34
and 64-65. the rightmost counter that is changed is always increased. From this, the
lemma follows. �

4.5.2 Proof.

Now, we will perform the proof, that the idea of the algorithm presented above in
4.4, as well as the algorithm itself 4.3.4, works as intended.

Firstly, let us observe, that algorithm gives the answer only on lines 7-8, 37-38,
62, 68-69 and always ends immediately after giving the answer. Thus, it will always
give at most one answer. Furthermore let us observe that these are the only places
where the algorithm terminates, so if it terminates it will give at least one answer.

There are three things to be checked:
• That the algorithm never answers "yes" if there is no orbifold of the Euler orbichar-
acteristic p

q
(No false positives)

• That the algorithm never answers "no" if there is an orbifold of Euler orbicharac-
teristic p

q
(No false negatives)

• That the algorithm always ends in a finite number of steps (Guaranteed termina-
tion).

4.5.3 No false positives

Algorithm gives answer "yes" at lines 7-8, 37-38, 68-69. At each of these places, the
answer contains the example of an orbifold with Euler orbicharacteristic equal to p

q

that was explicitly checked for correctness just before giving the answer (see lines 5,
35, 66).

4.5.4 No false negatives

Let D = d1d2d3 · · · be such that χorb(∗d1d2d3 · · · ) = p
q
.

First, we will show that the algorithm will never go beyond d1d2d3 · · · counter
state in � order.
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Let us observe that the only lines where the counters are changed are lines 15,
33-34 and 64-65,

Right before the change from 15 and right after each change from 33-34, 64-65
(lines, respectively 5, 35, 66), the new state is checked if it is a solution and if it is a
solution, the algorithm stops. From this, we have that going beyond d1d2d3 · · · can
not happen from d1d2d3 · · · , it must happen from some state D′ � d1d2d3 · · · .

Furthermore while changing, only counters at pivot and to the left of the pivot
are changed.

Because of that:

Observation 4.5.4.1. Going beyond d1d2d3 · · · counter state could happen only
in lines 15, 33-34 or 64-65, while pivot would be at the rightmost counter that is
different from d1d2d3 · · · or further to the right. That is, if d′1d′2d′3 · · · is the current
state, and ck is the rightmost counter on which d1d2d3 · · · and d′1d′2d′3 · · · differ and
cn is the counter at which the pivot is on then at the moment of change that goes
beyond d1d2d3 · · · , it must hold that k ¬ n.

We will show that if the counters are below D in � before the change they still
be below D or at D after the change.

We will now eliminate all three options arising from lines 15, 33-34 and 64-65 case
by case. Let D′ = d′1d

′
2d
′
3 · · · be current state of counters before the change during

the execution of the algorithm. Let ck be the rightmost counter on which d1d2d3 · · ·
and d′1d′2d′3 · · · differ. Let cn be the counter at which the pivot is on.

Line 15

We will show that under taken assumptions, we will not get to this line. First, let us
prove, that the pivot must be exactly at the counter ck. By 4.5.1.2 we know, that if
the pivot is on the counter cn, while execution is at line 15, all the counters to the
left of cn are set to ∞.

This however means, that

∞∞· · ·∞︸ ︷︷ ︸
n−1 times

dndn+ 1dn+2 · · · � D. (4.5.4.1.1)

Together with the fact, that for k, which is ¬ n, we have that for any l > k, we
have that dl = d′l this means that if n ­ k + 1, we have that D = D′. This is a
contradiction with the assumption of k. From this we have that n = k.

We have then that pivot is on the rightmost counter ck, that differs between D
and D′, and that all the counters strictly to the left of ck in D′ are set to ∞.

From this, since χorb(∗d1d2d3 · · · ) = p
q
, we have, that:

χorb(∗d′1d′2d′3 · · · d′k−1∞d′k+1 · · · ) ¬
p

q
(4.5.4.1.2)

From this, we have the contradiction with the assumption that we will get to the
line 15.
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Lines 33-34

Similarly as in the previous case, this time using 4.5.1.3 we can prove, that n = k, as
well as that d′k < dk, that all counters strictly to the left of ck in D′ also must be ∞.

This leads us to the conclusion that searching procedure from lines 29-32 will
find some d′′k ¬ dk as a result. Then, the resulting state still will be � D.

Lines 64-65

We will show the contradiction by showing that pivot must be on the counter
strictly to the left of ck. By 4.5.1.5 we know, that all the counters to the left of
cn are set to d′n−1. From this, from the fact that d′k < dk and from the fact that
χorb(∗d1d2d3 · · · ) = p

q
, we have that, unless n < k, we have that

χorb(∗d′1d′2d′3 · · · ) ­
p

q
. (4.5.4.1.3)

However, this is a contradiction with being at lines 64-65, as the only way to get
there with the execution, is either from lines 51-53 or the lines 82-84, reaching either
require for the state of counters to have corresponding Euler orbicharacteristic < p

q
.

4.5.5 Guaranteed termination

First let us observe, that Let

∞D =∞ ∞ ∞· · ·∞︸ ︷︷ ︸
b2(1− p

q
)c times

1 1 1 · · · (4.5.5.0.1)

and let
2D = 2 2 2 · · · 2︸ ︷︷ ︸

d4(1− p
q

)e times

1 1 1 · · · . (4.5.5.0.2)

These are the state consisting of only, respectively, ∞ and 2 as a non-1 counters
values, that have the property, that they have the most non-1 counters from all states
of such form, having the corresponding Euler orbicharacteristic ­ p

q
.

Let us assume that for some input M and p
q
the algorithm does not answer "yes".

We will show, that then it will answer "no" in finite number of steps. By 4.5.1.8 we
can show this, by showing, that it will answer "no" after finitely many of counters
state changes.

Going beyond every state smaller or equal than 2D

We will show it by firstly showing, that for any state D = d1d2d3 · · · smaller or equal
to D2 the algorithm will go to it or beyond it.

Proof will be inductive, with respect to order �. Our inductive assumption will
be, that for a given state D, that is at most D2, there is some state D′, such that
D � D′′, and that D′ was the state of the counters after a finite number of steps of
execution of the algorithm.
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• For the fist state we have that this is true since it is the D′ for itself.
• Let us suppose that for a state D = d1d2d3 · · · � D2, for all the states ≺ D our

inductive assumption holds. We will show that it holds for D.
We will have two cases.

• D is a successor of some D1. There are two options – either D1 was a state of
counters at some point of the execution, or it wasn’t.

If it wasn’t, from the inductive assumption we know that some state equal at
least D was the state of counters. From this we have the induction thesis for
D.

