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Streszczenie
Załóżmy, że G jest grupą i A jest ciałem podzbiorów G zamkniętym na lewe

przesunięcia. Próbujemy różnymi sposobami zrozumieć grupę Ellisa G-potoku
S(A) (przestrzeni Stone’a algebry A), szczególnie interesując się kontekstem teo-
riomodelowym, gdzie G jest grupą definiowalną w strukturze pierwszego rzędu
M i A składa się z zewnętrznie definiowalnych podzbiorów G.

W pierwszej części rozprawy zgłębiamy zbiory silnie generyczne. Jak pokazu-
jemy, maksymalne algebry złożone z takich zbiorów zawierają wystarczająco
dużo informacji, by odczytać z nich grupę Ellisa. Podzbiór G nazywamy silnie
generycznym, gdy każda niepusta boolowska kombinacja jego przesunięć jest
zbiorem generycznym. Do trywialnych przykładów zaliczają się zbiory nazwane
przez nas okresowymi, które są sumami warstw podgrup G skończonego in-
deksu. Podajemy kilka charakteryzacji zbiorów silnie generycznych, w szczegól-
ności ukazujemy ich związek z punktami prawie okresowymi potoku 2G. W
grupach niemających najmniejszej podgrupy skończonego indeksu pokazujemy,
jak konstruować nieokresowe, silnie generyczne podzbiory w sposób system-
atyczny. Gdy G jest grupą definiowalną w modelu M , jej definiowalny, silnie
generyczny podzbiór pozostanie takowym w każdym elementarnym rozszerzeniu
M jedynie wtedy, gdy jest silnie generyczny w G w odpowiednio jednostajny
sposób. Zbiory o tej własności nazwane są jako jednostajnie silnie generyczne.
Analizujemy kilka przykładów takich zbiorów w różnych grupach.

W drugiej części zakładamy, że G jest grupą topologiczną, i rozważamy
szczególną algebrę jej podzbiorów, oznaczaną SBP. Składa się ona z podzbiorów
G mających silną własność Baire’a, czyli takich, których brzeg jest nigdziegęsty.
Podajemy jawny opis grupy Ellisa S(A), gdzie A jest dowolną podalgebrą SBP,
przy zmieniających się założeniach na grupę G, włączając w to przypadek gdy G
jest grupą topologiczną zwartą. Używając tego opisu, badamy związek między
grupami Ellisa obliczonymi dla modelu i jego elementarnego rozszerzenia w
szczególnych sytuacjach. Przy niektórych z tych założeń rozstrzygamy również,
czy oczywiste zawierania między rodzinami zbiorów: silnie generycznych, jed-
nostajnie silnie generycznych i okresowych – dają się odwrócić. Te wyniki mogą
być stosowane w strukturach o-minimalnych, w których dowodzimy, że zbiory
zewnętrznie definiowalne mają silną własność Baire’a. Na końcu proponujemy
procedurę znajdowania maksymalnej algebry generycznej w danej podalgebrze
SBP, zakładając że udało nam się to uczynić zaniedbując zbiory nigdziegęste.



Abstract
Assume G is a group and A is an algebra of subsets of G closed under left
translation. We study various ways to understand the Ellis group of the G-flow
S(A) (the Stone space of A), with particular interest in the model-theoretic
setting where G is definable in a first order structure M and A consists of
externally definable subsets of G.

In one part of the thesis we explore strongly generic sets. Maximal algebras
of such sets are shown to carry enough information to retrieve the Ellis group.
A subset of G is strongly generic if each non-empty Boolean combination of its
translates is generic. Trivial examples include what we call periodic sets, which
are unions of cosets of finite index subgroups of G. We give several characteri-
zations of strongly generic sets, in particular, we relate them to almost periodic
points of the flow 2G. For groups without a smallest finite index subgroup we
show how to construct non-periodic strongly generic subsets in a systematic
way. When G is definable in a model M , a definable, strongly generic subset of
G will remain as such in any elementary extension of M only if it is strongly
generic in G in an adequately uniform way. Sets satisfying this condition are
called uniformly strongly generic. We analyse a few examples of these sets in
different groups.

In the second part we assume that G is a topological group and consider a
particular algebra of its subsets denoted SBP. It consists of subsets of G that
have the strong Baire property, meaning nowhere dense boundary. We explicitly
describe the Ellis group of S(A) for an arbitrary subalgebra A of SBP under
varying assumptions on the group G, including the case when G is a compact
topological group. We use this description to relate the Ellis groups computed
for a model and its elementary extension in particular scenarios. Under some
of those assumptions we also decide whether the obvious inclusions between the
families of strongly generic, uniformly strongly generic and periodic sets can be
reversed. These results can be applied in o-minimal structures, in which exter-
nally definable subsets are proved to have the strong Baire property. Finally, we
propose a procedure of finding a maximal generic algebra in a given subalgebra
of SBP given that we succeeded in doing so while neglecting nowhere dense
sets.
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1 Introduction
The idea of applying topological dynamics in model theory is due to Newelski
[New09, New12b], who suggested it could serve to extend the results from stable
group theory to unstable context. It was later explored and broadened by several
authors, see e.g. [Pil13, GPP14, Jag15, CS18, KNS19]. One area of study is
to investigate dynamical objects, such as the Ellis group,1 associated with any
definable group. From a model-theoretic perspective an important question
arises: to what extent, if any, are these objects preserved when computed for
different models of the same theory? This dissertation aims to examine some
constructions and techniques related to the issue, among which are the strongly
generic sets.

Assume G is a group definable in a first-order structure M . The space
SG(M), the Stone space of the algebra of M -definable subsets of G, is natu-
rally a G-flow. In case M is stable, SG(M) is canonically isomorphic to the
enveloping (Ellis) semigroup of itself and there is a unique minimal ideal M of
SG(M), consisting of the generic types of G. M is also a group isomorphic to
G/G0, where G0 is the connected component of G. However, when M is not
stable, SG(M) is typically not isomorphic to its Ellis semigroup and we need
to consider Sext,G(M) instead, which is the Stone space of the algebra of exter-
nally definable subsets of G. As there is usually little relation between subsets
externally definable in a model M and its elementary extension M∗, it remains
unclear whether any properties of the Ellis groups defined with respect to the
corresponding G-flows, Sext,G(M) and Sext,G(M∗), are preserved.

An idea to overcome this is to express the Ellis group in terms of objects
that are closer to definability, so that their properties will carry over between
models. An algebra of subsets of G closed under left translation is called a
G-algebra. It was observed in [New12a] that to any Ellis group we can assign
an image algebra, which is a particular G-algebra of externally definable subsets
of G. Its unique property is that it consists of generic sets, i.e. subsets of G
for which we can find finitely many translates covering G. It is easy to find
examples of generic sets, but it is quite unusual for them to form non-trivial
G-algebras. A set generating a G-algebra consisting only of generic sets (except
the empty set) is thereby called strongly generic.

Newelski proved that any maximal G-algebra consisting of externally defin-
able generic sets is an image algebra and any minimal ideal is determined by
image algebras up to homeomorphism. With a little bit more work, also the
algebraic structure of the Ellis group can be retrieved from strongly generic sets.
We present the details in Section 2. On the other hand, strongly generic sets fea-
ture a certain kind of regularity which ideally could reveal itself uniformly across
many models of the same theory. For instance, Newelski proved in [New12a]
that a strongly generic definable subset of a stable group must be periodic, i.e.
a union of cosets of a finite index subgroup. These properties lead us to believe
that strongly generic sets are worth a study on their own. Ultimately this may

1The phrase Ellis group is now a common name in model theory for an object defined in
Section 2.
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result in a discovery of some interesting connections between Ellis groups of a
model and its elementary extension.

We also consider a strenghtening of the notion of strongly generic sets, which
are the uniformly strongly generic sets. These are precisely the sets that remain
strongly generic in every elementary extension, taking it one step closer to the
realization of the idea from the previous paragraph. However, not every strongly
generic set is uniformly strongly generic. In fact, we prove that certain kinds of
groups, including the compact groups, are guaranteed to have a strongly generic
subset that is not uniformly strongly generic.

Our second idea is localization. Given a large Boolean algebra A, any ultra-
filter p ∈ S(A) is determined by the family of its restrictions p∩Ai to subalgebras
Ai of A that jointly generate it. For example, it is common in stability theory to
view a type p ∈ S(M) as a consistent collection of ∆-types, where ∆ is a finite
set of formulas. This representation is sufficient to capture vital properties of
types, such as forking or genericity, by means of their local ranks. It is easy to
show, as we do in Section 4, that the Ellis group of Sext,G(M) can be similarly
decomposed into simpler, local parts. Thereby a potentially fruitful approach
to understanding the Ellis group is to identify and study its tractable fragments
with respect to this decomposition. Assuming that G is a topological group, we
explore one such fragment, corresponding to the algebra SBP of all sets having
what we name the strong Baire property (abbreviated SBP), in Section 4.

