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Examples
Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Independence
Formal definition
Fundamental properties

For random variables X , Y , Z , and W it holds

(C1) If X ⊥⊥Y |Z then Y ⊥⊥X |Z ;

(C2) If X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z ;

(C3) If X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z ,U);

(C4) If X ⊥⊥Y |Z and X ⊥⊥W | (Y ,Z ), then
X ⊥⊥ (Y ,W ) |Z ;

If density w.r.t. product measure f (x , y , z ,w) > 0 also

(C5) If X ⊥⊥Y | (Z ,W ) and X ⊥⊥Z | (Y ,W ) then
X ⊥⊥ (Y ,Z ) |W .

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence
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Markov properties for undirected graphs

Independence
Formal definition
Fundamental properties

Proof of (C5): We have

X ⊥⊥Y | (Z ,W )⇒ f (x , y , z ,w) = a(x , z ,w)b(y , z ,w).

Similarly

X ⊥⊥Z | (Y ,W )⇒ f (x , y , z ,w) = g(x , y ,w)h(y , z ,w).

If f (x , y , z ,w) > 0 for all (x , y , z ,w) it thus follows that

g(x , y ,w) = a(x , z ,w)b(y , z ,w)/h(y , z ,w).

The left-hand side does not depend on z . So for fixed z = z0:

g(x , y ,w) = ã(x ,w)b̃(y ,w).

Insert this into the second expression for f to get

f (x , y , z ,w) = ã(x ,w)b̃(y ,w)h(y , z ,w) = a∗(x ,w)b∗(y , z ,w)

which shows X ⊥⊥ (Y ,Z ) |W .
Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Examples
Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Graphoids and semi-graphoids
Examples

Conditional independence can be seen as encoding abstract
irrelevance. With the interpretation: Knowing C , A is irrelevant for
learning B, (C1)–(C4) translate into:

(I1) If, knowing C , learning A is irrelevant for learning B,
then B is irrelevant for learning A;

(I2) If, knowing C , learning A is irrelevant for learning B,
then A is irrelevant for learning any part D of B;

(I3) If, knowing C , learning A is irrelevant for learning B,
it remains irrelevant having learnt any part D of B;

(I4) If, knowing C , learning A is irrelevant for learning B
and, having also learnt A, D remains irrelevant for
learning B, then both of A and D are irrelevant for
learning B.

The property analogous to (C5) is slightly more subtle and not
generally obvious.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence
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Graphoids and semi-graphoids
Examples

An independence model ⊥σ is a ternary relation over subsets of a
finite set V . It is graphoid if for all subsets A, B, C , D:

(S1) if A⊥σ B |C then B ⊥σ A |C (symmetry);

(S2) if A⊥σ (B ∪ D) |C then A⊥σ B |C and A⊥σ D |C
(decomposition);

(S3) if A⊥σ (B ∪ D) |C then A⊥σ B | (C ∪ D) (weak
union);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C ), then
A⊥σ (B ∪ D) |C (contraction);

(S5) if A⊥σ B | (C ∪ D) and A⊥σ C | (B ∪ D) then
A⊥σ (B ∪ C ) |D (intersection).

Semigraphoid if only (S1)–(S4) holds. It is compositional if also

(S6) if A⊥σ B |C and A⊥σ D |C then A⊥σ (B ∪ D) |C
(composition).

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence
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Graphoids and semi-graphoids
Examples

Separation in undirected graphs

Let G = (V ,E ) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A,B,S of V , let A⊥G B | S denote that S separates A
from B in G, i.e. that all paths from A to B intersect S .

Fact: The relation ⊥G on subsets of V is a compositional
graphoid.

This fact is the reason for choosing the name ‘graphoid’ for such
independence model.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Examples
Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Independence
Formal definition
Fundamental properties
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For several variables, complex systems of conditional independence
can for example be described by undirected graphs.
Then a set of variables A is conditionally independent of set B,
given the values of a set of variables C if C separates A from B.

