MODELE GRAFICZNE

Piotr GRACZYK
5. MAXIMUM LIKELIHOOD ESTIMATION

Let X be a Gaussian random vector $N(\xi, \Sigma)$ on \mathbb{R}^{p}
(we consider p variables X_{1}, \ldots, X_{p})
with unknown mean ξ and covariance Σ
We dispose of a sample $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$ of X.

We want to estimate:
the unknown mean ξ the unknown covariance Σ.

CLASSICAL CASE that you know after a course in multivariate statistics: no information on conditional independence between X_{i} 's. (saturated graphical model, complete graph \mathcal{G})

The maximum likelihood estimators are well known:
for the mean ξ, the empirical mean $\widehat{\xi}=\bar{X}$
for the covariance Σ, the empirical covariance

$$
\tilde{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(X^{(i)}-\bar{X}\right)\left(X^{(i)}-\bar{X}\right)^{T}
$$

These maximum likelihood estimators exist if and only if the matrix $\tilde{\Sigma}$ is strictly positive definite. This happens with probability 1 if $n>p$ and never if $n \leq p$.
Σ has a Wishart law on the matrix cone $\operatorname{Sym}^{+}(p, \mathbb{R})$.
This is a matrix analog of KHI^{2} law χ_{n-1}^{2} sur \mathbb{R}^{+}for $p=1$.
(C is a cone if $x \in C \Rightarrow \forall t>0 \quad t x \in C$)

GAUSSIAN GRAPHICAL MODEL CASE

Estimation under conditional independence between X_{i} 's. (graphical model with non-complete graph \mathcal{G})

Let $V=\{1, \ldots, p\}$ and let $\mathcal{G}=(V, E)$ be an undirected graph.

Let $\mathcal{S}(\mathcal{G})=\left\{Z \in \operatorname{Sym}(p \times p) \mid i \nsim j \Rightarrow Z_{i j}=0\right\}$
$\mathcal{S}(\mathcal{G})$ is the space of symmetric $p \times p$ matrices with obligatory zero terms $Z_{i j}=0$ for $i \nsim j$

Let $\mathcal{S}^{+}(\mathcal{G})=\operatorname{Sym}^{+}(p, \mathbb{R}) \cap \mathcal{S}(\mathcal{G})$ be the open cone of positive definite matrices with obligatory zero terms $Z_{i j}=0$ for $i \nsim j$.

Example 1. (Simpson paradox) $X_{1} \Perp X_{2} \mid X_{3}$
X_{1} and X_{2} are conditionally independent knowing X_{3}

Graphe $\mathcal{G}: 1-3-2$
The precision matrix $K=\Sigma^{-1}$ has obligatory zeros $\kappa_{12}=\kappa_{21}=0$
$K \in\left\{\left.\left(\begin{array}{ccc}x_{11} & 0 & x_{31} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{32} & x_{33}\end{array}\right) \right\rvert\, x_{11}, x_{22}, x_{31}, x_{32}, x_{33} \in \mathbb{R}\right\} \cap$ Sym $^{+}(3)$
$K \in \mathcal{S}^{+}(\mathcal{G})$ is a supplementary restriction to the MLE problem

Example 2. Nearest neighbours interaction graph A_{4}

Graphe $\mathcal{G}: 1 \longrightarrow 2 — 3-4$
$K \in\left\{\left.\left(\begin{array}{cccc}x_{11} & x_{21} & 0 & 0 \\ x_{21} & x_{22} & x_{32} & 0 \\ 0 & x_{32} & x_{33} & x_{43} \\ 0 & 0 & x_{43} & x_{44}\end{array}\right) \right\rvert\, x_{11}, \ldots, x_{44} \in \mathbb{R}\right\} \cap$ Sym $^{+}(4)$
$K \in \mathcal{S}^{+}(\mathcal{G})$ is a supplementary restriction to the MLE problem

GAUSSIAN GRAPHICAL MODEL \mathcal{G}

Conditional independence case

n-sample of $X \Rightarrow$ estimation of parameters ξ, Σ of X

In order to formulate the MLE formula, we need the natural projection $\pi_{\mathcal{G}}: S y m \rightarrow \mathcal{S}(\mathcal{G})$

This projection puts 0 instead of $x_{i j}$ when $i \nsim j$ in \mathcal{G}.
Example 1.(Simpson paradox) $\mathcal{G}: 1-3-2$
$\pi_{\mathcal{G}}\left(\left(\begin{array}{lll}x_{11} & x_{21} & x_{31} \\ x_{21} & x_{22} & x_{32} \\ x_{31} & x_{32} & x_{33}\end{array}\right)\right)=\left(\begin{array}{ccc}x_{11} & 0 & x_{31} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{32} & x_{33}\end{array}\right)$