The main contribution of the thesis consists in:

– Establishing a correspondence between strongly generic sets in an arbi-
trary group G and almost periodic points in the flow 2G; see Theorem 3.12.

– Providing a wide range of examples of sets that are strongly generic but
not periodic; see Proposition 3.17 together with Proposition 3.21.

– Providing and analysing a few examples of uniformly strongly generic sets
that are not periodic; see Examples 3.31, 3.32, 3.34.

– Discovering the algebra SBP, which allows of a full description of the Ellis
group in multiple scenarios; see Theorems 4.6, 4.18, 4.29. Furthermore,
identifying the boundary of the techniques used to give that description;
see Subsection 4.4.

– Proving that every infinite compact Hausdorff group has a strongly generic
subset with SBP that is not periodic; see Theorem 4.25.

– Showing that externally definable subsets of densely ordered o-minimal
structures have SBP, making the previous results applicable to groups
definable in such structures; see Proposition 4.33 and Corollary 4.34.

– Revealing a correspondence between maximal generic subalgebras of SBP
and maximal generic subalgebras of the algebra of regular open subsets of
G; see Theorem 4.57.
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The dissertation is organized as follows. Section 2 serves as a reminder of
known theory that is the starting point of our study. We review classical topics
such as topological dynamics and Stone duality, then proceed to recount the
work from [New12a, New12b] that motivates our interest in strongly generic
sets. The next two sections contain our original results. Section 3 explores the
basic properties and characterizations of strongly generic sets and describes an
organized way to construct them. It also introduces uniformly strongly generic
sets and gives a few interesting examples. In Section 4 we compute the Ellis
group of an arbitrary subalgebra of SBP under varying assumptions on the
group G. Next we explain why our approach fails for other groups. Finally, we
propose a technique of obtaining maximal generic algebras in SBP from like
algebras consisting of regular open subsets of G.

2 Preliminaries
2.1 Topological dynamics
In this subsection we recall the relevant notions and results from topological
dynamics. For a comprehensive study on the subject the reader is directed to
[Aus88]. Throughout the subsection G is a fixed (discrete) group.

A G-flow is a compact (Hausdorff) topological space X on which G acts
by homeomorphisms.2 A subflow is a subset Y ⊆ X closed both topologically
and under the action of G. For any point p ∈ X there is a smallest subflow of
X containing p, namely cl(G · p). A minimal subflow is a non-empty subflow
without a non-empty proper subflow. By compactness and the Zorn’s lemma,
any non-empty subflow of X contains a minimal subflow. A point p ∈ X is
called almost periodic if it belongs to any minmal subflow, or equivalently, if
cl(G · p) is a minimal subflow. A G-flow morphism is a continuous function
between G-flows preserving the action of G. It is a G-flow isomorphism if it has
an inverse which is a morphism.

Below we state some basic facts about G-flows to be used later.
Remark 2.1. Let f1, f2 : X → Y be G-flow morphisms. Then the set

X0 = {x ∈ X : f1(x) = f2(x)}

is a subflow of X.

Fact 2.2. Assume f : X → Y is a G-flow morphism.

(i) If X0 ⊆ X is a subflow, then f [X0] ⊆ Y is a subflow.
(ii) If Y0 ⊆ Y is a subflow, then f−1[Y0] ⊆ X is a subflow.

(iii) If X0 ⊆ X is a minimal subflow, then f [X0] ⊆ Y is a minimal subflow.
2The classical definition of a G-flow is more general, assuming that G is a topological group

and the action need be jointly continuous. However, in our usage of the notion G will always
be treated as discrete.
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(iv) If p ∈ X is almost periodic, then f(p) ∈ Y is almost periodic.
(v) If q ∈ Y is almost periodic and f is onto (or just q ∈ f [X]), then q = f(p)

for some almost periodic p ∈ X.

Proof. (i) – (iv) are easy. To prove (v), let Y0 = cl(G · q) and X0 = f−1[Y0].
Then X0 ⊆ X is a non-empty subflow, so it contains a minimal subflow X1. We
have that f [X1] ⊆ Y0 is a subflow, so in fact f [X1] = Y0 by minimality of Y0.
In particular, there is p ∈ X1 such that f(p) = q.

Remark 2.3. A non-empty subflow X0 ⊆ X is minimal if and only if for each
open U ⊆ X satisfying U ∩ X0 ̸= ∅ there exist g1, . . . , gn ∈ G such that
X0 ⊆ g1U ∪ . . . ∪ gnU .

Proof. ( =⇒ ) The set X0 \G · U is a proper subflow of X0, so it is empty, i.e.
X0 ⊆ G · U . The conclusion follows from compactness.
( ⇐= ) Assume for contradiction that there is a non-empty proper subflow X1 ⊆
X0 and take an open set U ⊆ X such that U ∩X0 ̸= ∅ and U ∩X1 = ∅. Then
gU ∩X1 = ∅ for each g ∈ G, which contradicts the assumption.

Definition 2.4. Assume X is a G-flow.

(i) A subset U ⊆ X is generic if X =
⋃n

i=1 giU for some g1, . . . , gn ∈ G.
(ii) A point p ∈ X is generic if every open neighbourhood of p is generic.

Fact 2.5 ([New09, Lemma 1.7, Corollary 1.9]). A generic point p ∈ X exists if
and only if there is a unique minimal subflow X0 ⊆ X. In this case X0 consists
precisely of the generic points in X.

Proof. Since distinct minimal subflows are clearly disjoint, it suffices to show
that a point p ∈ X is generic if and only if p belongs to every minimal subflow
of X. For one direction, assume that p ∈ X is generic and p /∈ X0 for some
minimal subflow X0 ⊆ X. The set U = X \X0 is an open neighbourhood of p
closed under the action of G, so p is not generic, which is a contradiction.

For the other direction, assume a non-generic point p belongs to every min-
imal subflow and take an open neighbourhood U of p that is not generic. By
compactness, X1 := X \ G · U is a non-empty subflow of X, so it contains a
minimal subflow X0 ⊆ X1. Clearly p /∈ X0, a contradiction.

Assume X is a G-flow. For any g ∈ G, we denote by πg : X → X the
homemorphism given by the action of G on X. Regarding {πg : g ∈ G} as
a subset of XX endowed with the product topology, the enveloping semigroup
or Ellis semigroup E(X) is the closure of this subset. E(X) equipped with
function composition is a semigroup with identity πe. It is moreover a left
topological semigroup, meaning that the semigroup operation is continuous in
the first coordinate. E(X) is also a G-flow itself with the action g · f = πg ◦ f ,
where g ∈ G, f ∈ E(X).

More generally, assume S is a left topological semigroup with identity. A
subset I ⊆ S is a (left) ideal, written I P S, provided that S · I ⊆ I. It is a
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minimal ideal, denoted I Pm S, if it is minimal among the non-empty ideals.
For every element a ∈ S there is a smallest ideal containing a, namely S · a.
Moreover if I Pm S, then I · a = I for each a ∈ I. When S is compact, it is
routine to show that any ideal contains a minimal ideal. An element u ∈ S is
called an idempotent if it satisfies u2 = u.
Remark 2.6.

(i) For f ∈ E(X), the smallest subflow of E(X) containing f equals the
smallest ideal containing f .

(ii) In E(X), the minimal subflows and minimal ideals coincide.

Proof. (i) The function rf : E(X) → E(X) defined by rf (h) = h ◦ f is continu-
ous, so by compactness of E(X),

cl(G · f) = cl rf [{πg : g ∈ G}] = rf [cl{πg : g ∈ G}] = rf [E(X)] = E(X) ◦ f.

(ii) For Y ⊆ E(X), we have that

Y is a minimal subflow ⇐⇒ (∀y ∈ Y )Y = cl(G · y),
Y is a minimal ideal ⇐⇒ (∀y ∈ Y )Y = E(X) ◦ y.

The conclusion follows from (i).

Below we formulate a fundamental theorem of Ellis:

Theorem 2.7 ([Ell69]). Assume S is a compact left topological semigroup.

(i) Given I Pm S, the set J(I) of idempotents in I is non-empty.
(ii) For every I Pm S and u ∈ J(I), the set uI is a group and I is a disjoint

union of the groups uI, where u ∈ J(I).
(iii) The groups uI, where I Pm S and u ∈ J(I), are all isomorphic.
(iv) For each I, J Pm S and u ∈ J(I) there is v ∈ J(J) such that uv = v and

vu = u.

In particular, the theorem applies to E(X). In the context of model theory
the groups uI, into which any minimal ideal splits, are called ideal subgroups,
and their common isomorphism type is the Ellis group of the G-flow X.