For example in picture above

1⊥⊥{4, 7} | {2, 3}, {1, 2}⊥⊥ 7 | {4, 5, 6}.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence
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Graphoids and semi-graphoids
Examples

Systems of random variables

For a system V of labeled random variables Xv , v ∈ V , we use the
shorthand

A⊥⊥B |C ⇐⇒ XA⊥⊥XB |XC ,

where XA = (Xv , v ∈ A) denotes the variables with labels in A.

The properties (C1)–(C4) imply that ⊥⊥ satisfies the
semi-graphoid axioms for such a system, and the graphoid axioms
if the joint density of the variables is strictly positive.

A regular multivariate Gaussian distribution, defines a
compositional graphoid independence model.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Definition. Let α ∈ V be a node of the graph G.

If v ∼ w we say that v and w are neighbours.

The boundary bd(α)
df
= {v ∈ V | v ∼ α} is the set of

neighbours of α.

The closure cl(α)
df
= {α} ∪ bd(α).

2



Examples
Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Definitions
Structural relations among Markov properties

G = (V ,E ) simple undirected graph; An independence model ⊥σ

satisfies

(P) the pairwise Markov property if

α 6∼ β ⇒ α⊥σ β |V \ {α, β};

(L) the local Markov property if

∀α ∈ V : α⊥σ V \ cl(α) | bd(α);

(G) the global Markov property if

A⊥G B | S ⇒ A⊥σ B |S .

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



The terminology ”Markov property” can be explained

on the nearest neighbour ”chain” model An

G :
1• − 2• − · · · − k−1• − k• − k+1• − · · · − n•

The global Markov property contains classical Markov

properties of a Markov chain

k+1 ⊥⊥ {1, . . . , k − 1}| k

{k+1, . . . , n} ⊥⊥ {1, . . . , k − 1}| k
Graphical Markov properties (P), (L), (G) are a gener-

alization of classical Markov properties from chains to

graphs.
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Examples
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Abstract conditional independence
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Definitions
Structural relations among Markov properties

Pairwise Markov property
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Any non-adjacent pair of random variables are conditionally
independent given the remaning.
For example, 1⊥σ 5 | {2, 3, 4, 6, 7} and 4⊥σ 6 | {1, 2, 3, 5, 7}.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Examples
Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Definitions
Structural relations among Markov properties

Local Markov property
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Every variable is conditionally independent of the remaining, given
its neighbours.
For example, 5⊥σ {1, 4} | {2, 3, 6, 7} and 7⊥σ {1, 2, 3} | {4, 5, 6}.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Examples
Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Definitions
Structural relations among Markov properties

Global Markov property
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To find conditional independence relations, one should look for
separating sets, such as {2, 3}, {4, 5, 6}, or {2, 5, 6}
For example, it follows that 1⊥σ 7 | {2, 5, 6} and 2⊥σ 6 | {3, 4, 5}.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Examples
Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Definitions
Structural relations among Markov properties

For any semigraphoid it holds that

(G)⇒ (L)⇒ (P)

If ⊥σ satisfies graphoid axioms it further holds that

(P)⇒ (G)

so that in the graphoid case

(G) ⇐⇒ (L) ⇐⇒ (P).

The latter holds in particular for ⊥⊥ , when f (x) > 0.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Examples
Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Definitions
Structural relations among Markov properties

(G)⇒ (L)⇒ (P)

(G) implies (L) because bd(α) separates α from V \ cl(α).

Assume (L). Then β ∈ V \ cl(α) because α 6∼ β. Thus

bd(α) ∪ ((V \ cl(α)) \ {β}) = V \ {α, β},

Hence by (L) and weak union (S3) we get that

α⊥σ (V \ cl(α)) |V \ {α, β}.

Decomposition (S2) then gives α⊥σ β |V \ {α, β} which is (P).

