EXAM Graphical Models. TIME: 45 min.

ALTERNATIVE WAY OF GETTING THE FINAL NOTE WITHOUT COMPUTER LAB REPORT: PRESENT EXERCISES FROM PARTS 3,4,5 + EXAM BY EMAIL

Let X be a centered Gaussian vector of dimension 3 given by $X = (X_1, X_2, X_3)^T \sim N(0, \Sigma_X)$ with covariance matrix $\Sigma_X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ and precision matrix $K_X = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.

- 1. What is the relation between matrices Σ_X and K_X ?
- 2. Are there independent components X_i ? If yes, which ones?
- 3. Are there components X_i conditionally independent, knowing the others? If yes, which ones?
- What can we deduce on the prediction of X_1 , if one knows X_2 and X_3 ?
- 4. Draw the dependance graph \mathcal{G} of X.
- 5. Determine the marginal law of $(X_2, X_3)^T$.
- 6. Determine the conditional law of $(X_2, X_3)^T | X_1 = u$ and the conditional correlation $\rho_{X_2, X_3} | X_1 = u$.
- 7. One knows that the random vector Y belongs to the graphical Gaussian model governed by the graph
- \mathcal{G} . One does not know the covariance matrix Σ_Y of Y.

We have a sample of size n = 5 of Y and one computes the sample (empirical) covariance matrix $\begin{pmatrix} 2 & 1 & 0.9 \end{pmatrix}$

$$\tilde{\Sigma}_Y = \begin{pmatrix} 1 & 1 & 1 \\ 0.9 & 1 & 2 \end{pmatrix}.$$

Give the ML Estimator (MLE) Σ_Y and the MLE of the precision matrix K_Y of Y.

- 8. Is the graph \mathcal{G} complete? Decomposable? Give its decomposition into cliques.
- 9. Give an example of a non-decomposable graph.

Some formulas from the lectures. Let X be a Gaussian vector $N(\xi, \Sigma)$ in \mathbf{R}^d with Σ invertible. One partitions $X = \begin{pmatrix} X_A \\ X_B \end{pmatrix}$ into sub-vectors $X_A \in \mathbf{R}^r$ and $X_B \in \mathbf{R}^s$, where r + s = d. One partitions $\xi = \begin{pmatrix} \xi_A \\ \xi_B \end{pmatrix}$, $\Sigma = \begin{pmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{pmatrix}$, $K = \begin{pmatrix} K_{AA} & K_{AB} \\ K_{BA} & K_{BB} \end{pmatrix}$ into blocs $\begin{pmatrix} r \times r & r \times s \\ s \times r & s \times s \end{pmatrix}$.

The conditional law $X_A | (X_B = x_B) \sim N(\xi_{A|B}, \Sigma_{A|B})$ where

 $\xi_{A|B} = \xi_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \xi_B)$ and $\Sigma_{A|B} = K_{AA}^{-1}$.

The conditional correlation $\rho_{lm|V\setminus\{l,m\}} = -\tilde{\kappa}_{lm} = -\frac{\kappa_{lm}}{\sqrt{\kappa_{ll}}\sqrt{\kappa_{mm}}}.$

Maximum Likelihood Equation : $\pi_{\mathcal{G}}(\hat{K}^{-1}) = \pi_{\mathcal{G}}(\tilde{\Sigma})$, where $\tilde{\Sigma}$ is the sample covariance.