Sample $X^{(1)}, \ldots, X^{(n)} ; \quad$ each $X^{(i)} \in \mathbb{R}^{p}$

A natural candidate to estimate Σ is (when $n>p$)

$$
\tilde{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(X^{(i)}-\bar{X}\right)\left(X^{(i)}-\bar{X}\right)^{T}
$$

but it does not take into account the restriction $K=\Sigma^{-1} \in \mathcal{S}^{+}(\mathcal{G})$

MLE Theorem. Let the graph $\mathcal{G}=(V, E)$ govern the Gaussian graphical model $X=\left(X_{v}\right)_{v \in V} \sim N_{p}(\xi, \Sigma)$, with precision matrix $K=\Sigma^{-1} \in \mathcal{S}^{+}(\mathcal{G})$. Consider an n-sample $X^{(1)}, \ldots, X^{(n)}$ of $X \in \mathbb{R}^{p}$ with $n>p=|V|$. The MLE of the mean is $\hat{\xi}=\bar{X}$.

The MLE $\widehat{K} \in \mathcal{S}^{+}(\mathcal{G})$ of the precision matrix is the unique solution of the equation

$$
\begin{equation*}
\pi_{\mathcal{G}}\left(\widehat{K}^{-1}\right)=\pi_{\mathcal{G}}(\tilde{\Sigma}) \tag{1}
\end{equation*}
$$

where $\tilde{\Sigma}$ is the sample covariance:

$$
\tilde{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(X^{(i)}-\bar{X}\right)\left(X^{(i)}-\bar{X}\right)^{T}
$$

The MLE $\hat{\Sigma}$ of Σ is given by $\hat{\Sigma}=\widehat{K}^{-1}$.

Proof. Simplified case: known zero mean $\xi=0$.
$X=\left(X_{1}, \ldots, X_{p}\right)^{T}:$ random vector obeying $N(0, \Sigma)$
with unknown covariance matrix $\Sigma \in \operatorname{Sym}^{+}(p)$
such that $K=\Sigma^{-1} \in \mathcal{S}^{+}(\mathcal{G})$

The likelihood (density) function of the sample $X^{(1)}, \ldots, X^{(n)}$ equals:
$f\left(x^{(1)}, \ldots, x^{(n)} ; K\right)=$
$=\prod_{k=1}^{n}\left\{(2 \pi)^{-p / 2}(\operatorname{det} K)^{1 / 2} \exp \left(-x^{(k)^{T}} K x^{(k)} / 2\right)\right\}$
$=(2 \pi)^{-p n / 2}(\operatorname{det} K)^{n / 2} \exp \left(-\sum_{k=1}^{n} x^{(k)^{T}} K x^{(k)} / 2\right)$
Note that the real number in the exponent equals its trace. We use the formula $\operatorname{tr}\left(A_{l \times m} B_{m \times l}\right)=\operatorname{tr}\left(B_{m \times l} A_{l \times m}\right)$:

$$
\sum_{k=1}^{n} x^{(k)^{T}} K x^{(k)}=\operatorname{tr}\left(\sum_{k=1}^{n} x^{(k)} x^{(k)^{T}}\right) K=\langle n \tilde{\Sigma}, K\rangle
$$

where $\langle R, S\rangle$ is the usual scalar product of two symmetric matrices $<R, S\rangle=\sum_{i, j} r_{i j} s_{i j}$.

We explain it on an example 2×2 :

$$
\begin{aligned}
& \left\langle\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right),\left(\begin{array}{ll}
A & B \\
B & C
\end{array}\right)\right\rangle=a A+b B+b B+c C \\
& \operatorname{trace}\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{ll}
A & B \\
B & C
\end{array}\right)=(a A+b B)+(b B+c C)
\end{aligned}
$$

$f\left(x^{(1)}, \ldots, x^{(n)} ; K\right)=(2 \pi)^{-\frac{p n}{2}}(\operatorname{det} K)^{\frac{n}{2}} \exp \left(-\frac{1}{2}\langle n \tilde{\Sigma}, K\rangle\right)$