The following facts will be used for explicit Ellis group computation:

Lemma 2.8. Assume G is a group, I Pm E(X) and φ : I → G is a semi-
group epimorphism such that φ−1[{e}] = J(I). Then the Ellis group of X is
isomorphic to G.

Proof. Take any u ∈ J(I). We will check that φ ↾ uI is an isomorphism of
groups uI → G. It is clearly injective because ker(φ ↾ uI) = uI ∩ J(I) = {u}.
For the proof of surjectivity, fix g ∈ G and pick q ∈ I such that φ(q) = g. Then
uq ∈ uI and φ(uq) = φ(u)φ(q) = g.
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Corollary 2.9. Assume G is a group, I Pm E(X) and φ : E(X) → G is a
semigroup epimorphism such that I ∩ φ−1[{e}] = J(I). Then the Ellis group of
X is isomorphic to G.

Proof. By Lemma 2.8 it suffices to show that φ[I] = G. Take any u ∈ J(I), fix
g ∈ G and pick f ∈ E(X) satisfying φ(f) = g. Then fu ∈ I and

φ(fu) = φ(f)φ(u) = φ(f) = g.

In the last lemma and corollary the respective assumptions φ−1[{e}] = J(I)
and I ∩φ−1[{e}] = J(I) each can be replaced with a left-to-right inclusion (⊆),
since the reverse inclusion holds automatically.

2.2 Boolean algebras and Stone spaces
Here we recall the correspondence (formally: dual equivalence of categories)
between Boolean algebras and Stone spaces, which we will generally refer to as
Stone duality. A Stone space is a topological space which is compact Hausdorff
and totally disconnected, meaning it has a basis of sets that are both closed
and open.3 To any Boolean algebra A we assign the space of ultrafilters on A,
called the Stone space of A and denoted as S(A). For A ∈ A, define

[A] = {p ∈ S(A) : A ∈ p}.

The set S(A) equipped with the topology generated by {[A] : A ∈ A} is a Stone
space. On the other hand, when X is a topological space, we assign to it the
family CO(X) of clopen subsets of X, which is a Boolean algebra.

When S is a set and A is an algebra of subsets of S, for s ∈ S, let

ŝ = {A ∈ A : s ∈ A}.

It is an ultrafilter on A which we call the principal ultrafilter corresponding to
s. If additionally S = X is a Stone space and A = CO(X), the map x 7→ x̂ is a
homemorphism between X and S(CO(X)). On the other hand, if A is a Boolean
algebra, the map A 7→ [A] is an isomorphism between A and CO(S(A)).

Let A,B be Boolean algebras. To a homomorphism φ : A → B we assign
the continuous function φ∗ : S(B) → S(A), called the dual map of φ, given by
the condition A ∈ φ∗(q) ⇐⇒ φ(A) ∈ q. Furthermore, to a continuous function
f : X → Y between topological spaces X,Y we assign the homomorphism
f∗ : CO(Y ) → CO(X), also called the dual map of f , defined as f∗(B) = f−1[B].
These assignments make a pair of contravariant functors between the category of
Boolean algebras and the category of Stone spaces. So we have (φ◦ψ)∗ = ψ∗◦φ∗

etc.
When CO(S(A)) is identified with A via the isomorphism defined above,

the map (φ∗)∗ : CO(S(A)) → CO(S(B)) is identical to φ : A → B. If X and
Y are Stone spaces, the same holds the other way: for f : X → Y , (f∗)∗ is

3We call such sets clopen.
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identical to f after the identification of S(CO(X)) with X. Hence the pair of
functors establishes dual equivalence of the categories of Boolean algebras and
Stone spaces.

Fact 2.10. Assume φ : A → B is a homomorphism of Boolean algebras and
consider the dual map φ∗ : S(B) → S(A).

(i) If φ is injective, then φ∗ is surjective.
(ii) If φ is surjective, then φ∗ is injective.

The same fact holds for any continuous function f : X → Y between Stone
spaces and its dual. It follows that both implications are actually equivalences.

Fact 2.11. Assume φ : A → B is a homomorphism of Boolean algebras. Then
the image of φ∗ : S(B) → S(A) consists precisely of all p ∈ S(A) such that
p ∩ Kerφ = ∅.

Assume G is a group. A Boolean algebra on which G acts by automorphisms
will be called a G-algebra. A G-algebra homomorphism is a Boolean algebra
homomorphism preserving the group action. When A is a G-algebra, there is
a natural structure of a G-flow on S(A), namely g · q = {gA : A ∈ q} for
g ∈ G, q ∈ S(A). Conversely, when X is a topological space on which G acts by
homeomorphisms (such as a G-flow), the action g · A = {g · p : p ∈ A}, where
g ∈ G,A ∈ CO(X), defines the structure of a G-algebra on CO(X). All facts
related to Stone duality naturally extend to G-flows and G-algebras.

Assume A is a G-algebra. When a subset B ⊆ A is closed under all G-
algebra operations, we call it a G-subalgebra, denoted as B ⩽ A, and regard it
as a G-algebra with the induced structure. In particular, given B ⊆ P(G), we
write B ⩽ P(G) when B is closed under union, complement and left translation,
and regard it as a G-algebra equipped with these operations. On the other
hand, sometimes B already has a structure of a G-algebra and B ⊆ A, in which
case we write B ⩽ A to indicate that the structures coincide, or B ̸⩽ A when
they are different.4

Sometimes we simply write algebra instead of G-algebra. Whenever we speak
of an algebra without the action of G, we use the full term Boolean algebra.

The G-algebras have a natural variant of the first isomorphism theorem:

Fact 2.12. Assume φ : A → B is a G-algebra homomorphism.

(i) Kerφ = {A ∈ A : φ(A) = 0} is a G-ideal in A, meaning an ideal closed
under the action of G.

(ii) Imφ = {φ(A) : A ∈ A} is a G-subalgebra of B.
(iii) If I P A is any G-ideal, there is a natural G-algebra structure on the

quotient A/I and a natural quotient epimorphism π : A → A/I.
(iv) There is a unique isomorphism φ : A/Kerφ → Imφ such that φ decom-

poses as A π−−→ A/Kerφ φ−−→ Imφ.
4This happens in Subsection 4.5: RO ⊆ SBP are G-algebras, but RO ̸⩽ SBP.
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In the following remark and corollary, A ⩽ P(G) is arbitrary.
Remark 2.13. The orbit of ê is dense in S(A), i.e. S(A) = cl(G · ê).

Proof. We have that G · ê = {ĝ : g ∈ G}, which is clearly dense in S(A).

Corollary 2.14. G-flow morphisms f1, f2 : S(A) → Y are equal if and only if
f1(ê) = f2(ê).

Proof. Follows directly from Remarks 2.1 and 2.13.

2.3 Alternative representation of the Ellis semigroup
In the next two subsections we present the relevant portions of [New12a, New12b]
together with some thus far unpublished folklore. Several proofs have been re-
worked with the use of Stone duality, which we think offers a valuable perspective
on the subject.

Assume that G is a group and A ⩽ P(G). Thus X = S(A) is a Stone space
and a G-flow.

Definition 2.15 ([New12b], before Lemma 1.2). For A ∈ A and q ∈ S(A), let

dq(A) := {h ∈ G : A ∈ hq} = {h ∈ G : h−1A ∈ q}. (1)

It is easy to check that for a fixed q ∈ S(A), the function dq : A → P(G) is
a G-algebra homomorphism. It need not always be the case that dq(A) ∈ A. If,
however, dq(A) ∈ A for all q ∈ S(A) and A ∈ A, we say that A is d-closed.
Remark 2.16. The definition (1) also makes sense (and defines a G-algebra
homomorphism) whenever q ∈ S(B), where B is a G-algebra containing A,
particularly for q ∈ βG = S(P(G)). Fix such B and let r = rB,A : S(B) → S(A)
be the dual map of the inclusion A → B, which we call the restriction. Then
for any A ∈ A, q ∈ S(B) we have that

dq(A) = dr(q)(A),

which implies that the function dq : A → A depends only on r(q) = q ∩ A.
More generally:

Fact 2.17. Assume φ : A → B is a homomorphism of G-algebras, A ∈ A and
p ∈ S(B). Then dp(φ(A)) = dφ∗(p)(A).