In the case D1 was a state of counters, from 4.5.1.9 we have, that the next
state of counters will be equal at least D.

• D is not a successor of any D′ ≺ D. From this, we have that D has at least
one ∞ on its counters. Let cl be the counter that has rightmost infinity in D.
From ?? we have, that all the counters to the left of cl also are set to ∞.

Let us consider the state 0D =0 d0
1d

0
2d
′
3 · · · , such that for any i > l, we have that

0di = di. From the induction assumption, there exists state D′ = d′1d
′
2d
′
3 · · ·

such that 0D � D′ and such that D′ was a state of the counters after finitely
many steps of the algorithm. If D′ � D, then we have induction thesis for D.
Let us consider the case, where D′ ≺ D. Then, since 0D � D′ ≺ D, we have
that for every i > l, we have d′i = di. From this, we have, that D′ differs from
D only on the counters at, or to the left of cl. We know, that all the counters
to the left of, or at cl are set to ∞ in D and that there is at least one counter
set to ∞. Moreover, we know, that D′ differ from D on at least one counter.

There are two cases:

– χorb(D) ­ p
q
From this, we conclude that χorb(D′) > p

q
.

Regardless of at which line state D′ was produced, the execution will then
follow, through line or to the line . From this point, since χorb(D) ­ p

q
,

we will have consecutive sequence length at most l, of states of counters,
where values of consecutive counters from D′ will be replaced by ∞, up
to the counter cl at which state D will be reached. This sequence will
be generated by repeatedly going through line 15 in the algorithm, since
at every step, the corresponding Euler orbicharacteristicof the state of
counters will be > p

q
.

– χorb(D) < p
q
From 4.4.1.15, we know, that there must exists state

0D =0 d0
1d

0
2d
′
3 · · · , (4.5.5.0.3)

such that all 0di are less than ∞ and are the same for any i ¬ l, and that
χorb(0D) < p

q
.

From this, we conclude, that χorb(D′) < p
q
. Regardless of at which line

state D′ was produced, the execution will then follow, through line 53
or 84 to the lines 64-65. From this point, since χorb(D′) < p

q
, we will
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have consecutive sequence length at most l, of states of counters, where
values of consecutive counters from D′ will be increased by one and all the
counters to the left of them will be set to the value of the counter which
was just increased. This sequence will be generated by repeatedly going
through lines 64-65 in the algorithm, since at every step, the corresponding
Euler orbicharacteristicof the state of counters will be < p

q
.

This sequence will end by going with the pivot to the counter cl+1, which
we know from the assumption that has value smaller than ∞, increasing
it by one and setting all the counters to the left of if to value dl+1 + 1,
this way obtaining the state larger in � than D.

Reaching 2D at finite number of steps

Now we will show that at some point, algorithm will have as a state of counters 2D.

Lemma 4.5.5.1. Every counter with number greater than b2(1− p
q
)c times has pivot

on it for the first time while the execution is in line

Proof.

From this, we have, that every time there is a state of counters that for the first time
involves counter with number greater than b2(1 − p

q
)c times, it is the state of the

form 2 2 2 · · · 2 1 1 1 · · · . Since from 4.5.5 we know that for every state D �2 D, we
will have some bigger state D′, that at some point was a state of counters, we have
that at some point counter cd4(1− p

q
)e will obtain non-zero value (if the predecessor of

2D will be the state of counters at some point, then cd4(1− p
q

)e will have non-1 value
at the next change of counters.). From 4.5.5.1, we know, that then there must have
been state 2D at some point as a state of counters. �

4.6 Another questions the algorithm can answer

4.6.1 Deciding the order of accumulation

Using above algorithm, for a point p
q
and a manifold M , we can check what order of

accumulation point p
q
is in σ(M).

Analogously to 4.1, we will wlog answer the question fr M = D2.
First, we check with the algorithm, whether p

q
∈ σ(D2). If not, it is not an

accumulation point of σ(D2), since 3.1.2.6.
Let us now consider the case, where p

q
∈ σ(D2).

From 3.1.2.9, we know, that for a point p
q
being an accumulation point of the set

σ(D2), of order at least n is equivalent to the fact that p
q

+ n
2 ∈ σ(D2). From 1.9.0.4

on the other hand, we know, that for any x > 1, we have x 6∈ σ(D2).
As such, for a given p

q
, we can, using our algorithm, check one by one every

number of the form p
q

+ n
2 , such that n ∈ N0 and p

q
+ n

2 < 1. There are at most
b2
(
1− p

q

)
c such numbers. Let n0, be the biggest of the checked numbers, for which
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p
q

+ n
2 ∈ σ(D2). Then, from 3.1.2.9 we know, that p

q
is an accumulation point of order

n0 in σ(D2).

4.7 Implementation
This algorithm is a part of the algorithm from chapter 6 where the implementation
of the whole will be discussed in 6.3.
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Chapter 5

Counting orbifolds

The central question of this section is: "given a rational number, how many orbifolds
have that Euler orbicharacteristic?".

In 5.1, we will show that for any number, there are only finitely many orbifolds
with that Euler orbicharacteristic. In 5.2 we will show the local unboundness of σ.
In 5.3, we will divide the problem into two parts that will be discussed in chapter 6
and chapter 7 and discuss these parts briefly.

5.1 Finiteness
In this section, we will prove, that for any x ∈ σ there are only finitely many orbifolds
with the Euler orbicharacteristic equal to x. We will give two proofs of this fact.

Observation 5.1.0.1. Let us observe, that since:

• ∆(∗2) = −1
4 ,

• ∆(2) = −1
2 ,

• every M with boundary has χ(M) ¬ 1,

• every M without boundary has χ(M) ¬ 2,

we have, that there can be at most n := max{b4(1 − x)c, b2(2 − x)c} orbipoints at
any orbifold with an Euler orbicharacteristic ­ x.

Observation 5.1.0.2. For any x ∈ σ and n ∈ N there are only at most

(n− 1)max{b4(1−x)c,b2(2−x)c} (5.1.0.2.1)

orbifolds with the Euler orbicharacteristic greater or equal to x and all orbipoints of
order at most n.
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Proof.

For a given x, there are only finitely many manifolds with an Euler characteristic y ­ x.
Only them can be base manifolds for an orbifold with an Euler orbicharacteristic
y′ ­ x, as adding orbipoints always decreases an Euler orbicharacteristic.

It remains to prove then, that for any base manifold M , there are only finitely
many orbifolds, with M as a base manifold, that have an Euler orbicharacteristic
y ­ x, and all orbipoints of order at most n.

