EXAM Graphical Models. TIME: 45 min.

ALTERNATIVE WAY OF GETTING THE FINAL NOTE WITHOUT COMPUTER LAB REPORT: PRESENT EXERCISES FROM PARTS 3,4,5 + EXAM BY EMAIL

Let X be a centered Gaussian vector of dimension 3 given by $X=\left(X_{1}, X_{2}, X_{3}\right)^{T} \sim N\left(0, \Sigma_{X}\right)$ with covariance matrix $\Sigma_{X}=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2\end{array}\right)$ and precision matrix $K_{X}=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 1\end{array}\right)$.

1. What is the relation between matrices Σ_{X} and K_{X} ?
2. Are there independent components X_{i} ? If yes, which ones?
3. Are there components X_{i} conditionally independent, knowing the others? If yes, which ones? What can we deduce on the prediction of X_{1}, if one knows X_{2} and X_{3} ?
4. Draw the dependance graph \mathcal{G} of X.
5. Determine the marginal law of $\left(X_{2}, X_{3}\right)^{T}$.
6. Determine the conditional law of $\left(X_{2}, X_{3}\right)^{T} \mid X_{1}=u$ and the conditional correlation $\rho_{X_{2}, X_{3} \mid} X_{1}=u$.
7. One knows that the random vector Y belongs to the graphical Gaussian model governed by the graph
\mathcal{G}. One does not know the covariance matrix Σ_{Y} of Y.
We have a sample of size $n=5$ of Y and one computes the sample (empirical) covariance matrix $\tilde{\Sigma}_{Y}=\left(\begin{array}{ccc}2 & 1 & 0.9 \\ 1 & 1 & 1 \\ 0.9 & 1 & 2\end{array}\right)$.

Give the ML Estimator (MLE) Σ_{Y} and the MLE of the precision matrix K_{Y} of Y.
8. Is the graph \mathcal{G} complete? Decomposable? Give its decomposition into cliques.
9. Give an example of a non-decomposable graph.

Some formulas from the lectures. Let X be a Gaussian vector $N(\xi, \Sigma)$ in \mathbf{R}^{d} with Σ invertible.
One partitions $X=\binom{X_{A}}{X_{B}}$ into sub-vectors $X_{A} \in \mathbf{R}^{r}$ and $X_{B} \in \mathbf{R}^{s}$, where $r+s=d$.
One partitions $\xi=\binom{\xi_{A}}{\xi_{B}}, \Sigma=\left(\begin{array}{ll}\Sigma_{A A} & \Sigma_{A B} \\ \Sigma_{B A} & \Sigma_{B B}\end{array}\right), K=\left(\begin{array}{ll}K_{A A} & K_{A B} \\ K_{B A} & K_{B B}\end{array}\right)$ into blocs $\left(\begin{array}{cc}r \times r & r \times s \\ s \times r & s \times s\end{array}\right)$.
The conditional law $X_{A} \mid\left(X_{B}=x_{B}\right) \sim N\left(\xi_{A \mid B}, \Sigma_{A \mid B}\right)$ where

$$
\xi_{A \mid B}=\xi_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(x_{B}-\xi_{B}\right) \text { and } \Sigma_{A \mid B}=K_{A A}^{-1} .
$$

The conditional correlation $\rho_{l m \mid V \backslash\{l, m\}}=-\tilde{\kappa}_{l m}=-\frac{\kappa_{l m}}{\sqrt{\kappa_{l l}} \sqrt{\kappa_{m m}}}$.
Maximum Likelihood Equation : $\pi_{\mathcal{G}}\left(\hat{K}^{-1}\right)=\pi_{\mathcal{G}}(\tilde{\Sigma})$, where $\tilde{\Sigma}$ is the sample covariance.