Definition 2.18. Assume A is d-closed and p, q ∈ S(A). The multiplication
on S(A) is defined by

p ∗ q := {A ∈ A : dq(A) ∈ p}. (2)

Again, it can be checked directly (see [New12b]) that p ∗ q ∈ S(A) and
∗ is associative and continuous in the first coordinate, so (S(A), ∗) is a left
topological semigroup. Below we prove it using the Stone duality.
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The operations dq and ∗ can be understood as follows. For q ∈ S(A), denote
as rq : G → S(A) the function rq(g) = g · q. When G is given the discrete
topology and the action of itself by left translation, rq becomes a morphism
between topological spaces on which G acts by homeomorphisms. Thus from
Stone duality we get the G-algebra homomorphism r∗

q : CO(S(A)) → P(G),
defined by r∗

q (C) = r−1
q [C]. After the standard identification r∗

q can be thought
of as a map A → P(G), whereafter it is identical to dq. It follows that dq is a
G-algebra homomorphism.

In case A is d-closed, we have that dq : A → A and we denote the dual
G-flow morphism d∗

q : S(A) → S(A) as r̂q. The maps rq and r̂q agree on G in
the sense that r̂q(ĝ) = rq(g) for g ∈ G, thus from now we write rq for both.5
We also have that p ∗ q = rq(p), hence ∗ is continuous in the first coordinate.
Moreover, rq(rp(ê)) = rq(p) = p ∗ q = rp∗q(ê), where both rq ◦ rp and rp∗q are
G-flow morphisms. From Corollary 2.14 we get rp∗q = rq ◦ rp, which means
precisely that ∗ is associative.

Lemma 2.19. Assume that A is d-closed, p, q ∈ S(A) and A ∈ p,B ∈ q.
Moreover, assume that the set

AB := {ab : a ∈ A, b ∈ B}

belongs to A. Then AB ∈ p ∗ q.

Proof. We have that A ⊆ dq(AB) because for any a ∈ A we have B ⊆ a−1AB,
so a−1AB ∈ q. It follows that dq(AB) ∈ p, i.e. AB ∈ p ∗ q.

There is another description of the dq operation:
Remark 2.20. Consider Y = P(G) as a topological space with topology induced
from the product topology on 2G via the natural bijection. It is a Stone space
and a G-flow with the action φg(A) := Ag−1 = {ag−1 : a ∈ A}, which we
denote here as φg to avoid confusion with ordinary left translation.

(i) For g ∈ G,A ∈ A we have that dĝ(A) = Ag−1.
(ii) For a fixed A ∈ A, the map f : S(A) → P(G) defined by f(q) = dq(A) is

a G-flow morphism.
(iii) For A ∈ A and q ∈ S(A),

dq(A) = lim
ĝ→q

Ag−1.

(iv) For A ∈ A, we have that {dqA : q ∈ S(A)} = clP(G){Ag−1 : g ∈ G}.

Proof.
(i) By definition

h ∈ dĝ(A) ⇐⇒ h−1A ∈ ĝ ⇐⇒ g ∈ h−1A ⇐⇒ h ∈ Ag−1.

5We may think of G as a subset of S(A) via the map G → S(A), g 7→ ĝ, even though it
need not be injective.
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(ii) The family {Vb : b ∈ G} ∪ {P(G) \ Vb : b ∈ G} is a subbasis of P(G), where
Vb = {B ∈ P(G) : b ∈ B}. The map f is continuous as for b ∈ G:

f(q) ∈ Vb ⇐⇒ b ∈ f(q) ⇐⇒ b ∈ dq(A) ⇐⇒ b−1A ∈ q ⇐⇒ q ∈ [b−1A],

so the preimage f−1[Vb] = [b−1A] is a clopen set. Moreover, for g ∈ G,

h ∈ f(gq) ⇐⇒ h ∈ dgq(A) ⇐⇒ A ∈ hgq

⇐⇒ hg ∈ dq(A) ⇐⇒ h ∈ f(q)g−1,

so f(gq) = φg

(
f(q)

)
.

(iii) Follows from (i) and (ii).
(iv) By Remark 2.13 and the compactness of S(A):

{dqA : q ∈ S(A)} = f [S(A)] = f [cl{ĝ : g ∈ G}]
= cl{f(ĝ) : g ∈ G} = cl{Ag−1 : g ∈ G}.

Corollary 2.21. If A is d-closed, then it is closed under right translation.

Since by Remark 2.16 the G-algebra A is d-closed iff dq(A) ∈ A for each
A ∈ A, q ∈ βG, i.e. it is closed under operations {dq : q ∈ βG} which do
not depend on A, any intersection of d-closed G-subalgebras of P(G) is again
d-closed. Thus the G-algebra A has a d-closure Ad, the smallest d-closed G-
algebra containing it, which is the intersection of all such G-algebras.

Using this notion we define a useful generalization of (2): the same formula
defines a function ∗ : S(B) × S(A) → S(A) whenever A is a G-algebra and B
is a G-algebra containing Ad. Again, for p ∈ S(B), q ∈ S(A), we have that
p ∗ q = rq(p), where rq : S(B) → S(A) is the dual map of dq : A → B,
hence ∗ is continuous in the first coordinate. By the same argument as before
it is also associative in the sense that if C is a G-algebra containing Bd, then
(p ∗ q) ∗ s = p ∗ (q ∗ s) for p ∈ S(C), q ∈ S(B), s ∈ S(A).

The following fact is an explicit description of d-closure.

Fact 2.22. Ad is the Boolean algebra generated by the set

C =
⋃

q∈S(A)

dq[A] =
⋃

q∈βG

dq[A].

Proof. Let ⟨C⟩ be the Boolean algebra generated by C. Clearly ⟨C⟩ ⊆ Ad and
A ⊆ ⟨C⟩ because dê = id by Remark 2.20, so it suffices to show that ⟨C⟩ ⩽ P(G)
and it is d-closed. The set C is closed under left translation since dq[A] ⩽ P(G)
for any q ∈ βG. Thus ⟨C⟩ ⩽ P(G). To show that it is d-closed, it suffices to
check that C is closed under dp for p ∈ βG, as then dp[⟨C⟩] = ⟨dp[C]⟩ ⊆ ⟨C⟩. Fix
p ∈ βG and C ∈ C, so that C = dq(A) for some q ∈ S(A), A ∈ A. By Fact 2.17,
dp(C) = dp(dq(A)) = dd∗

q (p)(A) = dp∗q(A) ∈ C, where dq : A → P(G).

Remark 2.23. Assume A ⩽ B ⩽ P(G) are d-closed and consider S(A), S(B) as
semigroups with ∗. Then the restriction π : S(B) → S(A) is an epimorphism.
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Proof. Take q ∈ S(B). The diagram on the left commutes, hence by Stone
duality, the diagram on the right also commutes:

B B

A A

dq

i

dπ(q)

i

S(B) S(B)

S(A) S(A)

π

rq

π

rπ(q)

It follows that π(rq(p)) = rπ(q)(π(p)) for p ∈ S(B), so π(p∗ q) = π(p) ∗π(q).

The next result, due to Newelski, has not been published before.

Theorem 2.24. The following are isomorphic as semigroups:

(i) E(S(A)) with the structure described before;
(ii) S(Ad) with ∗;

(iii) EndG(Ad), the set of all G-algebra endomorphisms of Ad with function
composition;

(iv) EndG(S(Ad))op, the opposite semigroup to the set of all G-flow endomor-
phisms of S(Ad) with function composition.

Moreover, the first two are isomorphic as G-flows via the same isomorphism.

Proof. (i) ∼= (ii) We will check that the function ℓ : S(Ad) → E(S(A)) defined
by ℓ(p) = ℓp, where ℓp(q) = p ∗ q for q ∈ S(A), is an isomorphism of semigroups
and G-flows. For g ∈ G, we have that ℓĝ(q) = ĝ ∗ q = g · q, so ℓ(ĝ) = πg. Since
{ĝ : g ∈ G} is dense in S(Ad), it follows that

ℓ[S(Ad)] = ℓ
[

cl{ĝ : g ∈ G}
]

= cl{ℓ(ĝ) : g ∈ G} = cl{πg : g ∈ G} = E(S(A)),

so ℓ is both well defined and surjective. It is also injective since

ℓ(p)(ê) = p ∗ ê = p.

Since ∗ is associative, ℓ is a semigroup homomorphism. Furthermore,

ℓ(g · q) = ℓ(ĝ ∗ q) = ℓ(ĝ) ◦ ℓ(q) = πg ◦ ℓ(q),

so ℓ(g · q) = g · ℓ(q). It remains to prove that ℓ is a homemorphism.
A subbasis of E(S(A)) consists of sets of the form

Vq,A = {f ∈ E(S(A)) : f(q) ∈ [A]},

where q ∈ S(A) and A ∈ A. We have that

ℓ(p) ∈ Vq,A ⇐⇒ ℓp(q) ∈ [A] ⇐⇒ A ∈ p ∗ q ⇐⇒ dq(A) ∈ p.