From 5.1.0.1 we have that on the orbifold with an Euler orbicharacteristic y ∈ [x, 2],
there can be at most max{b4(1−x)c, b2(2−x)c} orbipoints. Thus, for a given manifold
M and a given x and n, there can be at most (n − 1)max{b4(1−x)c,b2(2−x)c} orbifolds
with an Euler orbicharacteristic y ­ x, all orbipoints of order at most n and M as a
base manifold.�

Observation 5.1.0.3. To prove that for any x ∈ σ there are only finitely many
orbifolds with the Euler orbicharacteristic equal to x, it is sufficient, to prove that
for any x ∈ σ, for any two dimensional manifold M , there are only finitely many
M-orbifolds with only one corresponding type of orbipoints (dihedral in the case M
has a boundary or rotational in the case M dos not have a boundary), with the Euler
orbicharacteristic equal to x.

Proof.

Let x be a rational number. Let O be the set of all orbifolds with an Euler orbichar-
acteristic equal to x. Those orbifolds can have different base manifolds. However,
the set of base manifolds of orbifolds from O is finite, as there are only finitely
many two dimensional manifolds with an Euler characteristic greater or equal to
x and an orbifold always has an Euler orbicharacteristic less or equal to the Euler
characteristic of its underlying manifold.

From this, it is sufficient to prove, that for any base manifold M , the number of
M orbifolds with Euler orbicharacteristic equal to x is finite.

Let M be a two dimensional manifold. If M has no boundary it can’t have
dihedral orbipoints and we have the the thesis for manifolds without boundary.

IfM has a boundary,M -orbifolds can have both rotational and dihedral orbipoints.
Let us observe, that every rotational orbipoint can be replaced by two dihedral
orbipoints of the same order without changing the Euler orbicharacteristic. Thus,
if there would be infinitely many M -orbifolds having both rotational and dihedral
orbipoints, there would be also infinitely many M -orbifolds having only dihedral
orbipoints. Thus in this case it is sufficient to prove that there are finitely many
M -orbifolds that have only dihedral orbipoints. �

Theorem 5.1.0.4. For any x ∈ σ there are only finitely many orbifolds with the
Euler orbicharacteristic equal to x.

Proof I.

Let us take x ∈ σ. By using observation 5.1.0.3 it is only needed to prove, that for
any M , there are only finitely many M -orbifolds with only one corresponding type
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of orbipoints (rotational in the case M has no boundary, dihedral in the case M has
a boundary), with Euler orbicharacteristic equal to x.

For the sake of contradiction, assume, that the set OM of M -orbifolds that have
only one type of orbipoints and have Euler orbicharacteristic equal to x is infinite .

Let OM = {Oi}i∈I . For each i, let si = (o0
i , · · · , o

li
i ) be the list of degrees of the

orbipoints of Oi ordered in a decreasing manner. So for each i we have, that o0
i is

the order of the orbipoint with the highest order of all the dihedral orbipoints of
Oi. By 5.1.0.2 we know that if the set {o0

i }i∈I would be bounded by some n ∈ N,
by 1.5.2.1 it would mean, that OdM would be finite. As from our assumption for
the contradiction, we have that OM is not finite, we know that the set {o0

i }i∈I is
unbounded. Let {in}n∈N ⊆ I be a sequence of indices such that {o0

in}n∈N is strictly
increasing.

Let {an} be the sequence such that an = ∆(o0
in). Let {bn} be the sequence such

that bn = ∆(o1
in , · · · , o

lin
in ). So for every n we know that χorb(Oin) = χ(M) + an + bn.

Figure 5.1.0.4.1: Sequences {an} and {χ(M) + bn}.

As {o0
in} is strictly increasing, we know that an is strictly decreasing, so bn must

be strictly increasing (we have that χorb(Oin) is constant for all n, since all Oin are
from the family with Euler orbicharacteristic equal to x).

But {bn} ⊆ σ(M) − χ(M). From 3.1.3.6 and 1.9.0.3 we know that σ(M) has
no infinite strictly increasing sequences, so σ(M) − χ(M) has no infinite strongly
increasing sequences. That gives us a contradiction. �
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Proof II.

Let us take x ∈ σ. By using observation 5.1.0.3 it is only needed to prove, that for
any M , there are only finitely many M -orbifolds with only one corresponding type
of orbipoints (rotational in the case M has no boundary, dihedral in the case M has
a boundary), with Euler orbicharacteristic equal to x.

From 5.1.0.1 we have, that there can be at most n := max{b4(1−x)c, b2(2−x)c}
orbipoints at any orbifold with an Euler orbicharacteristic equal to x.

Let us take k ¬ n, we will show that there is only finitely many M -orbifolds O,
with exactly k orbipoints of the corresponding type having Euler orbicharacteristic
equal to x.

Let O be an M -orbifold with exactly k orbipoints of the corresponding type. Let
s = (o0, · · · , ok) be the list of degrees of the orbipoints of O ordered in a decreasing
manner. From 1.5.2.1 we know, that only finitely many orbifolds can have the same
such list. With list s, we can associate a sum:

S :=
k∑
i=0

1
oi
. (5.1.0.4.1)

We have that χorb(O) = χ(M) − αk + αS, where α is equal to 1
2 or 1, when,

respectively M has a boundary or not.
As such χorb(O) = x iff S = 1

α
x− 1

α
χ(M) + k.

From 1.10.1.3 we know, that there are only finitely many sums of the form of S,
equal to any given number. �

Theorem 5.1.0.5. For every accumulation point x of σ, of order < 2, there exists
an neighbourhood U of x, such that there exists n ∈ N, such that for all y ∈ U there
are at most n orbifolds with y as their Euler orbicharacteristic.

Proof.

Let x, be an accumulation point of σ of order 0, then it is isolated point, and as such
it has some neighbourhood U , such that U ∩ σ = {x}. From this and from 5.1.0.4 we
have the thesis in this case.

Let x, be an accumulation point of σ of order 1.
Let us assume, for a contradiction, that for any neighbourhood U of x, for any

n ∈ N there exists some an ∈ U \ {x}, such that there are at least n orbifolds
with an as their Euler orbicharacteristic. Let us take such sequence {an}, such that
lim
n→∞

an = x.
Since we have 5.1.0.2, we know, that for every m ∈ N, there exists nm, such that

there exists an orbifold with an Euler orbicharacteristic equal to anm with an orbipoint
of order at least m. Since 5.1.0.4 we know that lim

m→∞
nm =∞, so lim

n→∞
anm = x.