Because of $K \in \mathcal{S}^{+}(\mathcal{G}),\langle n \tilde{\Sigma}, K\rangle=\left\langle\pi_{\mathcal{G}}(n \tilde{\Sigma}), K\right\rangle$.
(recall that K has obligatory zeros when $i \nsim j$ and $\pi_{\mathcal{G}}=$ projection on $\mathcal{S}(\mathcal{G})$)

We explain it on the example 3×3 of Simpson paradox

$$
\begin{gathered}
\left\langle\left(\begin{array}{lll}
x_{11} & x_{21} & x_{31} \\
x_{21} & x_{22} & x_{32} \\
x_{31} & x_{32} & x_{33}
\end{array}\right),\left(\begin{array}{ccc}
\kappa_{11} & 0 & \kappa_{31} \\
0 & \kappa_{22} & \kappa_{32} \\
\kappa_{31} & \kappa_{32} & \kappa_{33}
\end{array}\right)\right\rangle= \\
\left\langle\left(\begin{array}{ccc}
x_{11} & 0 & x_{31} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{32} & x_{33}
\end{array}\right),\left(\begin{array}{ccc}
\kappa_{11} & 0 & \kappa_{31} \\
0 & \kappa_{22} & \kappa_{32} \\
\kappa_{31} & \kappa_{32} & \kappa_{33}
\end{array}\right)\right\rangle
\end{gathered}
$$

Which $K \in \mathcal{S}^{+}(\mathcal{G})$ is most likely?

Maximum Likelihood Estimation \Rightarrow
it is $K=\widehat{K}$ for which $f\left(x^{(1)}, \ldots, x^{(n)} ; \widehat{K}\right)$ is maximum
$\Longleftrightarrow \log f\left(x^{(1)}, \ldots, x^{(n)} ; \widehat{K}\right)$ is maximum
$\Longleftrightarrow \operatorname{grad}_{K} \log f\left(x^{(1)}, \ldots, x^{(n)} ; \hat{K}\right)=0$.

We study as a function of $K \in \mathcal{S}^{+}(\mathcal{G})$
$\log f\left(x^{(1)}, \ldots, x^{(n)} ; K\right)=c+\frac{n}{2} \log \operatorname{det} K-\frac{n}{2}\left\langle\pi_{\mathcal{G}}(\tilde{\Sigma}), K\right\rangle$

For M invertible $p \times p$ real matrix we have grad \log det $M=M^{-1}$
(EXERCISE: prove this derivation formula)
$K \in \mathcal{S}^{+}(\mathcal{G})$, so grad_{K} does not contain $\frac{\partial}{\partial \kappa_{i j}}$ for $i \nsim j$
$0=\operatorname{grad}_{K} \log f\left(x^{(1)}, \ldots, x^{(n)} ; K\right)=\frac{n}{2}\left(\pi_{\mathcal{G}}\left(K^{-1}\right)-\pi_{\mathcal{G}}(\tilde{\Sigma})\right)$
Equation (1) is obtained: $\pi_{\mathcal{G}}\left(\widehat{K}^{-1}\right)=\pi_{\mathcal{G}}(\tilde{\Sigma})$.
The existence and unicity of a solution \hat{K} are ensured for $n \geq p$ (when $\mathbf{E} X$ is not given, for $n>p$) by a convexity argument (omitted).

Example 1.(Simpson paradox) $\mathcal{G}: 1-3-2$

The graph \mathcal{G} governs the model.

Suppose that $n>3$ and the sample covariance matrix equals $\tilde{\Sigma}=\left(\begin{array}{ccc}1 & 0.5 & 1 \\ 0.5 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$. (check that $\tilde{\Sigma} \gg 0$)
We have $\left(\tilde{\Sigma}^{-1}\right)_{12}=-0.5 \times(-0.5)=0.25$
so $\tilde{\Sigma}^{-1} \notin \mathcal{S}(\mathcal{G})$ (terms ${ }_{12}$ should be 0 for matrices in $\mathcal{S}(\mathcal{G})$.). Thus $\tilde{\Sigma} \neq \hat{\Sigma}$.

We apply the MLE Theorem.
$\pi_{\mathcal{G}}(\tilde{\Sigma})=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$. In order to find $\tilde{\Sigma}$, we need to find
x such that $\Sigma_{x}=\left(\begin{array}{lll}1 & x & 1 \\ x & 2 & 2 \\ 1 & 2 & 3\end{array}\right) \in$ Sym $^{+}$and $\Sigma_{x}^{-1} \in \mathcal{S}(\mathcal{G})$.
PLEASE DO IT NOW!
$\Sigma_{x} \in$ Sym $^{+} \Leftrightarrow 2>x^{2}$ and $\operatorname{det} \Sigma_{x}=4 x-3 x^{2}>0 \Leftrightarrow 0<$ $x<\frac{4}{3}$.

