GRAPHICAL MODELS

Piotr GRACZYK

6. DECOMPOSABLE GRAPHS
(triangulated graphs, chordal graphs)

A part of this chapter is based on lectures of Prof. S. Lauritzen at CIMPA Summer School Hammamet 2011, with his kind permission.

Only graphical models governed by DECOMPOSABLE GRAPHS have good statistical properties:

- one can compute easily MLE estimators \hat{K} and $\hat{\Sigma}$ of the precision and covariance matrices
- statistical tests can be performed
- Bayesian statistics is possible and performant

That's why we shall learn some theory of DECOMPOSABLE GRAPHS

Consider an undirected graph $\mathcal{G}=(V, E)$ with vertices V and edges E.

If $W \subset V$, the induced graph is $\mathcal{G}_{W}=\left(W, E_{W}\right)$ where $\{i, j\} \in E_{W}$ if and only if $\{i, j\} \in E$ and $i, j \in W$. The edges of the induced graph \mathcal{G}_{W} are all the edges of \mathcal{G} connecting vertices from W.

A path of length n from $\alpha \in V$ to $\beta \in V$ is a sequence

$$
\alpha_{0}=\alpha, \alpha_{1}, \ldots, \alpha_{n}=\beta
$$

of vertices distinct for $i=0, \ldots, n-1$ such that $\left\{\alpha_{i}, \alpha_{i+1}\right\} \in E$ for each $i=1, \ldots, n$.

A subset $S \subset V$ is an (α, β)-separator if every path from α to β intersects S. S separates $A \subset V$ from $B \subset V$ if S is an (α, β) separator for every $\alpha \in A$ and $\beta \in B$.
A separator of A and B is minimal if no proper subset $T \subsetneq S$ separates A and B.

A graph is complete if all vertices are joined by an edge. A subset W is complete if its induced graph \mathcal{G}_{W} is complete.

A clique of \mathcal{G} is a maximal complete subset of V.

A cycle of length n is a path of length n from α to α. The shortest cycles are triangles=cycles of length 3 .

A tree is a connected graph without cycles. It has a unique path between any two vertices.

A graph is triangulated(chordal) if every cycle of length $n \geq 4$ has a chord, that is two non-consecutive vertices that are connected by an edge(chord).

Examples.

In the graph

the set $S=\{1,3\}$ is a $(2,4)$-separator.
The separator S is minimal. S is not complete.
the set $S^{\prime}=\{2,4\}$ is a $(1,3)-$ separator.
The separator S^{\prime} is minimal. S^{\prime} is not complete.

There are no other separators.
No separator is complete.

The cliques are $\{1,2\},\{2,3\},\{3,4\}$ and $\{1,4\}$

In the graph

the set $S=\{1,3\}$ is a $(2,4)$-separator. S is minimal and complete. There are no other separators.
(the set $S^{\prime}=\{2,4\}$ is NOT a $(1,3)$-separator)
Every minimal separator is complete.

The cliques are $\{1,2,3\}$ and $\{1,3,4\}$.

Graph decomposition Identifying chordal graphs

Consider an undirected graph $\mathcal{G}=(V, E)$. A partitioning of V into a triple (A, B, S) of subsets of V forms a decomposition of \mathcal{G} if
$A \perp_{\mathcal{G}} B \mid S$ and S is complete.
The decomposition is proper if $A \neq \emptyset$ and $B \neq \emptyset$. The components of \mathcal{G} are the induced subgraphs $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{\text {BUS }}$. A graph is prime if no proper decomposition exists.

Examples

The graph to the left is prime

Decomposition with $A=\{1,3\}, B=\{4,6,7\}$ and $S=\{2,5\}$

Suppose P satisfies (F) w.r.t. \mathcal{G} and (A, B, S) is a decomposition. Then
(i) $P_{A \cup S}$ and $P_{B \cup S}$ satisfy (F) w.r.t. $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ respectively; (ii) $f(x) f_{S}\left(x_{S}\right)=f_{A \cup S}\left(x_{A \cup S}\right) f_{B \cup S}\left(x_{B \cup S}\right)$.

The converse also holds in the sense that if (i) and (ii) hold, and (A, B, S) is a decomposition of \mathcal{G}, then P factorizes w.r.t. \mathcal{G}.

Graph decomposition Identifying chordal graphs

Decomposability

Any graph can be recursively decomposed into its maximal prime subgraphs:

A graph is decomposable (or rather fully decomposable) if it is complete or admits a proper decomposition into decomposable subgraphs.
Definition is recursive. Alternatively this means that all maximal prime subgraphs are cliques.