For each m ∈ N, let om be the largest degree of orbipoint from every orbipoints
present on every orbifolds with an Euler orbicharacteristic equal to anm . We were
choosing nm, such that we know that for every m we have om ­ m. There are
infinitely many orbipoints of one of the types – rotational or dihedral in the sequence
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of orbipoints corresponding to om. Let us WLOG assume that we choose om (by
skipping some elements) to consist only degrees corresponding to one type of points.

Let Om, be an orbifold corresponding to the chosen om. Let O′m be the orbifold
created by removing orbipoint of degree om from Om.

We can see, that

lim
m→∞

χorb(O′m) = lim
m→∞

(χorb(Om)−∆(om)) = lim
m→∞

(anm + 1− 1
om

) =

lim
m→∞

anm + 1− 1
om

= x+ 1− 0 = x+ 1, (5.1.0.5.1)

in the case we choose rotational points and

lim
m→∞

χorb(O′m) = lim
m→∞

(χorb(Om)−∆(∗om)) = lim
m→∞

(anm +
1
2
− 1

2om
) =

lim
m→∞

anm +
1
2
− 1

2om
= x+

1
2
− 0 = x+

1
2
, (5.1.0.5.2)

in the case we choose rotational points.
We can see that either x+ 1 or x = 1

2 is an accumulation point of σ of order at
least one. This however, by reasoning analogous to 3.1.2.3, gives us the contradiction
with the assumption that x was an accumulation point of σ of order 1. �

5.2 Infinitness

5.2.1 Local unboundness

We know, that for any x, there are only finitely many orbifolds with x as an Euler
orbicharacteristic. However, we can ask about some boundness of number of these
orbipoints. In particular, we could ask, whether near any accumulation point of order
at least 2, (for orders < 2, we answered this question in 5.1.0.5) there will be x with
an arbitrary large number of orbifolds corresponding to it. The answer will be yes,
and it can be formulated as such:

Theorem 5.2.1.1. For any neighbourhood U of any accumulation point x of σ(D2)
of order at least 2, for any n ∈ N, there exists an y ∈ U such that there are at least
n orbifolds with y as their Euler orbicharacteristic.

Proof.

This will follow from the theorem about the sums of Egyptian fractions from [BE11]
(Theorem 1. page 1). It states that:

Theorem 5.2.1.2. For a counting function

fk(p, q) := #
{

(n1, · · · , nk) ∈ Nk
>0

∣∣∣∣ n1 ¬ · · · ¬ nk ∧
p

q
=

1
n1

+ · · ·+ 1
nk

}
,

(5.2.1.2.1)
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we have that for any fixed p ∈ N>0, there are infinitely many values of q ∈ N>0 for
which

f2(p, q) > exp
(

(log 3 + o(1))
log(q)

log(log(q))

)
. (5.2.1.2.2)

Let us observe, that it is sufficient to show the thesis for σ(D2).
From 3.1.2.5 we know, that for point x to be an accumulation points of order at

least 2 of the set σ(D2) means, that x+ 1 ∈ σ(D2). This also means, that all points
of the form

x+ 1− d1 − 1
2d1

− d2 − 1
2d2

= x+
1

2d1
+

1
2d2

(5.2.1.2.3)

are in σ(D2).
Let x be an accumulation point of the set σ(D2) of order at least 2, let U be

some neighborhood of x and let n ∈ N. Let us take p = 1 and q, such that:

1. 5.2.1.2.3 holds,

2. exp
(
(log 3 + o(1)) log(q)

log(log(q))

)
> n,

3. x+ 1
q
∈ U .

We can always find such one, since:

• from [BE11] we know, that there exists infinitely many q, for p = 1, such that
5.2.1.2.3 holds,

• limq→∞ exp
(
(log 3 + o(1)) log(q)

log(log(q))

)
=∞,

• conditions 2. and 3. have the property, that if some q1 satisfies them, then any
q2 > q1 also satisfies them.

From this, we have, that x + 1
q
∈ U and there exists at least n different pairs of

numbers (n1
1, n

1
2) · · · (nn1 , n2

2), such that for any 1 ¬ i ¬ n, we have 1
ni1

+ 1
ni2

= 1
q
.

This means also that x+ 1
2q ∈ U and that for any 1 ¬ i ¬ n, we have 1

2ni1
+ 1

2ni2
= 1

2q .
As for any 1 ¬ i ¬ n, we have that x+ 1

2ni1
+ 1

2ni2
is of the form 5.2.1.2.3, we have,

that for any 1 ¬ i ¬ n, we have x+ 1
2ni1

+ 1
2ni2
∈ σ(D2). Let O, be a D2 orbifold with

Euler orbicharacteristic equal to x+ 1. All of n different orbifolds, created by adding
to O two dihedral orbipoints, respectively to i, of orders, ni1 and ni2 have an Euler
orbicharacteristicequal to

x+ 1− ni1 − 1
2ni1

− ni2 − 1
2ni2

= x+
1

2ni1
+

1
2ni2

= x+
1
2q
. (5.2.1.2.4)

As such, we found y = x+ 1
2q , such that y ∈ U and found n different orbifolds,

with an Euler orbicharacteristic equal y.
�
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5.3 Dividing the problem into an arithmetical and
combinatorical parts

Here will divide the question "Given the number x, how many orbifolds have x as
an Euler orbicharacteristic?" into two parts. The answers to these partial questions
will be given in chapter 6 and chapter 7.

5.4 Arithmetical part
The first part is to answer the following question:

"How many sums of the form:

1−
m∑
j=1

dj − 1
2dj

(5.4.0.0.1)

with m ∈ N and ∀j dj ∈ N ∪ {∞}, are equal to x?"
It is a matter of convention (and then coherently translating this convention

to the final result) what sums are we treating as "the same". The convention we
will take, is that a sum is determined uniquely by the tuple (d1, . . . , dn) of orders of
orbipoints, ordered in decreasing order, appearing in the sum.

This part describes how adding rotational orbipoints to a sphere and dihedral
points to the disk changes their Euler orbicharacteristic. In the second part we will
use the answer from this part.

5.5 Combinatorical part
We will take following steps:

1. First we divide the question "Given number x, how many orbifolds have x
as their Euler orbicharacteristic?" into the series of questions for each two-
dimensional manifolds M : "Given number x, and the manifold M , how many
M -orbifolds have x as their Euler orbicharacteristic?". At the end we will sum
up the answers from all these questions.

Note, that for M such that χ(M) < x, the answer is always 0, since orbifolds
have smaller Euler orbicharacteristic than their base manifolds (1.6.2.2).