The condition $\Sigma_{x}^{-1} \in \mathcal{S}(\mathcal{G})$ (terms ${ }_{12}$ should be 0) gives $\operatorname{det}\left(\begin{array}{ll}x & 1 \\ 2 & 3\end{array}\right)=0$, so $x=\frac{2}{3}$. By MLE Theorem

$$
\hat{\Sigma}=\Sigma_{\frac{2}{3}}=\left(\begin{array}{lll}
1 & \frac{2}{3} & 1 \\
\frac{2}{3} & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

In practice, when $n>p$, we proceed as follows:

1. We compute the empirical covariance $\tilde{\Sigma}$ from the sample $X^{(1)}, \ldots, X^{(n)}$.
We do the projection $\pi_{\mathcal{G}}(\tilde{\Sigma})$.
2. We must find $\hat{K} \in \mathcal{S}^{+}(\mathcal{G})$ such that $\pi_{\mathcal{G}}\left(\widehat{K}^{-1}\right)=\pi_{\mathcal{G}}(\tilde{\Sigma})$.

This is a highly non-trivial step. The Theorem says that a unique solution exists, but does not say how to find it.

This question is trivial only when $\mathcal{G}=$ complete graph. (Then $\pi_{\mathcal{G}}=i d$ and $\widehat{K}=\tilde{\Sigma}^{-1}$)
3. Once 2. solved, we compute $\hat{\Sigma}:=\widehat{K}^{-1}$.
(For \mathcal{G} complete we find the well known MLE $\hat{\Sigma}=\tilde{\Sigma}$)

- An explicit solution of the Likelihood Equation (1) $\pi_{\mathcal{G}}\left(K^{-1}\right)=\pi_{\mathcal{G}}(\tilde{\Sigma})$ is known on decomposable (also called chordal or triangulated) graphs. It is expressed by the Lauritzen map.
- On any graphical model, in order to find approximatively a solution of (1), one can perform the Iterative Proportional Scaling (IPS) algorithm, which is infinite on non-decomposable graphs.
**Decomposable graphs roughly means decomposable into complete subgraphs connected by complete separators.

The smallest non-decomposable graph is the square

The Likelihood Equation $\pi_{\mathcal{G}}\left(K^{-1}\right)=\pi_{\mathcal{G}}(\tilde{\Sigma})$ is in 2 variables and it leads to a fifth degree equation in x which would be solvable for particular values of $\pi_{\mathcal{G}}(\tilde{\Sigma})$ only.

**TOWARDS BAYESIAN METHODS

In Bayesian statistics, we need to propose a prior law on the precision matrix K. The law of MLE may be naturally proposed as a prior law.

- the random matrix $\pi(\tilde{\Sigma}) \in \pi_{\mathcal{G}}\left(\operatorname{Sym}^{+}(p)\right)$ obeys Wishart law on the cone $\pi_{\mathcal{G}}\left(\operatorname{Sym}^{+}(p)\right)$.
- the random matrix $K \in \mathcal{S}^{+}(\mathcal{G})$ such that the Likelihood Equation $\pi_{\mathcal{G}}\left(K^{-1}\right)=\pi_{\mathcal{G}}(\tilde{\Sigma})$ holds obeys Wishart law on the cone $\mathcal{S}^{+}(\mathcal{G})$.

Harmonic (Laplace) analysis on the convex cones is needed to study these Wishart laws (e.g. the density)

The formula for sample density
$f\left(x^{(1)}, \ldots, x^{(n)} ; K\right)=(2 \pi)^{-\frac{p n}{2}}(\operatorname{det} K)^{\frac{n}{2}} \exp \left(-\frac{1}{2}\langle n \tilde{\Sigma}, K\rangle\right)$
suggests using as a prior distribution of K the law with density

$$
K \rightarrow C(\operatorname{det} K)^{\frac{s}{2}} e^{-\frac{1}{2} \operatorname{tr}(K \theta)}, \quad K \in \mathcal{S}^{+}(\mathcal{G})
$$

where $\theta \in \pi_{\mathcal{G}}\left(\operatorname{Sym}^{+}(p)\right)$, i.e. only the terms $\left(\theta_{i j}\right)_{i \sim j}$ are essential. This is a Diaconis-Ylvisaker prior for K.

The computation of the normalizing constant C is crucial for Bayes methods (and uneasy!)