Recursive decomposition of a decomposable graph into cliques yields the formula:

$$
f(x) \prod_{S \in \mathcal{S}} f_{S}\left(x_{S}\right)^{\nu(S)}=\prod_{C \in \mathcal{C}} f_{C}\left(x_{C}\right) .
$$

Here \mathcal{S} is the set of minimal complete separators occurring in the decomposition process and $\nu(S)$ the number of times such a separator appears in this process.

Definition

Perfect numbering

A numbering $V=\{1, \ldots,|V|\}$ of the vertices of an undirected graph is perfect if

$$
\forall j=2, \ldots,|V|: \operatorname{bd}(j) \cap\{1, \ldots, j-1\} \text { is complete in } \mathcal{G} .
$$

A set S is an (α, β)-separator if $\alpha \perp_{\mathcal{G}} \beta \mid S$,

Characterizing chordal graphs

The following are equivalent for any undirected graph \mathcal{G}.
(i) \mathcal{G} is chordal;
(ii) \mathcal{G} is decomposable;
(iii) All maximal prime subgraphs of \mathcal{G} are cliques;
(iv) \mathcal{G} admits a perfect numbering;
(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.

Here is a (greedy) algorithm for checking chordality:

1. Look for a vertex v^{*} with $\operatorname{bd}\left(v^{*}\right)$ complete. If no such vertex exists, the graph is not chordal.
2. Form the subgraph $\mathcal{G}_{V \backslash v^{*}}$ and let $v^{*}=|V|$;
3. Repeat the process under 1 ;
4. If the algorithm continues until only one vertex is left, the graph is chordal and the numbering is perfect.
The complexity of this algorithm is $O\left(|V|^{2}\right)$.

Greedy algorithm

Is this graph chordal?

Greedy algorithm

This graph is not chordal, as there is no candidate for number 4.

Greedy algorithm

Is this graph chordal?

Greedy algorithm

This graph is chordal!

This simple algorithm has complexity $O(|V|+|E|)$:

1. Choose $v_{0} \in V$ arbitrary and let $v_{0}=1$;
2. When vertices $\{1,2, \ldots, j\}$ have been identified, choose $v=j+1$ among $V \backslash\{1,2, \ldots, j\}$ with highest cardinality of its numbered neighbours;
3. If $\operatorname{bd}(j+1) \cap\{1,2, \ldots, j\}$ is not complete, \mathcal{G} is not chordal;
4. Repeat from 2;
5. If the algorithm continues until no vertex is left, the graph is chordal and the numbering is perfect.

Maximum Cardinality Search

Is this graph chordal?

Maximum cardinality search

Maximum Cardinality Search

The graph is not chordal! because 7 does not have a complete boundary.

Maximum Cardinality Search

MCS numbering for the chordal graph. Algorithm runs essentially as before.

A chordal graph

This graph is chordal, but it might not be that easy to see... Maximum Cardinality Search is handy!

Finding the cliques of a chordal graph

From an MCS numbering $V=\{1, \ldots,|V|\}$, let

$$
B_{\lambda}=\operatorname{bd}(\lambda) \cap\{1, \ldots, \lambda-1\}
$$

and $\pi_{\lambda}=\left|B_{\lambda}\right|$. Call λ a ladder vertex if $\lambda=|V|$ or if $\pi_{\lambda+1}<\pi_{\lambda}+1$. Let Λ be the set of ladder vertices.

$\pi_{\lambda}: 0,1,2,2,2,1,1$.
The cliques are $C_{\lambda}=\{\lambda\} \cup B_{\lambda}, \lambda \in \Lambda$.

Let \mathcal{A} be a collection of finite subsets of a set V. A junction tree \mathcal{T} of sets in \mathcal{A} is an undirected tree with \mathcal{A} as a vertex set, satisfying the junction tree property:

If $A, B \in \mathcal{A}$ and C is on the unique path in \mathcal{T} between A and B it holds that $A \cap B \subset C$.

If the sets in an arbitrary \mathcal{A} are pairwise incomparable, they can be arranged in a junction tree if and only if $\mathcal{A}=\mathcal{C}$ where \mathcal{C} are the cliques of a chordal graph

The following are equivalent for any undirected graph \mathcal{G}.
(i) \mathcal{G} is chordal;
(ii) \mathcal{G} is decomposable;
(iii) All prime components of \mathcal{G} are cliques;
(iv) \mathcal{G} admits a perfect numbering;
(v) Every minimal (α, β)-separator are complete.
(vi) The cliques of \mathcal{G} can be arranged in a junction tree.