2. Then for each manifold M , we answer one of the following questions:

• if M has a boundary (4.1.0.0.3):

"How many sums of the form

1−
m∑
j=1

dj − 1
2dj

(5.5.0.0.1)

are equal to
p

q
− χ(M)− 1 ?”, (5.5.0.0.2)
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• if M has no boundary (4.1.0.0.4):

"How many sums of the form

1−
m∑
j=1

dj − 1
2dj

(5.5.0.0.3)

are equal to
1
2
p

q
− 1

2
χ(M)− 1 ?”. (5.5.0.0.4)

Here we consider the sums to be "the same" in the same way as in 5.4. This we
can do, since these questions are equivalent to asking respective questions from
arithmetical part 5.4 for x+ χ(M). In the case where M has no boundary this
gives us our result, since 1.5.2.1.

3. Finally we take into account two remaining things concerning the case where
M has a boundary:

3.1. For now we only considered sums corresponding to orbifolds with either
rotational or dihedral orbipoints. When M has a boundary, M -orbifold
can have both of these types of points. Fortunately, to take this into
account, be don’t have to answer the arithmetical question concerning
the sums simultaneously corresponding to both types of orbipoints. It is
possible to reduce (in the sense that will be described in 7) all sums that
contain two types to orbipoints to sums with only dihedral orbipoints. In
doing so, we will ascribe "weights" to the sums of how many other sums
got reduced to it.

3.2. When the orbipoints lie on the boundary components, their order of
placement around the boundary component matters as orbifolds with
orbipoints on boundary components with different order are not necessary
the same (see 1.5.2.1). We will take this fact into account, by affecting
the aforementioned "weights" with which we will sum the number of
sums. The resulting weights will be the amount of orbifolds corresponding
(possibly also via reduction from 3.1) to the given sum.

This are the two phenomena causing that in the case where M has a boundary,
multiple orbifolds correspond to the same sum. We will calculate the total
number of orbifolds by calculating the number of the sums corresponding to
dihedral points, but taking the sums with the proper "weight" – of how many
orbifolds correspond to this sum.
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Chapter 6

Counting orbifolds – arithmetical part

6.1 The idea of the algorithm
This is an extension of the algorithm from chapter 4. It only differs by lines after
finding the solution – 7-11, 37-41 and 68-72. They all send the control flow to line
57th. Instead terminating the algorithm the solution is appended to the initially
empty list and the algorithm proceeds to search through the states as if the the state
that the solution was changed to at lines 64-65 during continuation of the execution
was the starting configuration, together with the pointer placement and flag value.

1 In the case , the flag_value i s equal to :
2 {
3 "Greater " , then
4 {
5 I f χorb(∗d1 . . . dp−1∞dp+1 . . . ) = p

q
then

6 {
7 We found an o rb i f o l d , we add i t to a l i s t
8 and i n c r e a s e the occur rence counter by 1 .
9 We se t the f l a g to "Less " .

10 We put p ivot to the cp+1 counter .
11 We go to the 1 s t l i n e .
12 }
13 I f χorb(∗d1 . . . dp−1∞dp+1 . . . ) > p

q
then

14 {
15 We se t dp to ∞ .
16 We se t the f l a g to "Greater " .
17 We put the p ivot at the cp+1 .
18 We go to the 1 s t l i n e .
19 }
20 I f χorb(∗d1 . . . dp−1∞dp+1 . . . ) < p

q
then

21 {
22 We se t the f l a g to " Search ing " .
23 We go to the 1 s t l i n e .
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24 }
25 }
26
27 " Search ing " , then
28 {
29 We search one by one
30 f o r the va lue d′p o f the cp such that
31 χorb(∗d1 . . . dp−1d

′
pdp+1 . . . ) ¬ p

q
and

32 χorb(∗d1 . . . dp−1(d′p − 1)dp+1 . . . ) > p
q
.

33 We se t cp and a l l o f the counter s
34 to the l e f t o f cp to the value d′p .
35 i f χorb(∗d1d2d3 . . . ) = p

q
then

36 {
37 We found an o rb i f o l d , we add i t to a l i s t
38 and i n c r e a s e the occur rence counter by 1 .
39 We se t the f l a g to "Less " .
40 We put the p ivot at the cp+1 .
41 We go to the 1 s t l i n e .
42 }
43 I f χorb(∗d1d2d3 . . . ) > p

q
then

44 {
45 We se t the f l a g to "Greater " .
46 We put the p ivot at the c1 .
47 We go to the 1 s t l i n e .
48 }
49 I f χorb(∗d1d2d3 . . . ) < p

q
then

50 {
51 We se t the f l a g to "Less " .
52 We put the p ivot at the cp+1 .
53 We go to the 1 s t l i n e .
54 }
55 }
56
57 "Less " , then
58 {
59 I f dp = 1 and the va lue s o f a l l the counter s
60 on the l e f t o f cp are equal to 2 then
61 {
62 We end the whole a lgor i thm with the answer "no " .
63 }
64 We in c r e a s e cp by one (dp := dp + 1) and
65 we s e t the value o f a l l counter s on the l e f t o f cp to dp .
66 I f χorb(∗d1d2d3 . . . ) = p

q
then

67 {
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68 We found an o rb i f o l d , we add i t to a l i s t
69 and i n c r e a s e the occur rence counter by 1 .
70 We se t the f l a g to "Less " .
71 We put p ivot at the cp+1 .
72 We go to the l i n e 1 . .
73 }
74 I f χorb(∗d1d2d3 . . . ) > p

q
then

75 {
76 We se t the f l a g to "Greater " .
77 We put the p ivot at the c1 .
78 We go to the 1 s t l i n e .
79 }
80 I f χorb(∗d1d2d3 . . . ) < p

q
then

81 {
82 We se t the f l a g to "Less " .
83 We put p ivot at the cp+1 .
84 We go to the 1 s t l i n e .
85 }
86 }
87 }

6.2 Proof of the correctness of the algorithm
Let us observe, that whole proof from the chapter 4 was independent from the choice
of the starting configuration – state of counters, flag value and pivot placement,
as long as they would hold the invariants that were proved in 4.5.1 and were used
in 4.5.2 and the fact, that flag value will correspond to the relation between Euler
orbicharacteristic corresponding to the current state and p

q
. We know, that the found

solution was satisfying all the lemmas – as it was the state of the counters at some
point of the execution. The only thing left to see, is that the flag value will be
appropriate.

