Graphical Models, UWr March 2020 PRACTICAL SELECTION OF THE BEST GRAPHICAL GAUSSIAN MODEL

Let $X=\left(X_{1}, \ldots, X_{p}\right)^{T}$ be a Gaussian random vector $N(\xi, \Sigma)$ on \mathbb{R}^{p} with unknown mean ξ and covariance Σ

We have a sample $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$ of size n of X. We want to do model selection among all Gaussian graphical models $\mathcal{G}=(V, E)$ with $|V|=p$.
Which graphical model $\mathcal{G}=(V, E)$ with $|V|=p$ fits the best the sample $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$?

Equivalently,
where to put zeros in the precision matrix $K=\Sigma^{-1}$?

METHOD 1. CASE $n>p$: COMPUTATION OF EMPIRICAL SCALED PRECISION MATRIX $\tilde{K}_{\text {emp }}$
1.1. SAMPLE (EMPIRICAL) COVARIANCE MATRIX:

$$
\Sigma_{\mathrm{emp}}=\frac{1}{n} \sum_{i=1}^{n}\left(X^{(i)}-\bar{X}\right)\left(X^{(i)}-\bar{X}\right)^{T} \in \operatorname{Sym}^{>0}(p \times p)
$$

Semp is the Max Likelihood Estimator of Σ
1.2. SAMPLE (EMPIRICAL) PRECISION MATRIX: $K_{\mathrm{emp}}=\Sigma_{\mathrm{emp}}^{-1}$
1.3. SAMPLE (EMPIRICAL) SCALED PRECISION MATRIX: $\widetilde{K}_{\mathrm{emp}}, \widetilde{k}_{l m}=\frac{k_{l m}}{\sqrt{k_{l l}} \sqrt{k_{m m}}}=-\rho_{l m \mid V \backslash\{l, m\}}$.
When $\tilde{k}_{l m} \approx 0$,
we decide $X_{l} \Perp X_{m} \mid X_{V \backslash\{l, m\}}$ and $k_{l m}=0$.

2. BIG DATA CASE $n<p$

GRAPHICAL LASSO METHODS

(also possible in the case $n \geq p$)

Big problem when $n<p: \Sigma_{\text {emp }}^{-1}$ does not exists, $K_{\text {emp }}=\Sigma_{\text {emp }}^{-1}$ makes no sense

2.0. Shortly on LASSO

(in programme of Big Data Statistics, Master)
Classical Linear Regression problem

$$
\begin{array}{r}
Y=\mathbf{X} \beta+\varepsilon \quad(\varepsilon=\text { noise }) \\
\hat{\beta}=\arg \min _{\beta}\|Y-\mathbf{X} \beta\|_{2}^{2}
\end{array}
$$

- has a unique solution when $n>p$ (classical case)
- has infinity of solutions when $n \leq p$ (Big Data case)

Genius idea of LASSO:
one introduces a penalty $\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|=\lambda\|\beta\|_{1}, \lambda>0$

$$
\begin{array}{cr}
Y=\mathbf{X} \beta+\varepsilon & (\varepsilon=\text { noise }) \\
\widehat{\beta}=\arg \min _{\beta}\left(\|Y-\mathbf{X} \beta\|_{2}^{2}+\lambda\|\beta\|_{1}\right), & (\lambda>0) .
\end{array}
$$

Regression LASSO method generates sparsity, i.e. a lot of zero coefficients β_{i} of the vector β in the regression problem.

If λ is bigger, we get more sparsity (more $\beta_{i}=0$)

R package: $g \operatorname{lmnet}(X, Y, a l p h a=1)$

Graphical Lasso $=$ G-Lasso

In graphical models there is, in principle, no response variable Y to X (unsupervised learning).

We seek to have zeros in the precision matrix K.

2 methods of Graphical Lasso exist:

- by Penalized Log-Likelihood (Friedman 2008)
- by Regression LASSO for each X_{i} as response (Meinshausen, Bühlmann 2006)

2.1. Graphical Lasso via Penalized Log-Likelihood

 (d'Aspremont, Banerjee, Ghaoui 2008,Friedman, Hastie, Tibshirani 2008)

Regression LASSO has an equivalent formulation via maximization of the L^{1}-Penalized Log-Likelihood. One exploits such formulation for a method of Graphical Lasso.