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence
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Conditional independence

Abstract conditional independence
Markov properties for undirected graphs

Definitions
Structural relations among Markov properties

(P)⇒ (G) for graphoids:
Assume (P) and A⊥G B | S . We must show A⊥σ B |S .

Wlog assume A and B non-empty. Proof is reverse induction on
n = |S |.
If n = |V | − 2 then A and B are singletons and (P) yields
A⊥σ B | S directly.

Assume |S | = n < |V | − 2 and conclusion established for |S | > n:

First assume V = A ∪ B ∪ S . Then either A or B has at least two
elements, say A. If α ∈ A then B ⊥G (A \ {α}) | (S ∪ {α}) and also
α⊥G B | (S ∪ A \ {α}) (as ⊥G is a semi-graphoid). Thus by the
induction hypothesis

(A \ {α})⊥σ B | (S ∪ {α}) and {α}⊥σ B | (S ∪ A \ {α}).

Now intersection (S5) gives A⊥σ B | S .

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



FACTORIZATION PROPERTY

with respect to a graph G
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Examples
Abstract conditional independence

Markov properties for undirected graphs
Factorization and Markov properties

Markov properties for directed acyclic graphs

Definition
Factorization example
Factorization theorem
Dependence graph
Generating class
Dependence graph of log-linear model

Assume density f w.r.t. product measure on X .
For a ⊆ V , ψa(x) denotes a function which depends on xa only, i.e.

xa = ya ⇒ ψa(x) = ψa(y).

We can then write ψa(x) = ψa(xa) without ambiguity.
The distribution of X factorizes w.r.t. G or satisfies (F) if

f (x) =
∏

a∈A
ψa(x)

where A are complete subsets of G.
Complete subsets of a graph are sets with all elements pairwise
neighbours.

Steffen Lauritzen, University of Oxford More on Markov Properties



Examples
Abstract conditional independence

Markov properties for undirected graphs
Factorization and Markov properties

Markov properties for directed acyclic graphs

Definition
Factorization example
Factorization theorem
Dependence graph
Generating class
Dependence graph of log-linear model
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The cliques of this graph are the maximal complete subsets {1, 2},
{1, 3}, {2, 4}, {2, 5}, {3, 5, 6}, {4, 7}, and {5, 6, 7}. A complete
set is any subset of these sets.
The graph above corresponds to a factorization as

f (x) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ25(x2, x5)

× ψ356(x3, x5, x6)ψ47(x4, x7)ψ567(x5, x6, x7).

Steffen Lauritzen, University of Oxford More on Markov Properties
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Markov properties for undirected graphs
Factorization and Markov properties

Markov properties for directed acyclic graphs

Definition
Factorization example
Factorization theorem
Dependence graph
Generating class
Dependence graph of log-linear model

Let (F) denote the property that f factorizes w.r.t. G and let (G),
(L) and (P) denote Markov properties w.r.t. ⊥⊥ . It then holds that

(F)⇒ (G)

and further: If f (x) > 0 for all x , (P)⇒ (F).

The former of these is a simple direct consequence of the
factorization whereas the second implication is more subtle and
known as the Hammersley–Clifford Theorem.

Thus in the case of positive density (but typically only then), all
the properties coincide:

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).

Steffen Lauritzen, University of Oxford More on Markov Properties
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Definition
Factorization example
Factorization theorem
Dependence graph
Generating class
Dependence graph of log-linear model

Any joint probability distribution P of X = (Xv , v ∈ V ) has a
dependence graph G = G (P) = (V ,E (P)).

This is defined by letting α 6∼ β in G (P) exactly when

α⊥⊥P β |V \ {α, β}.

X will then satisfy the pairwise Markov w.r.t. G (P) and G (P) is
smallest with this property, i.e. P is pairwise Markov w.r.t. G iff

G (P) ⊆ G.

If f (x) > 0 for all x , P is also globally Markov w.r.t. G (P).

Steffen Lauritzen, University of Oxford More on Markov Properties