Let D = d1d2d3 · · · be the solution. Let cp be the counter at which the pointer
was when the solution was found. Then, since 4.5.1.6 and the fact that after each
change the value of the counter that pivot is at is the same as value of the counters
to the left of it and 4.5.1.4, we conclude that all states that have value of cp greater
than dp can not be solutions. As such, we can proceed from the state

D′ = (dp+1 + 1)(dp+1 + 1)(dp+1 + 1) · · · (dp+1 + 1)(dp+1 + 1)dp+2dp+3 · · · . (6.2.0.0.1)

Setting flag to "Less" after finding the solution, will result in producing exactly
this state. Then, flag will be set accordingly to the comparison on line 76 or 82 or
another solution will be found on line 68. From 5.1.0.4 we know, that there will be
only finitely many solution. Once after, finding the solution d1d2d3 · · · and going to
"Less" won’t immediately produce another solution all the invariants will be satisfied
and the algorithm will proceed until it finds another solution or it stops. �
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6.3 Implementation
The source of the program with implementation of this algorithm, written in Rust
can be found on GitHub along with the LATEX source of this thesis.
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Chapter 7

Counting orbifolds – combinatorical
part

We will go through the steps described in 5.5.
We will form our answer in a form of answering the question for a given number

P
q
and a given manifold M . As stated in 5.5 at the end all answers for all M needs

to be summed, and we know that for M such that χ(M) < p
q
, the answer is 0, so

there are always only finitely many answers to be summed.

7.1 Manifolds without boundary
In this case we ask our algorithm from 6: "How many sums of the form

1−
m∑
j=1

dj − 1
2dj

(7.1.0.0.1)

are equal to
1
2
p

q
− 1

2
χ(M)− 1 ?”, (7.1.0.0.2)

and the result is our final answer, as (1.5.2.1) the list of degrees of rotational orbipoints
ordered in descending order uniquely defines a two dimensional M -orbifold without
boundary.

7.2 Manifolds with boundary

7.2.1 Using chapter 6

We ask our algorithm from chapter 6 for the list of all possible sums of the form

1−
m∑
j=1

dj − 1
2dj

(7.2.1.0.1)

that are equal to
p

q
− χ(M)− 1. (7.2.1.0.2)
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As we know from:

• theorem 5.1.0.4

• the fact, that to each sum corresponds at least one M -orbifold

• the fact, that to different sums corresponds different M -orbifolds,

this list of sums will be finite.

7.2.2 Reduction to only dihedral orbipoints

As stated in 5.5 in point 3.3.1 , we need to first take into account that an orbifold
can have both dihedral and rotational orbipoints.

We have complete list of sums corresponding to degrees of dihedral orbipoints
that result in the p

q
orbicharacteristic on M -orbifold.

We are interested in having complete list of sums corresponding to degrees of
both dihedral and rotational orbipoints that result in the p

q
orbicharacteristic on

M -orbifold. We will now propose a unique reduction R of every list corresponding to
both dihedral and rotational orbipoints to the list of only dihedral orbipoints.

The reduction (∗) R goes as follows: for a list of degrees of orbipoints consisting
of r1r2 · · · rn for rotational orbipoints and d1d2 · · · dm for dihedral orbipoints, we
replace each ri from the list of rotational orbipoints by to entries of the same value
on the list of dihedral orbipoints. This does not change the corresponding Euler
orbicharacteristic, since ∆(n) = ∆(∗n∗n) .

This procedure is unambiguous and gives only one possible list of dihedral
orbipoints degrees for every list of both rotational and dihedral orbipoints degrees.

Based on this, for a given sum d1d2 · · · dn, we can perform the transformation of
replacing n by ∗n∗n in another direction to produce all possible sums consisting of
both rotational and dihedral degrees, that would be reduced to sum d1d2 · · · dn. The
uniqueness of reduction R guarantees, that we won’t arrive to the same unreducted
sum from different starting lists of only dihedral degrees.

Based on this, after getting the list of sums from 7.2.1, we need to add to this
list all possible sums that could be reducted by R to some of the sums that we got
from 7.2.1.

Sums on the new extended list have also rotational orbipoints taken into account.
At this point we have full list of sums resulting in Euler orbicharacteristic equal
to p

q
on a M -orbifolds. In further considerations we will not explicitly rotational

orbipoints degrees as they play no role in combinatorics.

7.2.3 Fixed sum

Let us now consider a case with a manifold M , and a sum d1d2 · · · dn (as we wrote
at the end of the previous section we are not writing rotational degrees as they will
play no role from this point, however, they are possibly present in some sums). Then
the last step of the procedure will be to sum over all sums produced in 7.2.2.
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Let b be the number of boundary components ofM . We know from the assumption,
that b > 0.

We need to partition d1d2 · · · dn among boundary components of M .
At this moment we will treat boundary components as distinguishable.
Let us consider some partition of d1d2 · · · dn among the distinguishable boundary

components. After this, results from all partitions need to be summed together. The
fact that boundary components are not distinguishable will be taken into account in
the next subsection by assigning the proper weights in the summation.

7.2.4 Fixed partition

Let us now consider some fixed partition. Suppose that in this partition for every
1 ¬ j ¬ b boundary component Bj have orbipoints of degrees: jd1

jd2 · · ·j dnj . We
want to know how many possible sets of cyclic orders there are on a boundary
components with jd1

jd2 · · ·j dnj on Bi.
We can count sets of cyclic orders on indistinguishable boundary components by

iterating through tuples of linear orders on distinguishable boundary components
and summing them with proper weights.

Given the tuple of linear orders L = (L1, · · · , Lb) on distinguishable components,
to calculate the weight W (L), we will first set some weights W (Lj), for every
1 ¬ j ¬ b.

For a linear order Lj we set the weight W (Lj) to be :

• in case M is orientable – |Zk|
|Znj |

= k
nj
, where Zk is the biggest cyclic subgroup of

Znj , under which Lj is invariant as a linear order,

• in case M is not orientable – |Dk|
|Dnj |

= 2k
2nj

= k
nj

, where Dk is the biggest dihedral
subgroup of Dnj , under which Lj is invariant as a linear order.

Then, we put W (L) := SR
∏b
j=1 Lj, where:

• S := |G|
|Sb|

, where G is the biggest subgroup of permutations Sb under which
tuple of orders L is invariant as a tuple of cyclic orders,

• R = 1
2 if M is orientable and at least one of linear orders Lj is different as a

cyclic order than the reverse of Lj as a cyclic order; otherwise R = 1

7.2.5 Comment about possibility of a single equation

Although, given enough effort, results from this section could be summarise in one
equation consisting only of b and k1, k2, · · · , kn for a given sum, we feel that it would
be long enough not to give any new insight into the structure of the problem. We
are stopping thus at giving the above procedure.
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Chapter 8

Conclusions

8.1 What was done
In 2 we proved that σ(D2) 6⊆ σ(S2) and σ(S2) 6⊆ σ(D2).

In chapter 3, among other things, we described the spectrum of possible Euler
orbicharacteristics of two dimensional orbifolds and, as the result, the spectrum of
all possible areas of two dimensional hyperbolic orbifolds in a ordinal and topological
manner. It has order type and topology (induced from R) of ωω. We also proved,
that every accumulation point of σ(S2) is in σ(D2).