The likelihood (density) function of the sample $X^{(1)}, \ldots, X^{(n)}$:
$f\left(x^{(1)}, \ldots, x^{(n)} ; K\right)=(2 \pi)^{-p n / 2}(\operatorname{det} K)^{n / 2} \exp \left(-\frac{n}{2}\left\langle\Sigma_{\mathrm{emp}}, K\right\rangle\right)$
where $\sum_{\mathrm{emp}}=\frac{1}{n} \sum_{i=1}^{n}\left(x^{(i)}-\bar{x}\right)\left(x^{(i)}-\bar{x}\right)^{T}$
(this will be proved in a further lecture)

The log-likelihood function
$\left.\log f\left(x^{(1)}, \ldots, x^{(n)} ; K\right)=c+\frac{n}{2} \log \operatorname{det} K-\frac{n}{2}\left\langle\Sigma_{\mathrm{emp}}, K\right\rangle\right)$

Graphical Lasso via Penalized Log-Likelihood:
$\widehat{K}=\arg \max _{K \in S y m}{ }_{(p)}\left[\log \operatorname{det} K-\left\langle\sum_{\mathrm{emp}}, K\right\rangle-\lambda \sum_{l \neq m}\left|k_{l m}\right|\right]$ where $\lambda>0, \Sigma_{\text {emp }}=$ sample covariance matrix.

The penalty is proportional to the L^{1}-norm of the offdiagonal entries of the precision matrix K.

Fact. The resulting optimal precision matrix \hat{K} has sparsity in off-diagonal terms $k_{l m}$.

R package: glasso
2.2 Regression LASSO for each X_{i} as response variable to all other $X_{\hat{i}}$ ("'Neighborhood-Based Likelihood")
(Meinshausen, Bühlmann 2006)

Main Idea. In the linear regression $X_{i}=\sum_{j \neq i} \beta_{i j} X_{j}+\varepsilon_{i}$ we estimate the coefficients $\beta_{i j}$ by

$$
\beta_{i j}=\frac{\operatorname{Cov}\left(X_{i}, X_{j} \mid X_{V \backslash\{i, j\}}\right)}{\operatorname{Var}\left(X_{j} \mid X_{V \backslash\{i, j\}}\right)}=\frac{-\kappa_{i j}}{\kappa_{i i}},
$$

(Choose X_{i}, X_{j}, treat all other variables as fixed, use $\Sigma_{X_{i, 2} X_{i} \mid X_{V(i, j)}}=K_{\{i, j\}}^{-1}=\frac{1}{\operatorname{det} K_{i(i)}}\left(\begin{array}{cc}\kappa_{j j} & -\kappa_{i j} \\ -\kappa_{i j} & \kappa_{i i}\end{array}\right)$.)

Conclusion: $\beta_{i j}=0$ iff $\kappa_{i j}=0$.

Method of Meinshausen, Bühlmann:

(i) Apply LASSO to each X_{i} in turn as the response (apply usual LASSO p times)
(ii) Decide $i \nsim j$ in the graph \mathcal{G} if both $\beta_{i j}=0=\beta_{j i}$.

COMPUTER PROBLEM

5-9 March, 2020

Apply 3 Methods (Method $\widetilde{K}_{\text {emp }}$ and 2 methods of graphical Lasso) for the famous Frets' Heads data (1921):

The head dimensions:
length L_{i} and breadth $B_{i}, i=1,2$
of 25 pairs of first and second sons were measured.

Thus we have $n=25$ and $p=4$.

Frets' Heads Data is available in R:
library(boot)
frets

Table 5.1.1 The measurements on the first and second adult sons in a sample of 25 families. (Data from Frets, 1921.)

Head length	First son	$\overbrace{$ Head length breadth }$^{\text {Second son }}$	
191	155	179	Head breadth
195	149	201	145
181	148	185	152
183	153	188	149
176	144	171	149
208	157	192	142
189	150	190	152
197	159	189	149
188	152	197	152
192	150	187	159
179	158	186	151
183	147	174	148
174	150	185	147
190	159	195	152
188	151	187	157
163	137	161	158
195	155	183	130
186	153	173	158
181	145	182	148
175	140	165	146
192	154	185	137
174	143	178	152
176	139	176	147
197	167	200	143
190	163	157	150

