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Only graphical models governed by DECOMPOSABLE

GRAPHS have good statistical properties:

• one can compute easily MLE estimators K̂ and Σ̂ of

the precision and covariance matrices

• statistical tests can be performed

• Bayesian statistics is possible and performant

That’s why we shall learn some theory of

DECOMPOSABLE GRAPHS
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Consider an undirected graph G = (V,E) with vertices

V and edges E.

If W ⊂ V , the induced graph is GW = (W,EW ) where

{i, j} ∈ EW if and only if {i, j} ∈ E and i, j ∈ W . The

edges of the induced graph GW are all the edges of G
connecting vertices from W .

A path of length n from α ∈ V to β ∈ V is a sequence

α0 = α, α1, . . . , αn = β

of vertices distinct for i = 0, . . . , n− 1 such that

{αi, αi+1} ∈ E for each i = 1, . . . , n.
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A subset S ⊂ V is an (α, β)-separator if every path

from α to β intersects S.

S separates A ⊂ V from B ⊂ V if S is an (α, β)-

separator for every α ∈ A and β ∈ B.

A separator of A and B is minimal if no proper subset

T ( S separates A and B.

A graph is complete if all vertices are joined by an

edge. A subset W is complete if its induced graph GW
is complete.

A clique of G is a maximal complete subset of V .
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A cycle of length n is a path of length n from α to α.

The shortest cycles are triangles=cycles of length 3.

A tree is a connected graph without cycles. It has a

unique path between any two vertices.

A graph is triangulated(chordal) if every cycle of

length n ≥ 4 has a chord, that is two non-consecutive

vertices that are connected by an edge(chord).
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Examples.

The graph

4

1 2

3

is the smallest non-chordal graph.

The graph

4

1 2

3

is chordal and non-complete.

The graph

4

1 2

3

is complete ⇒ chordal.
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In the graph

4

1 2

3

the set S = {1,3} is a (2,4)−separator.

The separator S is minimal. S is not complete.

the set S′ = {2,4} is a (1,3)−separator.

The separator S′ is minimal. S′ is not complete.

There are no other separators.

No separator is complete.

The cliques are {1,2}, {2,3}, {3,4} and {1,4}
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In the graph

4

1 2

3

the set S = {1,3} is a (2,4)−separator. S is minimal

and complete. There are no other separators.

( the set S′ = {2,4} is NOT a (1,3)−separator)

Every minimal separator is complete.

The cliques are {1,2,3} and {1,3,4}.
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Graph decomposition
Identifying chordal graphs

Definition
Decomposition of Markov properties
Factorization of Markov distributions
Properties of decomposability

Consider an undirected graph G = (V ,E ). A partitioning of V into
a triple (A,B, S) of subsets of V forms a decomposition of G if

A⊥G B |S and S is complete.

The decomposition is proper if A 6= ∅ and B 6= ∅.
The components of G are the induced subgraphs GA∪S and GB∪S .
A graph is prime if no proper decomposition exists.

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Definition
Decomposition of Markov properties
Factorization of Markov distributions
Properties of decomposability

Examples
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The graph to the left is prime

Decomposition with A = {1, 3}, B = {4, 6, 7} and S = {2, 5}
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Graph decomposition
Identifying chordal graphs

Definition
Decomposition of Markov properties
Factorization of Markov distributions
Properties of decomposability

Suppose P satisfies (F) w.r.t. G and (A,B,S) is a decomposition.
Then

(i) PA∪S and PB∪S satisfy (F) w.r.t. GA∪S and GB∪S respectively;

(ii) f (x)fS(xS) = fA∪S(xA∪S)fB∪S(xB∪S).

The converse also holds in the sense that if (i) and (ii) hold, and
(A,B, S) is a decomposition of G, then P factorizes w.r.t. G.

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Definition
Decomposition of Markov properties
Factorization of Markov distributions
Properties of decomposability

Decomposability

Any graph can be recursively decomposed into its maximal prime
subgraphs:
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A graph is decomposable (or rather fully decomposable) if it is
complete or admits a proper decomposition into decomposable
subgraphs.
Definition is recursive. Alternatively this means that all maximal
prime subgraphs are cliques.
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Graph decomposition
Identifying chordal graphs

Definition
Decomposition of Markov properties
Factorization of Markov distributions
Properties of decomposability

Recursive decomposition of a decomposable graph into cliques
yields the formula:

f (x)
∏

S∈S
fS(xS)ν(S) =

∏

C∈C
fC (xC ).

Here S is the set of minimal complete separators occurring in the
decomposition process and ν(S) the number of times such a
separator appears in this process.

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Definition
Decomposition of Markov properties
Factorization of Markov distributions
Properties of decomposability

Perfect numbering

A numbering V = {1, . . . , |V |} of the vertices of an undirected
graph is perfect if

∀j = 2, . . . , |V | : bd(j) ∩ {1, . . . , j − 1} is complete in G.