The junction tree can be constructed directly from the MCS ordering $C_{\lambda}, \lambda \in \Lambda$, where C_{λ} are the cliques: Since the MCS-numbering is perfect, $C_{\lambda}, \lambda>\lambda_{\text {min }}$ all satisfy

$$
C_{\lambda} \cap\left(\cup_{\lambda^{\prime}<\lambda} C_{\lambda^{\prime}}\right)=C_{\lambda} \cap C_{\lambda^{*}}=S_{\lambda}
$$

for some $\lambda^{*}<\lambda$.
A junction tree is now easily constructed by attaching C_{λ} to any $C_{\lambda^{*}}$ satisfying the above. Although λ^{*} may not be uniquely determined, S_{λ} is.
Indeed, the sets S_{λ} are the minimal complete separators and the numbers $\nu(S)$ are $\nu(S)=\left|\left\{\lambda \in \Lambda: S_{\lambda}=S\right\}\right|$.

Maximum cardinality search
Junction trees
Decomposable Gaussian graphical models Special Wishart distributions Bayesian inference

Definition

Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components

A chordal graph

Definition

Junction tree

Cliques of graph arranged into a tree with $C_{1} \cap C_{2} \subseteq D$ for all cliques D on path between C_{1} and C_{2}.

In general, the prime components of any undirected graph can be arranged in a junction tree in a similar way.
Then every pair of neighbours (C, D) in the junction tree represents a decomposition of \mathcal{G} into $\mathcal{G}_{\tilde{C}}$ and $\mathcal{G}_{\tilde{D}}$, where \tilde{C} is the set of vertices in prime components connected to C but separated from D in the junction tree, and similarly with \tilde{D}.
The corresponding algorithm is based on a slightly more sophisticated algorithm known as Lexicographic Search (LEX) which runs in $O\left(|V|^{2}\right)$ time.

If the graph \mathcal{G} is chordal, we say that the graphical model is decomposable.
In this case, the IPS-algorithm converges in a finite number of steps.
We also have the familiar factorization of densities

$$
\begin{equation*}
f(x \mid \Sigma)=\frac{\prod_{C \in \mathcal{C}} f\left(x_{C} \mid \Sigma_{C}\right)}{\prod_{S \in \mathcal{S}} f\left(x_{S} \mid \Sigma_{S}\right)^{\nu(S)}} \tag{1}
\end{equation*}
$$

where $\nu(S)$ is the number of times S appear as intersection between neighbouring cliques of a junction tree for \mathcal{C}.

Relations for trace and determinant

Using the factorization (1) we can for example match the expressions for the trace and determinant of Σ

$$
\operatorname{tr}(K W)=\sum_{C \in \mathcal{C}} \operatorname{tr}\left(K_{C} W_{C}\right)-\sum_{S \in \mathcal{S}} \nu(S) \operatorname{tr}\left(K_{S} W_{S}\right)
$$

and further

$$
\operatorname{det} \Sigma=\{\operatorname{det}(K)\}^{-1}=\frac{\prod_{C \in \mathcal{C}} \operatorname{det}\left\{\Sigma_{C}\right\}}{\prod_{S \in \mathcal{S}}\left\{\operatorname{det}\left(\Sigma_{S}\right)\right\}^{\nu(S)}}
$$

These are some of many relations that can be derived using the decomposition property of chordal graphs.

The same factorization clearly holds for the maximum likelihood estimates:

$$
\begin{equation*}
f(x \mid \hat{\Sigma})=\frac{\prod_{C \in \mathcal{C}} f\left(x_{C} \mid \hat{\Sigma}_{C}\right)}{\prod_{S \in \mathcal{S}} f\left(x_{S} \mid \hat{\Sigma}_{S}\right)^{\nu(S)}} \tag{2}
\end{equation*}
$$

Moreover, it follows from the general likelihood equations that

$$
\hat{\Sigma}_{A}=W_{A} / n \text { whenever } A \text { is complete. }
$$

Exploiting this, we can obtain an explicit formula for the maximum likelihood estimate in the case of a chordal graph.

For a $|d| \times|e|$ matrix $A=\left\{a_{\gamma \mu}\right\}_{\gamma \in d, \mu \in e}$ we let $[A]^{V}$ denote the matrix obtained from A by filling up with zero entries to obtain full dimension $|V| \times|V|$, i.e.

$$
\left([A]^{V}\right)_{\gamma \mu}= \begin{cases}a_{\gamma \mu} & \text { if } \gamma \in d, \mu \in e \\ 0 & \text { otherwise } .\end{cases}
$$

The maximum likelihood estimates exists if and only if $n \geq C$ for all $C \in \mathcal{C}$. Then the following simple formula holds for the maximum likelihood estimate of K :

$$
\hat{K}=n\left\{\sum_{C \in \mathcal{C}}\left[\left(w_{C}\right)^{-1}\right]^{v}-\sum_{S \in \mathcal{S}} \nu(S)\left[\left(w_{S}\right)^{-1}\right]^{v}\right\} .
$$

"Clique-separator formula" for \widehat{K}.