Hence ℓ−1[Vq,A] = [dq(A)] is clopen in S(Ad), which implies the continuity of
ℓ. By Fact 2.22, the sets {dq(A) : q ∈ S(A), A ∈ A} generate Ad as a Boolean
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algebra. It follows that the family {[dq(A)] : q ∈ S(A), A ∈ A} is a subbasis of
S(Ad), meaning that ℓ−1 is also continuous.
(ii) ∼= (iv) The function r : S(Ad) → EndG(S(Ad)), r(q) = rq = (dq)∗, is
clearly a well defined semigroup antihomomorphism. It is injective because if
r(p) = r(q), then p = rp(ê) = rq(ê) = q. It remains to show the surjectivity
of r. Let f : S(Ad) → S(Ad) be a G-flow endomorphism and take q = f(ê).
Then rq : S(Ad) → S(Ad) is also a G-flow morphism such that rq(ê) = q, so by
Corollary 2.14, we have f = rq.
(iii) ∼= (iv) Follows directly from Stone duality.

2.4 Image algebras
In this subsection we continue to assume that G is a group and A ⩽ P(G).

Theorem 2.24 allows us to better understand the structure of ideal subgroups
in E(S(A)). For any p ∈ S(Ad), we consider

Ker dp = {B ∈ Ad : dp(B) = ∅} and Im dp = {dp(B) : B ∈ Ad}.

Lemma 2.25. If p ∈ S(Ad), then

cl(G · p) =
⋂

{[B]c : B ∈ Ker dp}.

Proof. For B ∈ Ad, we have that

B ∈ Ker dp ⇐⇒ (∀g ∈ G) gp /∈ [B] ⇐⇒ [B] ∩ cl(G · p) = ∅.

Given that for any closed subset F ⊆ S(Ad) we have

F =
⋂

{[B]c : [B] ∩ F = ∅},

the conclusion follows.

Lemma 2.26. For any set X, assume S ⊆ XX is a semigroup with function
composition and let I Pm S, u ∈ J(I). Then

(i) u(y) = y for all y ∈ Im u;
(ii) qu = q for any q ∈ I.

Proof. (i) Follows directly from u ◦ u = u.
(ii) Since q ∈ I = I ◦ u, there is α ∈ I such that q = α ◦ u. Therefore

qu = αuu = αu = q.

Theorem 2.27. Assume I Pm EndG(Ad).

(i) All φ ∈ I share a common kernel KI , which uniquely determines I.
(ii) Endomorphisms φ,ψ ∈ I have the same image if and only if they belong

to the same ideal subgroup uI, u ∈ J(I).
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(iii) Let RI = {Imφ : φ ∈ I}. Then RI = RJ for any J Pm EndG(Ad).
(iv) Let K = {KI : I Pm EndG(Ad)} and write R for the common RI for all

I Pm EndG(Ad). Then the function

{uI : I Pm EndG(Ad), u ∈ J(I)} → K × R

assigning to any uI the common (Kerφ, Imφ) for all φ ∈ uI, is a bijection.

Proof. (i) By Theorem 2.24, for any J Pm EndG(Ad) we can write I = {dp :
p ∈ I ′} and J = {dq : q ∈ J ′}, where I ′, J ′ Pm S(Ad). It suffices to show that
for p ∈ I ′, q ∈ J ′ we have that Ker dp = Ker dq if and only if I ′ = J ′. Indeed, if
Ker dp = Ker dq, then by Lemma 2.25 we have I ′ = cl(G · p) = cl(G · q) = J ′.
On the other hand, if I ′ = J ′, then as in Lemma 2.25,

Ker dp = {B ∈ Ad : [B] ∩ I ′ = ∅} = Ker dq.

(ii) Let u, v ∈ J(I) and fix φ ∈ uI, ψ ∈ vI. We want to show that Imφ =
Imψ if and only if uI = vI. On the one hand, if uI = vI, then by simple group
properties there is α ∈ uI such that φ = ψ ◦ α. Consequently, Imφ ⊆ Imψ
and Imφ = Imψ by symmetry. On the other hand, assume that Imφ = Imψ.
Using the already proved implication we get Im u = Imφ = Imψ = Im v. From
Lemma 2.26 (i) it follows that uv = v (because u equals identity on Im v = Im u)
and from Lemma 2.26 (ii) that uv = u, hence u = uv = v and uI = vI.

(iii) Take R ∈ RI and pick u ∈ J(I) so that R = Im u. By Theorem 2.7,
there is v ∈ J(J) such that uv = v and vu = u. It follows that Im v = Im u = R,
so R ∈ RJ .

(iv) Follows from (i) – (iii).

The elements of R are called image algebras. By Theorem 2.24, they are
exactly the algebras of the form R = dq[Ad], where q ∈ S(Ad) is almost periodic.
The image algebras determine any minimal ideal (or subflow) of S(Ad) up to
G-flow isomorphism.

Fact 2.28. Assume R ∈ R and I Pm S(Ad). Then I ∼= S(R) as G-flows.
Moreover, one such G-flow isomorphism between I and S(R) is π ↾ I, where
π : S(Ad) → S(R) denotes the restriction.

Proof. Take u ∈ J(I) such that R = Im du and consider the dual diagrams

Ad

R R

duι

id

S(Ad)

S(R) S(R)
π

id

ru

Since du ◦ du = du∗u = du, the diagram on the left is commutative, hence so
is the one on the right. Moreover, du is an epimorphism of G-algebras, so by
Fact 2.10, ru is an injective G-flow morphism. Therefore it is an isomorphism
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onto its image (the continuity of r−1
u follows from compactness). By Fact 2.11

and Lemma 2.25, that image is equal to

{p ∈ S(Ad) : p ∩ Ker du = ∅} = cl(G · u) = I.

Hence I ∼= S(R). Finally, from the commutativity of the right hand side diagram
we get that π ↾ I is the inverse of ru, so it is also an isomorphism.

Now we will explain the relation between image algebras and strongly generic
sets. We should note that some similar ideas have already been studied in
[BF97] for an arbitrary semigroup G, but the study only applies to the universal
minimal G-flow and has no model-theoretic connotations.

Definition 2.29.

(a) A subset B ⊆ G is generic if finitely many (left) translates of B cover G,
i.e.

G =
n⋃

i=1
gi ·B for some g1, . . . , gn ∈ G.

(b) A G-algebra B ⩽ P(G) is generic if every set in B \ {∅} is generic.
(c) A subset B ⊆ G is strongly generic if the G-algebra generated by B is

generic.

Lemma 2.30. Assume B ⩽ P(G) is a G-algebra. Then

B is generic ⇐⇒ S(B) is a minimal subflow of itself.

Proof. ( =⇒ ) Assume for contradiction there is a proper non-empty subflow
Y ⊆ S(B). Pick p ∈ S(B)\Y and find B ∈ B such that p ∈ [B] and [B]∩Y = ∅.
Then B ̸= ∅ and g[B] ∩ Y = g([B] ∩ Y ) = ∅ for any g ∈ G. On the other
hand, for some g1, . . . , gn ∈ G we have that G =

⋃n
i=1 giB, which implies that

S(B) = [G] =
⋃n

i=1 gi[B], a contradiction.
( ⇐= ) Take any B ∈ B \ {∅} and consider the set

G · [B] :=
⋃

g∈G

g[B].

Its complement is a proper G-subflow of S(B), so by assumption it must be
empty, i.e. G · [B] = S(B) = [G]. By compactness, [G] =

⋃n
i=1 gi[B] for some

g1, . . . , gn ∈ G, which means that G =
⋃n

i=1 giB, so B is generic.

Corollary 2.31. Image algebras are generic.

Proof. This follows directly from Fact 2.28 and Lemma 2.30.

Corollary 2.32. If p ∈ S(Ad) is almost periodic and B ∈ Ad, then dp(B) is
strongly generic.
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Lemma 2.33. Assume R1, R2 ∈ R and R1 ⊆ R2. Then R1 = R2.

Proof. Take IPmS(Ad) and u, v ∈ J(I) such that R1 = du[Ad], R2 = dv[Ad].
It suffices to show that u = v. Take any B ∈ Ad. By assumption we can find
B′ ∈ Ad such that duB = dvB

′. By Lemma 2.26, v ∗ u = v, so

duB = dvB
′ = dv(dvB

′) = dv(duB) = dv∗uB = dvB.

In particular,

B ∈ u ⇐⇒ e ∈ duB ⇐⇒ e ∈ dvB ⇐⇒ B ∈ v,

hence u = v, as desired.

Lemma 2.34. Every generic G-subalgebra B ⩽ Ad can be extended to an image
algebra R ∈ R.