A set S is an (α, β)-separator if α⊥G β | S ,

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Definition
Decomposition of Markov properties
Factorization of Markov distributions
Properties of decomposability

Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Here is a (greedy) algorithm for checking chordality:

1. Look for a vertex v∗ with bd(v∗) complete. If no such vertex
exists, the graph is not chordal.

2. Form the subgraph GV \v∗ and let v∗ = |V |;
3. Repeat the process under 1;

4. If the algorithm continues until only one vertex is left, the
graph is chordal and the numbering is perfect.

The complexity of this algorithm is O(|V |2).

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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This graph is not chordal, as there is no candidate for number 4.
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Greedy algorithm
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This graph is chordal!
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

This simple algorithm has complexity O(|V |+ |E |):

1. Choose v0 ∈ V arbitrary and let v0 = 1;

2. When vertices {1, 2, . . . , j} have been identified, choose
v = j + 1 among V \ {1, 2, . . . , j} with highest cardinality of
its numbered neighbours;

3. If bd(j + 1) ∩ {1, 2, . . . , j} is not complete, G is not chordal;

4. Repeat from 2;

5. If the algorithm continues until no vertex is left, the graph is
chordal and the numbering is perfect.

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search

* 5

* 3 4

2 1

u u
u u u

u u
�
��

@
@@

�
��

@
@@

@
@@

@
@@

�
��

�
��

Is this graph chordal?

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search
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Is this graph chordal?
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search
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The graph is not chordal! because 7 does not have a complete
boundary.
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Maximum Cardinality Search
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MCS numbering for the chordal graph. Algorithm runs essentially
as before.
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Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

A chordal graph
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This graph is chordal, but it might not be that easy to
see. . . Maximum Cardinality Search is handy!

Steffen Lauritzen, University of Oxford Decomposition and decomposable graphs



Graph decomposition
Identifying chordal graphs

Greedy algorithm
Maximum cardinality search

Finding the cliques of a chordal graph

From an MCS numbering V = {1, . . . , |V |}, let

Bλ = bd(λ) ∩ {1, . . . , λ− 1}

and πλ = |Bλ|. Call λ a ladder vertex if λ = |V | or if
πλ+1 < πλ + 1. Let Λ be the set of ladder vertices.
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πλ: 0,1,2,2,2,1,1.
The cliques are Cλ = {λ} ∪ Bλ, λ ∈ Λ.
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Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components

Let A be a collection of finite subsets of a set V . A junction tree
T of sets in A is an undirected tree with A as a vertex set,
satisfying the junction tree property:

If A,B ∈ A and C is on the unique path in T between A
and B it holds that A ∩ B ⊂ C .

If the sets in an arbitrary A are pairwise incomparable, they can be
arranged in a junction tree if and only if A = C where C are the
cliques of a chordal graph

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All prime components of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete.

(vi) The cliques of G can be arranged in a junction tree.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components

The junction tree can be constructed directly from the MCS
ordering Cλ, λ ∈ Λ, where Cλ are the cliques: Since the
MCS-numbering is perfect, Cλ, λ > λmin all satisfy

Cλ ∩ (∪λ′<λCλ′) = Cλ ∩ Cλ∗ = Sλ

for some λ∗ < λ.

A junction tree is now easily constructed by attaching Cλ to any
Cλ∗ satisfying the above. Although λ∗ may not be uniquely
determined, Sλ is.

Indeed, the sets Sλ are the minimal complete separators and the
numbers ν(S) are ν(S) = |{λ ∈ Λ : Sλ = S}|.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components

A chordal graph
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Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components

Junction tree
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Cliques of graph arranged into a tree with C1 ∩ C2 ⊆ D for all
cliques D on path between C1 and C2.
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Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Definition
Characterizing chordal graphs
Construction of junction tree
Junction trees of prime components

In general, the prime components of any undirected graph can be
arranged in a junction tree in a similar way.

Then every pair of neighbours (C ,D) in the junction tree
represents a decomposition of G into GC̃ and GD̃ , where C̃ is the
set of vertices in prime components connected to C but separated
from D in the junction tree, and similarly with D̃.

The corresponding algorithm is based on a slightly more
sophisticated algorithm known as Lexicographic Search (LEX)
which runs in O(|V |2) time.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Basic factorizations
Maximum likelihood estimates
An example

If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number of
steps.

We also have the familiar factorization of densities

f (x |Σ) =

∏
C∈C f (xC |ΣC )∏

S∈S f (xS |ΣS)ν(S)
(1)

where ν(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Basic factorizations
Maximum likelihood estimates
An example

Relations for trace and determinant

Using the factorization (1) we can for example match the
expressions for the trace and determinant of Σ

tr(KW ) =
∑

C∈C
tr(KCWC )−

∑

S∈S
ν(S) tr(KSWS)

and further

det Σ = {det(K )}−1 =

∏
C∈C det{ΣC}∏

S∈S{det(ΣS)}ν(S)

These are some of many relations that can be derived using the
decomposition property of chordal graphs.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Basic factorizations
Maximum likelihood estimates
An example

The same factorization clearly holds for the maximum likelihood
estimates:

f (x | Σ̂) =

∏
C∈C f (xC | Σ̂C )

∏
S∈S f (xS | Σ̂S)ν(S)

(2)

Moreover, it follows from the general likelihood equations that

Σ̂A = WA/n whenever A is complete.