Suppose that the graph \mathcal{G} is decomposable. Let Cliq be the set of all cliques of \mathcal{G} and $S e p$ the set of all minimal separators of \mathcal{G}. Suppose that $n \geq|C|$ (the number of elements of C) for each clique C.
If the mean ξ of the model is known and $\tilde{\Sigma}$ is the sample covariance matrix then

$$
\hat{K}=\sum_{C \in C l i q}\left[\tilde{\Sigma}_{C}^{-1}\right]^{V}-\sum_{S \in S e p} \nu(S)\left[\tilde{\Sigma}_{S}^{-1}\right]^{V}
$$

If the mean is unknown, then $\widehat{\xi}=\bar{X}$ and one uses the "Clique-separator formula" for \widehat{K} with the corrected sample covariance matrix $\frac{n}{n-1} \tilde{\Sigma}$.

Back to Example "Simpson paradox" \mathcal{G} : $1-3$
Suppose that $\xi=0$ and the sample covariance matrix equals
$\tilde{\Sigma}=\left(\begin{array}{ccc}1 & 0.5 & 1 \\ 0.5 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$. The graph \mathcal{G} governs the model.
We computed "by hand" $\hat{\Sigma}=\left(\begin{array}{ccc}1 & \frac{2}{3} & 1 \\ \frac{2}{3} & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$

Let us find \widehat{K} and $\hat{\Sigma}$ by "Clique-separator formula".

The cliques of \mathcal{G} are $C_{1}=\{1,3\}$ and $C_{2}=\{2,3\}$. The minimal separator is $S=\{3\}$.
$\tilde{\Sigma}=\left(\begin{array}{ccc}1 & 0.5 & 1 \\ 0.5 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$. We only use $\pi_{\mathcal{G}}(\tilde{\Sigma})=\left(\begin{array}{lll}1 & & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$
Apply the "Clique-separator formula" for \widehat{K} :
$\widehat{K}=\left[\tilde{\Sigma}_{1,3}^{-1}\right]^{V}+\left[\tilde{\Sigma}_{2,3}^{-1}\right]^{V}-\left[\tilde{\Sigma}_{3}^{-1}\right]^{V}$.
$\tilde{\Sigma}_{1,3}^{-1}=\left(\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{cc}3 & -1 \\ -1 & 1\end{array}\right) ; \quad\left[\tilde{\Sigma}_{1,3}^{-1}\right]^{V}=\frac{1}{2}\left(\begin{array}{ccc}3 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right)$
$\tilde{\Sigma}_{2,3}^{-1}=\left(\begin{array}{ll}2 & 2 \\ 2 & 3\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{cc}3 & -2 \\ -2 & 2\end{array}\right) ; \quad\left[\tilde{\Sigma}_{2,3}^{-1}\right]^{V}=\frac{1}{2}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & -2 & 2\end{array}\right)$
$\left[\tilde{\Sigma}_{3}^{-1}\right]^{V}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right)$
$\hat{K}=\left(\begin{array}{ccc}\frac{3}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{3}{2} & -1 \\ -\frac{1}{2} & -1 & \frac{7}{6}\end{array}\right) ; \quad \hat{\Sigma}=\hat{K}^{-1}=\left(\begin{array}{ccc}1 & \frac{2}{3} & 1 \\ \frac{2}{3} & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$
Exercise. Suppose that $\mathcal{G}: 1-2-3$, the mean $\xi=0$ and $\tilde{\Sigma}=\left(\begin{array}{ccc}1 & 1 & 0.9 \\ 1 & 2 & 2 \\ 0.9 & 2 & 3\end{array}\right)$.
Compute by the clique-separator formula the MLEs \widehat{K} and $\hat{\Sigma}$.

Mathematics marks

This graph is chordal with cliques $\{1,2,3\},\{3,4,5\}$ with separator $S=\{3\}$ having $\nu(\{3\})=1$.

Since one degree of freedom is lost by subtracting the average, we get in this example
where $w_{[123]}^{i j}$ is the $i j$ th element of the inverse of

$$
W_{[123]}=\left(\begin{array}{lll}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{array}\right)
$$

and so on.