Proof. By Fact 2.28, the flow S(B) is minimal, so the point

q = ê = {B ∈ B : e ∈ B} ∈ S(B)

is almost periodic. Applying Fact 2.2 (v) to the restriction r : S(Ad) → S(B),
we can find an almost periodic point p ∈ S(Ad) such that r(p) = q. Given
B ∈ B, Remark 2.20 gives

dp(B) = dq(B) = dê(B) = Be−1 = B.

Therefore B ⊆ dp[Ad] and R := dp[Ad] is an image algebra, since p ∈ S(Ad) is
almost periodic.

Corollary 2.35. Image algebras are precisely maximal generic G-subalgebras
of Ad.

Proof. First assume R is an image algebra. By Corollary 2.31, R is generic, so
it extends to a maximal generic G-algebra R ⊆ B ⊆ Ad. By Lemma 2.34, B
further extends to an image algebra R2 ⊇ B. It follows that R ⊆ R2, so by
Lemma 2.33, R = R2 = B. Thus R is maximal generic.

Now assume B ⊆ Ad is a maximal generic G-algebra. By Lemma 2.34, B
can be extended to an image algebra R ⊇ B, which is generic by Corollary 2.31.
Hence B = R and so B is an image algebra.

The next proposition is a joint result of Newelski and the author. It shows
how to recover the Ellis group of S(A) from any image algebra.

Proposition 2.36. Assume B ⩽ Ad is an image algebra and define

E = {q ∈ S(B) : dq[B] ⊆ B}.

(i) The operation
p ∗ q = {B ∈ B : dqB ∈ p}

is well defined as an operation ∗ : E × E → S(B).
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(ii) E is closed under ∗.
(iii) (E , ∗) is isomorphic to the Ellis group of S(A).

Proof. (i) If q ∈ E , then by definition dq : B → B, so we have the dual map
rq : S(B) → S(B). As usual, for any p ∈ S(B) we have that p ∗ q = rq(p).
(ii) Fix p, q ∈ E and B ∈ B. Applying Fact 2.17 to dq : B → B, we get

dp∗q(B) = drq(p)(B) = dp(dq(B)) ∈ B.

Hence p ∗ q ∈ E .
(iii) Take I Pm S(Ad) and pick u ∈ J(I) such that B = du[Ad]. By Fact 2.28,
the restriction π : I → S(B) is a G-flow isomorphism. We first show that
π[uI] = E . If q ∈ uI, then dq[Ad] = du[Ad] = B, so in particular dπ(q)[B] =
dq[B] ⊆ B, hence π(q) ∈ E . On the other hand, assume that q0 ∈ E and take
q ∈ I such that π(q) = q0. Then q ∗ u = q by Lemma 2.26, so

dq[Ad] = dq∗u[Ad] = dq[du[Ad]] = dq[B] = dq0 [B] ⊆ B = du[Ad].

By Lemma 2.33, these algebras are equal. Hence q ∈ uI and so q0 ∈ π[uI].
It follows that π is a bijection between uI and E . It is also a homomorphism

since for p, q ∈ uI and B ∈ B,

B ∈ π(p ∗ q) ⇐⇒ B ∈ p ∗ q ⇐⇒ dqB ∈ p ⇐⇒ dπ(q)B ∈ p

⇐⇒ dπ(q)B ∈ π(p) ⇐⇒ B ∈ π(p) ∗ π(q).

Hence E is isomorphic to the Ellis group uI.

The results from this section lead to an interesting way of studying the Ellis
group of S(A) that only refers to the notion of a strongly generic set. Take any
strongly generic set B ∈ Ad (e.g. the empty set) so that the G-algebra B ⩽ Ad

generated by B is generic. Extend B to a maximal generic G-subalgebra R of
Ad, which is also an image algebra. Every minimal ideal I Pm E(S(A)) is
isomorphic to S(R) as a G-flow and the Ellis group of S(A) is isomorphic to E
as defined in Proposition 2.36. Thus if the strongly generic subsets of G can be
understood to the point of characterizing the maximal generic G-subalgebras of
Ad, a complete description of the Ellis group of S(A) will follow.

Corollary 2.37. Assume R ∈ R and R ⩽ B ⩽ Ad. Then the Ellis groups of
S(A) and S(B) are isomorphic.

Proof. By Corollary 2.35, R is a maximal generic G-subalgebra of Ad. Since
R ⩽ Bd ⩽ Ad, R is also a maximal generic G-subalgebra of Bd, hence it is an
image algebra in Bd. By Proposition 2.36, the Ellis groups of S(A) and S(B)
can be computed directly from R, giving the same result up to isomorphism.
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3 Strongly generic sets
In this section we study abstract properties of strongly generic sets. We also
provide a way to construct non-trivial examples of such sets in a wide class of
groups, namely those that do not have the smallest subgroup of finite index.

3.1 Basic properties
Throughout the section assume that G is a group. We regard 2G as a G-flow,
where for g ∈ G, f ∈ 2G, the action is defined as

(g ⊙ f)(x) = f(xg) for x ∈ G.

Equivalently, g ⊙ χA = χAg−1 for A ⊆ G, where χA denotes the characteristic
function of A.

The simplest examples of strongly generic sets are periodic sets, defined
below:

Definition 3.1. Assume f ∈ 2G.

(i) t ∈ G is a period of f if (∀x ∈ G) f(x · t) = f(x).
(ii) Per(f) is the set of periods of f :

Per(f) = {t ∈ G : (∀x ∈ G) f(x · t) = f(x)}.

By the next remark, Per(f) is a subgroup of G.
(iii) f is periodic if Per(f) has finite index in G.
(iv) A subset A ⊆ G is periodic if χA ∈ 2G is periodic.

Remark 3.2. Per(f) is the stabilizer of f in the G-flow 2G. In particular, it is a
subgroup of G.

Per(f) can also be understood as follows: assume A ⊆ G and H ⩽ G.
Clearly the following are equivalent:

H ⊆ Per(χA) ⇐⇒ (∀h ∈ H)Ah = A ⇐⇒ AH = A

⇐⇒ A is a union of some left cosets of H.

As a consequence:
Remark 3.3. Per(χA) is the greatest subgroup H ⩽ G such that A can be
written as a union of left cosets of H.

The following remark is a useful characterization of periodic sets.
Remark 3.4. For A ⊆ G the following are equivalent:

(i) A is periodic;
(ii) A is a union of left cosets of some subgroup H ⩽ G of finite index;
(iii) The G-algebra ⟨A⟩ ⊆ P(G) generated by A is finite;
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(iv) A−1 := {a−1 : a ∈ A} is periodic.

Proof. (i) =⇒ (ii) Follows directly from Remark 3.3.
(ii) =⇒ (iii) Assume A is a union of left cosets of a subgroup H ⩽ G of finite
index. All such unions form a finite G-algebra of size 2[G:H] in which ⟨A⟩ is
contained, hence it is also finite.
(iii) =⇒ (iv) From the assumption the set {gA : g ∈ G} is finite, hence also
finite is the set

{χA−1g−1 : g ∈ G} = {g · χA−1 : g ∈ G},

which is the orbit of χA−1 in 2G. It follows that the stabilizer of χA−1 has finite
index in G, so A−1 is periodic.
(iv) =⇒ (i) Follows from the converse implication by symmetry.

Corollary 3.5. Assume A ⊆ G is periodic. Then Per(χA) can be expressed as
an intersection of finitely many left translates of A and Ac.

Proof. By definition

Per(χA) =
⋂

a∈A

a−1A ∩
⋂

b∈G\A

b−1Ac.

By Remark 3.4 there are finitely many sets of the form gA where g ∈ G, so the
conclusion follows.

Corollary 3.6. Assume A ⊆ G is periodic. Then there is a normal subgroup
N P G of finite index such that N ∈ ⟨A⟩d and A is a union of cosets of N .

Proof. Let
N :=

⋂
g∈G

gPer(χA)g−1 P G.

Since Per(χA) has finite index, there are only finitely many distinct sets in this
intersection. Each of them belongs to ⟨A⟩d, since by Corollary 3.5 we have
Per(χA) ∈ ⟨A⟩ and so gPer(χA)g−1 ∈ ⟨A⟩d by Corollary 2.21. Hence N ∈ ⟨A⟩d

and N has finite index. Also N ⊆ Per(χA), so by Remark 3.3, A is a union of
cosets of N .

It is now easy to see that every periodic subset A ⊆ G is strongly generic.
Indeed, if A is periodic, then by Remark 3.4 any non-empty element of ⟨A⟩
contains at least one coset of some subgroup H ⩽ G of finite index (e.g. H =
Per(χA)), hence it is generic. It was shown in [New12a, Proposition 2.8] that in
the context of stable groups these are the only definable strongly generic subsets
of G. Below is a known natural generalization of that result.