Exploiting this, we can obtain an explicit formula for the maximum
likelihood estimate in the case of a chordal graph.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Basic factorizations
Maximum likelihood estimates
An example

For a |d | × |e| matrix A = {aγµ}γ∈d ,µ∈e we let [A]V denote the
matrix obtained from A by filling up with zero entries to obtain full
dimension |V | × |V |, i.e.

(
[A]V

)
γµ

=

{
aγµ if γ ∈ d , µ ∈ e
0 otherwise.

The maximum likelihood estimates exists if and only if n ≥ C for
all C ∈ C. Then the following simple formula holds for the
maximum likelihood estimate of K :

K̂ = n

{∑

C∈C

[
(wC )−1

]V
−
∑

S∈S
ν(S)

[
(wS)−1

]V
}
.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



”Clique-separator formula” for K̂.

Suppose that the graph G is decomposable. Let
Cliq be the set of all cliques of G and Sep the set
of all minimal separators of G.
Suppose that n ≥ |C| (the number of elements of
C) for each clique C.
If the mean ξ of the model is known and Σ̃ is the
sample covariance matrix then

K̂ =
∑

C∈Cliq
[Σ̃−1

C ]V −
∑

S∈Sep
ν(S)[Σ̃−1

S ]V

If the mean is unknown, then ξ̂ = X̄ and one uses
the ”Clique-separator formula” for K̂ with the cor-
rected sample covariance matrix n

n−1Σ̃.

9



Back to Example ”Simpson paradox” G : 1 3 2
Suppose that ξ = 0 and the sample covariance matrix

equals

Σ̃ =




1 0.5 1
0.5 2 2
1 2 3


. The graph G governs the model.

We computed ”by hand” Σ̂ =




1 2
3 1

2
3 2 2
1 2 3




Let us find K̂ and Σ̂ by ”Clique-separator formula”.

The cliques of G are C1 = {1,3} and C2 = {2,3}.
The minimal separator is S = {3}.
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Σ̃ =

(
1 0.5 1

0.5 2 2
1 2 3

)
. We only use πG(Σ̃) =

(
1 1

2 2
1 2 3

)

Apply the ”Clique-separator formula” for K̂:
K̂ = [Σ̃−1

1,3]V + [Σ̃−1
2,3]V − [Σ̃−1

3 ]V .

Σ̃−1
1,3 =

(
1 1
1 3

)−1

= 1
2

(
3 −1
−1 1

)
; [Σ̃−1

1,3]V = 1
2

(
3 0 −1
0 0 0
−1 0 1

)

Σ̃−1
2,3 =

(
2 2
2 3

)−1

= 1
2

(
3 −2
−2 2

)
; [Σ̃−1

2,3]V = 1
2

(
0 0 0
0 3 −2
0 −2 2

)

[Σ̃−1
3 ]V =

(0 0 0
0 0 0
0 0 1

3

)

K̂ =

( 3
2

0 −1
2

0 3
2
−1

−1
2
−1 7

6

)
; Σ̂ = K̂−1 =

(
1 2

3
1

2
3

2 2
1 2 3

)

Exercise. Suppose that G : 1 2 3, the mean ξ = 0 and Σ̃ =

(
1 1 0.9
1 2 2

0.9 2 3

)
.

Compute by the clique-separator formula the MLEs K̂ and Σ̂.
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Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Basic factorizations
Maximum likelihood estimates
An example

Mathematics marks

1:Mechanics

2:Vectors

3:Algebra

4:Analysis

5:Statistics

��
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��
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��

PPPPPPc
c

c
c
c

This graph is chordal with cliques {1, 2, 3}, {3, 4, 5} with separator
S = {3} having ν({3}) = 1.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models



Maximum cardinality search
Junction trees

Decomposable Gaussian graphical models
Special Wishart distributions

Bayesian inference

Basic factorizations
Maximum likelihood estimates
An example

Since one degree of freedom is lost by subtracting the average, we
get in this example

K̂ = 87




w11
[123] w12

[123] w13
[123] 0 0

w21
[123] w22

[123] w23
[123] 0 0

w31
[123] w32

[123] w33
[123] + w33

[345] − 1/w33 w34
[345] w35

[345]

0 0 w43
[345] w44

[345] w45
[345]

0 0 w53
[345] w54

[345] w55
[345]




where w ij
[123] is the ijth element of the inverse of

W[123] =




w11 w12 w13

w21 w22 w23

w31 w32 w33




and so on.

Steffen Lauritzen, University of Oxford Decomposable Graphical Gaussian Models