In chapter 4 we provided algorithm for deciding for a given number x, whether
there exists an orbifold O, such that χorb(O) = x and proved its correctness.

In chapter 5 we provided some finiteness results, such as that there are always
only finitely many orbifolds for a given Euler orbicharacteristic. We also proved that
for every n, in every neighbourhood of every accumulation point of σ of order at
least 2, there is at least one number x, such that there are at least n orbifolds such
that χorb(O) = x.

In chapter 6 and chapter 7 we provided an algorithm for counting for a given
number x number of orbifold such that χorb(O) = x, and proved its correctness.

We also discussed that its complexity is low enough for actual implementation
and practical usage on a reasonably small denominators and reasonably close to zero.

8.2 Further directions
It remains unclear how Disk spectrum and Sphere spectrum lies relative to each
other. In particular we still don’t know, whether they coincide from a sufficiently
distant point.

We don’t really know why there is exactly "this" many orbifolds for a given
Euler orbicharacteristic? We would like to know, whether there is some underlying
geometrical reason for that?

We would like to somehow characterise points x ∈ σ that has "the most" orbifolds
corresponding to them. With reasonable normalisation of what it means for a number
to have "more" orbifolds as we go to lesser values of Euler orbicharacteristic.
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Appendix A

Appendix about good orders and
accumulation points

A.1 Definition of order of accumulation points
This definitions will be useful for us in chapter 3, the exact same copy of it is included
there 3.1.1 as well for a readers convenience .

We start with definition of being "at least of order n" that will be almost what we
want and then, there will be the definition of being "order", which is the definition
that we need.
For a given set we define as follows:

Definition A.1.0.1. (Inductive). We say that the point x is an accumulation point
of a set X of order at least 0, when it belongs to the set X. We say that the point x
is an accumulation point of a set of order at least n+ 1, when it is an accumulation
point (in the usual sense) of the accumulation points each of order at least n i.e. in
every neighbourhood of x there is at least one accumulation point of a set X of order
at least n, distinct from x.

Definition A.1.0.2. We say that the point is an accumulation point of order n iff it
is an accumulation point of order at least n and it is not an accumulation point of
order at least n+ 1. If the point is an accumulation point of order at least n for an
arbitrary large n we say that the point is an accumulation point of order ω.

When we will say that a point is an accumulation point of some set without
specifying an order then we will mean being an accumulation point in the usual
sense; from the point of view of above definitions, that is, an accumulation point of
order at least one.

A.2 Lemmas
Lemma A.2.0.1. If A,B ⊆ R have no infinite strictly ascending sequences, then set
A+B := {a+ b | a ∈ A, b ∈ B} also have no infinite strictly ascending sequences.
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Proof.

Let A, B have no infinite strictly ascending sequences. Let cn ∈ A+B are elements
of some sequence. With a sequence cn there are two associated sequences an, bn, such
that, for all n, we have an ∈ A, bn ∈ B and an + bn = cn. Assume (for contradiction),
that cn is an infinite strictly ascending sequence. Then ∀n an+1 > an ∨ bn+1 > bn.
From the assumption an has no infinite ascending sequence, so an has a weakly
decreasing subsequence ank . But then subsequence bnk must be strictly increasing, as
cnk is strictly increasing, what gives us a contradiction. �

Lemma A.2.0.2. If A,B ⊆ R have no infinite strictly ascending sequences, then
set A ∪B also have no infinite strictly ascending sequences.

Proof.

Let A, B have no infinite strictly ascending sequences. For the sake of contradiction,
lets assume, that A∪B has an infinite strictly ascending sequence cn. Let cnk , cnl be
subsequences of cn consisting of elements from, respectively A and B. At least one
of them must be infinite and strictly increasing, which gives us a contradiction. �

Concerning accumulation points, we will use the terminology, that we introduced
in A.1

Lemma A.2.0.3. Let A ⊆ R has an order type α. Let A be such that every
accumulation point of A belong to A. Then A has not only an order type α but is
also homeomorphic to α.

Proof.

Without loss of generality, let us assume, that A has no infinite descending sequence
(case with A having no infinite ascending sequence is completely analogous).

As A has an order type α we have that there is an order preserving bijection
f : α→ A.
We will prove the theorem by showing that f is a homeomorphism.

For the continuity of f and f−1 it is sufficient to show, that for every open U ⊆ A
and V ⊆ α from prebases of respective topologies, f−1[U ] and f [V ] are open (∗).
Prebase open sets in A are the ones inherited from the order topology on R, for all
s ∈ R:

{r | r < s} ∩ A
{r | s < r} ∩ A.

Prebase open sets in α are from order topology, for all ν ∈ α:

{η | η < ν}
{η | ν < η}.

80



Now, we will prove (∗) case by case:

• Prebase set – {r | r < s} ∩ A:
Let ν ∈ α be the smallest, that s ¬ f(ν), then:

f−1[{r | r < s} ∩ A] = {η | η < ν},

which is open.

• Prebase set – {r | s < r} ∩ A:
Let s < f(µ). We have two cases:
– s ∈ A: then let ν be such that f(ν) = s. Then we have that:

f−1[{r | s < r} ∩ A] = {η | ν < η},

which is open.
– s 6∈ A: then, by the assumption of the theorem we know that s is not an accumulation
point of A. From this we conclude, that ∃t∈A(t < s∧¬∃t′∈At < t′ < s). Let ν be such
that f(ν) = t. Then we have that:

f−1[{r | s < r} ∩ A] = {η | ν < η},

which is open.

• Prebase set – {η | η < ν}:

f [{η | η < ν}] = {r | r < f(ν)} ∩ A,

which is open.

• Prebase set – {η | ν < η}:

f [{η | ν < η}] = {r | f(ν) < r} ∩ A,

which is open.�
Remark. The reverse is also true: If A j R is homeomorphic to α, then every

accumulation point of A belongs to A.

Lemma A.2.0.4. Let A ⊆ R be a bounded, well ordered set. Then A has an
accumulation point a of order n ∈ N (it may be that a /∈ A) iff order type of A is at
least ωn.

Proof.