Theorem 3.7. If A ⊆ G is strongly generic and the formula φ(x; y) ≡ x ∈ yA
is stable in (G, ·, A), then A is periodic.
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Proof. Note that the G-algebra A ⩽ P(G) generated by A contains an atom.
Indeed, otherwise we can find ⟨bη : η ∈ 2<ω⟩ such that for each α ∈ 2ω the
family {bα↾nA

α(n) : n ∈ ω} has the finite intersection property. It follows that
there are 2ℵ0-many φ-types over the countable parameter set {bη : η ∈ 2<ω},
which contradicts the stability of φ.

Choose an atom B ∈ A. Since A is strongly generic, B is generic, so G is a
union of finitely many left translates of B, which are also atoms. Therefore A
is finite and the conclusion follows from Remark 3.4.

The stability assumption is essential – as we will show in the next subsection,
strongly generic non-periodic sets exist in general. However, the property of
being a strongly generic set turns out to be equivalent to a specific weaker
version of periodicity.

Definition 3.8. Assume f ∈ 2G.

(i) For any finite U ⊆ G, an element t ∈ G is a U -period of f if

(∀x ∈ U) f(xt) = f(x).

(ii) PerU (f) is the set of U -periods of f .
(iii) f is locally periodic if for each finite U ⊆ G the set PerU (f) is generic.
(iv) A subset A ⊆ G is locally periodic if χA is locally periodic.

Note that PerU (f) is typically not a subgroup of G, so in (iii) we can no
longer expect it to be a subgroup of finite index; the correct condition here is
for it to be a generic set.

We will also utilize the notion of a self-replicating function. Although it was
originally defined for functions f ∈ 2N where N is a Q-vector space (Definition
3.12 in [New09]), it can be naturally interpreted when N = G is an arbitrary
group:

Definition 3.9. We say that f ∈ 2G is self-replicating if

(∀U ⊆ G
finite

)(∃V ⊆ G
finite

)(∀g ∈ G)(∃h ∈ G)h⊙ (f ↾ U) ⊆ f ↾ V g.

The expression h⊙ (f ↾ U) here means the partial function defined by the same
formula as in the beginning of the section:(

h⊙ (f ↾ U)
)
(x) = (f ↾ U)(xh) for x ∈ Uh−1.

In [New09] it was proved that self-replication is a sufficient condition for
almost periodicity. The following proposition states that in fact these conditions
are equivalent to each other, and also to the property of being locally periodic.

Proposition 3.10. For f ∈ 2G the following are equivalent:

(i) f is self-replicating;
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(ii) f is an almost periodic point of 2G;
(iii) f is locally periodic.

Proof. (i) =⇒ (ii) Take any basic open neighbourhood of f . We can write it as

[σ] = {f ′ ∈ 2G : σ ⊆ f ′},

where σ = f ↾ U for some finite U ⊆ G. By Remark 2.3, it suffices to show that
cl(G⊙ f) ⊆ W−1 ⊙ [σ] for some finite W ⊆ G. From the assumption there is a
finite V ⊆ G such that

(∀g ∈ G)(∃h ∈ G)h⊙ (f ↾ U) ⊆ f ↾ V g.

Let W = {w ∈ G : Uw ⊆ V } and take any f ′ ∈ cl(G ⊙ f). We have that
f ′ ∈ [f ′ ↾ V ] ∩ cl(G ⊙ f), so there is g ∈ G such that g ⊙ f ∈ [f ′ ↾ V ], or
equivalently g⊙ (f ↾ V g) = f ′ ↾ V . Take h ∈ H such that h⊙ (f ↾ U) ⊆ f ↾ V g.
It follows that

gh⊙ (f ↾ U) ⊆ g ⊙ (f ↾ V g) = f ′ ↾ V.

Let w := (gh)−1. By the above, Uw ⊆ V , hence w ∈ W and w ⊙ f ′ ∈ [σ], as
needed.
(ii) =⇒ (iii) Take any finite U ⊆ G. By Remark 2.3, we can find a finite
set W ⊆ G such that cl(G ⊙ f) ⊆ W−1 ⊙ [f ↾ U ]. It suffices to show that
W−1 · PerU (f) = G. For any g ∈ G we can find w ∈ W such that g ⊙ f ∈
w−1 ⊙ [f ↾ U ], i.e. f ↾ U ⊆ wg ⊙ f . It follows that wg ∈ PerU (f).
(iii) =⇒ (i) Fix any finite U ⊆ G. By assumption PerU (f) is generic, so there
is a finite W ⊆ G such that W−1 · PerU (f) = G. We will show that the set
V = U · W has the required property. Take any g ∈ G and write g = w−1h,
where w ∈ W,h ∈ PerU (f). Then Uh = Uwg ⊆ V g and h−1 ⊙ (f ↾ U) ⊆ f , so
h−1 ⊙ (f ↾ U) ⊆ f ↾ V g, as required.

Proposition 3.11. A subset A ⊆ G is strongly generic if and only if it is locally
periodic.

Proof. Write A0 := G \A and A1 := A. The following are equivalent:

– A is strongly generic;

– For any Boolean term τ(x1, . . . , xn) and any u1, . . . , un ∈ G, if the set
τ(u−1

1 A, . . . , u−1
n A) is non-empty, then it is generic;

– For any ε1, . . . , εn ∈ {0, 1} and u1, . . . , un ∈ G, if the set
⋂n

j=1 u
−1
j Aεj is

non-empty, then it is generic;

– For any ε1, . . . , εn ∈ {0, 1} and u1, . . . , un ∈ G, if e ∈
⋂n

j=1 u
−1
j Aεj , then

this set is generic;

– For any u1, . . . , un ∈ G the set
⋂n

j=1 u
−1
j AχA(uj) is generic.
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Let U = {u1, . . . , un} ⊆ G and t ∈ G. We have that

t ∈
n⋂

j=1
u−1

j AχA(uj) ⇐⇒
n∧

j=1
ujt ∈ AχA(uj)

⇐⇒
n∧

j=1
χA(ujt) = χA(uj)

⇐⇒ (∀u ∈ U)χA(ut) = χA(u)

⇐⇒ t ∈ PerU (χA),

hence
n⋂

j=1
u−1

j AχA(uj) = PerU (χA).

By the previous equivalences, the set A is strongly generic if and only if for
every finite U ⊆ G, the set PerU (χA) is generic, i.e. A is locally periodic.

Theorem 3.12. For A ⊆ G,

A is strongly generic ⇐⇒ χA is an almost periodic point of 2G.

Proof. Follows directly from the last two propositions.

Using these results we give an alternative proof of Corollary 2.31.

Proof of Corollary 2.31. Take any almost periodic point q ∈ S(Ad) and let B =
dq(A) ∈ Im dq. By Fact 2.2 (iv) and Remark 2.20 (ii), the point χB is almost
periodic in 2G. Therefore by Theorem 3.12, the set B is strongly generic.

Consider the additive group of integers, G = (Z,+). It is well known that
there are almost periodic points in 2Z that are not periodic functions. It follows
from Theorem 3.12 that there is a strongly generic subset A ⊆ Z that is not
periodic. In the next subsection we explicitly describe a whole class of such
subsets.

3.2 Concrete examples
Consider a finitely branching tree T ⊆ ω<ω with leaves TL ⊆ T . Pick indexed
families H = ⟨Hη : η ∈ T ⟩ of subgroups of G and d = ⟨dη : η ∈ T ⟩ of elements
of G, satisfying for any η ∈ T :

• H∅ = G;

• Hη⌢i = Hη⌢j whenever η⌢i, η⌢j ∈ T ;

• Hη⌢i is a proper subgroup of Hη of finite index whenever η⌢i ∈ T ;

• dηHη is a disjoint union of {dη⌢iHη⌢i : η⌢i ∈ T} if η /∈ TL.
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Assume that each g ∈ G belongs to some (necessarily unique) coset dηHη, where
η ∈ TL. Equivalently, the intersection of cosets dηHη along any infinite branch
of T is empty. Thus we can define fT : G → TL so that fT (g) = η for the unique
η ∈ TL such that g ∈ dηHη.

Definition 3.13.

(i) A tree of cosets of G is a tuple (T,H, d) satisfying the above assumptions.
(ii) A valued tree of cosets of G is a tuple (T,H, d, v), where (T,H, d) is a tree

of cosets of G and v : TL → {0, 1}.
(iii) A function f : G → {0, 1} is founded on the valued tree of cosets (T,H, d, v)

if f = v ◦ fT . It is founded on the tree of cosets (T,H, d) if it is founded
on (T,H, d, v) for some v.

(iv) A function f : G → {0, 1} is tree-founded if it is founded on some tree of
cosets of G.

(v) A subset A ⊆ G is tree-founded if χA : G → {0, 1} is tree-founded.