Inductive, with respect to n in ωn.
• n = 0 Let us suppose, that A has an accumulation point of order 0. Having an

accumulation point of order 0 means that A is non-empty. As that it has an order
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type of at least ω0 = 1.

Let us suppose, that A has order type at least ω0 = 1. Then it is non-empty, so
it has at least one accumulation point of order 0.
• Induction step
Let us suppose that A has an accumulation point a of order n+1. This means that

every neighbourhood of a we can find infinitely many accumulation points of A of
order n. Let take one such neighbourhood and one such family {bi}i∈N of accumulation
points of order n. Let us then take family of pairwise disjoint neighbourhoods {Ui}i∈N
of {bi}i∈N. Let Ai := Ui ∩ A.

From the induction assumption for all i, we have that Ai is of order type at least
ωn. As that, we managed to show an pairwise disjoint inclusions of countably many
sets of order type at least ωn into A. As that we have the order preserving inclusion
of ωn+1 into A, so A is of order type at least ωn+1.

Let us now suppose that A has the order type of at least ωn+1. Then, we can find
a family {Ai}i∈A of pairwise disjoint subsets of A, each of order type ωn, with the
property (∗), that ∀i,j∈Ni < j =⇒ ∀x∈Ai,y∈Ajx < y.

From the inductive assumption, for all i, we have that Ai has an accumulation
point of order n. Let {bi}i∈N be the set of those accumulation points. Because of the
property (∗), those accumulation points are pairwise distinct, between Ai, Aj, with
i 6= j. Since A is bounded, we have that, the set {bi}i∈N is bounded, so it has an
accumulation point a. As an accumulation point of the accumulation points of order
n, it is an accumulation point of order n+ 1. �

Corollary A.2.0.5. Let A ⊆ R be a bounded, well ordered set of the order type ωn.
Then it has exactly one accumulation point a′ of order n. This point has the property
that ∀a∈A a < a′.

Proof.

From A.2.0.4 we know that A has at least one accumulation point a′ of order n.
For the sake of contradiction, let us assume, that there exists an accumulation

point ā of order n such that ∃a∈A a ­ ā. We have that A has the order type ωn,
which means that ∀a1∈A∃a2∈A a1 < a2. From this, we have, that ∃a0a0 > ā. But then,
we would have that the prefix (−∞, ā]∪A of A has an accumulation point ā of order
n. From this, from A.2.0.4 we would conclude, that (−∞, ā] ∪ A is of order type
at least ωn, which leads to the contradiction, as (−∞, ā] ∪ A is a proper subset of
A. Thus, we have, that for all accumulation points ā of A of order n we have that
∀a∈A a < ā.

It remains to show that there is only one such accumulation point - a′. For the
sake of contradiction, let us assume, that there exists an accumulation point of A of
order n, named ā, such that ā 6= a′. Let us assume that ā < a′. Then, as in every
neighbourhood of a′ there is a point from A, we have that ∃a0a0 > ā. The absurdity
of this statement is shown above. Case where ā > a′ is completely analogous. �
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Lemma A.2.0.6. For A,B ⊆ R, if r ∈ R is an accumulation point of order m for
A and n for B and m ¬ n, then r is an accumulation point of order at most n for
A ∪B.

Proof.

Inductive.
• n = 0. Then r is an isolated point of B and either r is isolated point of A

or r 6∈ A. From this we have that there exists U1, U2 such that B ∩ U1 = {r} and
A∩U2 ⊆ {r}. From this we have that (A∪B)∩ (U1 ∩U2) = {r}. So r is an isolated
point of A ∪B.
• Inductive step. Let us suppose that for all k < n, the statement holds. Let r be

an accumulation point of order n of B and order m of A, where m ¬ n. From this
we have that there exists U1, U2 3 r such that in B ∩U1 there are only accumulation
points of B of order at most n− 1 and in A ∪ U2 there are only accumulation points
of A of order at most m− 1. From this, from the inductive assumption we have that
in (A ∪B) ∩ (U1 ∩ U2) there are only accumulation points of order at most n− 1 of
A ∪B. This means that r is an accumulation point of order at most n of A ∪B.

We also know that, in every U1, U2 3 r, there are accumulation points of order
exactly n− 1 of B and exactly m− 1 for A. From the inductive assumption we have
then, that in (A ∪ B) ∩ (U1 ∩ U2) there are accumulation points of order n − 1 of
A ∪B. This means that r is an accumulation point of order exactly n of A ∪B. �

Corollary A.2.0.7. Let A(n) be the set of all accumulations point of order n of A.
Then for every n ∈ N we have that (A ∪B)(n) = A(n) ∪B(n).

Proof.

Every accumulation point of either A or B is also an accumulation point of A ∪B,
so (A ∪B)(n) ⊇ A(n) ∪B(n).

From A.2.0.6 we know, that for any point r ∈ R, if r ∈ (A ∪ B)(n), then
r ∈ A(n) ∪B(n). �

Lemma A.2.0.8. For two bounded, well ordered sets A,B ⊆ R, with order types,
respectively ωm and ωn, such that m < n, and that ∀x∈A∪B∃b∈Bx < b, we have that
order type of A ∪B is well defined and equal to ωn.

Proof.

From A.2.0.2, we know, that A ∪ B is well ordered. As such its order type is well
defined and equal to some ordeal number γ.

We will show that γ ¬ ωn and γ ­ ωn, thus showing that γ = ωn.
Let f : ωn → B and g : A ∪B → γ be order preserving bijections.
• ωn ¬ γ:
We have that g ◦ f : ωn → γ is an order preserving injection, thus, ωn ¬ γ.
• ωn ­ γ:
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From A.2.0.5 we know, that B has exactly one accumulation point b′ of order n.
This point has the property that ∀b∈B b < b′. As b′ is the only accumulation point of
order n for B and from A.2.0.5 we know also that A has no accumulation points of
order n, from A.2.0.6 we know, that A ∪B has exactly one accumulation point of
order n, namely b′.

For the sake of contradiction, let us assume that ωn < γ. But then, there is
some proper prefix of A ∪ B with order type ωn. Let us name that prefix as P .
From A.2.0.4 we know, that P has an accumulation point p′ of order n. Let b1 ∈ B
be such that ∀p∈P p < b1. Such b1 exists, because P is a proper prefix of A ∪ B,
so ∃x∈A∪B∀p ∈ Pp < x, and from the assumptions of the lemma we have that
∀x∈A∪B∃b∈Bx < b. We have that p′ ¬ b1. But we have also that b1 < b′, so p′ 6= b′.
This gives us the contradiction, as b′ is the only accumulation point of order n in
A ∪B. �
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