The generality of the definition is convenient, but it is possible to put a
simplifying restriction without narrowing down the class of tree-founded func-
tions. Namely, assume f is a function founded on the tree of cosets (T,H, d).
Then without loss of generality we can assume that each Hη depends only on
|η|, i.e. Hη = A|η| for some decreasing sequence of subgroups of finite index
G = A0 ⩾ A1 ⩾ A2 ⩾ . . .. Moreover, we can assume that each An is a normal
subgroup of G so that the left and right cosets coincide. When (T,H, d) satisfies
these additional assumptions, we shall call it a linear tree of cosets.

To see this, let An be the intersection of all conjugates of Hη with |η| ⩽ n. It
is easy to prove that An is a decreasing sequence of normal subgroups of finite
index in G. The node of T corresponding to each coset of Hη can be split into
finitely many nodes corresponding to all cosets of A|η| contained in it and the
function v can be modified accordingly.

Example 3.14. Take any 2-adic integer α ∈ Z2 \ Z. Let Hn = 2nZ ⩽ Z and
dn = α mod 2n so that ⟨dn +Hn : n ∈ N⟩ is a descending sequence of cosets in
Z with empty intersection. Define f : Z → {0, 1} by

f ↾ Z \ (d1 +H1) = 0,
f ↾ (d1 +H1) \ (d2 +H2) = 1,
f ↾ (d2 +H2) \ (d3 +H3) = 0,
f ↾ (d3 +H3) \ (d4 +H4) = 1,
...

and so on. Then f is tree-founded. Figure 1 illustrates the construction for

α = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23 + . . . = 1 + 0 + 4 + 8 + . . . ∈ Z2 \ Z.
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Z

2Z
0

2Z + 1

4Z + 3
1

4Z + 1

8Z + 1
0

8Z + 5

16Z + 5
1

16Z + 13
. . .

Figure 1: A valued tree of cosets defining a tree-founded function.

Now we set to prove that every tree-founded set is strongly generic. We will
also give a natural sufficient condition for a tree-founded set to be non-periodic.
Assuming G has sufficiently many subgroups of finite index, this describes a
large class of explicitly definable strongly generic, non-periodic subsets of G.

Consider the topology on G generated by cosets of subgroups of G of finite
index, which is called the profinite topology on G. Contrary to what the name
can suggest, it need be neither compact nor Hausdorff. For instance, when
G = (Q,+), the topology consists of just two sets, ∅ and Q. On the other hand,
when G = (Z,+), the topology is Hausdorff but not compact – as demonstrated
in the example above, where infinitely many disjoint cosets cover Z. Finally, let
G = (Ẑ,+) be the profinite completion of (Z,+). Then the profinite topology
on G is the usual topology on Ẑ treated as a profinite group, hence it is both
Hausdorff and compact. In this case every tree-founded subset of G is founded
on a finite tree, as an infinite tree would have an infinite branch, which by
compactness would have a non-empty intersection. Therefore in Ẑ, tree-founded
sets are precisely periodic sets.

We will say that a subset A ⊆ G is pf-clopen if it is clopen in the profinite
topology. We will also say that a function f : G → {0, 1} is pf-continuous if
it is continuous with respect to the profinite topology on G. Clearly A ⊆ G is
pf-clopen if and only if χA : G → {0, 1} is pf-continuous.
Remark 3.15. Every tree-founded set A ⊆ G is pf-clopen.

Proof. Take the tree of cosets (T,H, d) on which χA is founded. Let a ∈ A and
take η = fT (a) so that η is a leaf in T and a ∈ dηHη. Then χA is constant on
dηHη, so dηHη ⊆ A, hence A is open. By the same reasoning if b ∈ G \A, there
is a coset dηHη such that b ∈ dηHη ⊆ G \A, so G \A is open as well.
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G

1 1 1 0 0

G

1 0

G

0

1 1

1

1 1

...

G

0 1

Figure 2: Reducible trees and their reductions.

The converse of Remark 3.15 is also true provided that the family of finite
index subgroups of G ordered by inverse inclusion has countable cofinality, i.e.
if there is a decreasing sequence (Hn) of finite index subgroups of G such that
each finite index subgroup of G has some Hn as a subgroup.

Proposition 3.16. Every pf-clopen set is strongly generic.

Proof. All pf-clopen sets form a G-algebra of subsets of G. The algebra is
generic, since if a pf-clopen set is non-empty, then it contains a coset of a
subgroup of finite index, hence it is generic. The conclusion follows.

Proposition 3.17. Every tree-founded subset of G is strongly generic.

Some valued trees are needlessly complicated with respect to the tree-founded
function they define. Figure 2 shows tree simplifications that do not change the
functions founded on them.

Definition 3.18. Assume (T,H, d, v) is a valued tree of cosets of G.

(i) A node η ∈ T is homogeneous if v is constant on the set of leaves extending
η, or equivalently, if v ◦ fT is constant on dηHη.

(ii) (T,H, d, v) is irreducible if every homogeneous η ∈ T is a leaf. Otherwise
it is reducible.
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Remark 3.19. Assume f : G → {0, 1} is founded on a valued tree of cosets
(T,H, d, v). Then f is founded on some irreducible valued tree of cosets.

Proof. Let T ′ be the tree obtained by removing from T all proper extensions of
η for each minimal homogeneous η ∈ T . Thus each such η will become a leaf in
T ′. Define v′(η) for such η as the common value of v on the leaves extending η
in T and v′ = v elsewhere. Then (T ′,H ↾ T ′, d ↾ T ′, v′) is an irreducible valued
tree of cosets of G and f = v′ ◦ fT ′ .

For the purpose of stating the next lemma, we introduce some auxiliary
notation.

Notation. Assume f : G → {0, 1}.

(i) Denote by F the family of subgroups of G of finite index;
(ii) For H ∈ F , let χ(f,H) =

⋃
{A ∈ G/H : f is constant on A};

(iii) For H,H ′ ∈ F , write H ⊑/f H
′ if H ⩽ H ′ and χ(f,H) ⊋ χ(f,H ′).

Lemma 3.20. Assume f : G → {0, 1} is pf-continuous. The following are
equivalent:

(i) f is periodic;
(ii) There is N ∈ N such that each sequence G⊒/ f H1 ⊒/ f H2 ⊒/ f . . .⊒/ f Hn has

length n ⩽ N ;
(iii) There is no infinite sequence G ⊒/ f H1 ⊒/ f H2 ⊒/ f . . ., i.e. the strict partial

order (F ,⊑/f ) is well-founded.

Proof. (i) =⇒ (ii) Take a normal subgroup T P G of finite findex such that
T ⩽ Per(f). Consider any subgroup H ⩽ G such that f is constant on some
coset aH, a ∈ G. Then HT ⩽ G and f is constant on aHT since for any
h, h′ ∈ H, t, t′ ∈ T : f(aht) = f(ah) = f(ah′) = f(ah′t′). Since aH ⊆ aHT
and aHT is a union of left cosets of T , it follows that χ(f,H) =

⋃
T for some

family T ⊆ G/T . Therefore any sequence G⊒/ f H1 ⊒/ f H2 ⊒/ f . . .⊒/ f Hn has length
n ⩽ N , where N = [G : T ].
(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i) Assume for contradiction that f is not periodic. It suffices to show
that there is no ⊑/f -minimal element in F . Take any H ∈ F . Since f is not
periodic, we have that χ(f,H) ̸= G, so we can find a, b ∈ G \ χ(f,H) such that
f(a) = 0 and f(b) = 1. By pf-continuity of f there are subgroups A,B ∈ F
satisfying f ↾ aA ≡ 0 and f ↾ bB ≡ 1. It follows that H0 := H ∩ A ∩ B ⊑/f H,
as required.

Proposition 3.21. Assume f : G → {0, 1} is founded on a valued tree of cosets
(T,H, d, v) which is linear, irreducible and infinite. Then f is not periodic.
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α = 1 + 3 + 9 + 27 + . . . = − 1
2 ∈ Z3 \ Z

Z
3Z 3Z + 2

6Z
0

6Z + 3
1

6Z + 2
0

6Z + 5
1

3Z + 1

9Z + 1 9Z + 7

18Z + 10
0

18Z + 1
1

18Z + 16
0

18Z + 7
1

9Z + 4
...
↓
α

Figure 3: A periodic function founded on a non-linear infinite irreducible tree.

Proof. Recall that linearity means that Hθ = Hη whenever |θ| = |η|. Take an
infinite branch t ∈ ωω of T . For each n ∈ N we have that t ↾ n is not a leaf
in T , so by irreducibility it is not homogeneous. Hence f is not constant on
dt↾nHt↾n and χ(f,Ht↾n) ∩ dt↾nHt↾n = ∅. Take any a ∈ dt↾nHt↾n and find a
leaf η extending t ↾ n such that a ∈ dηHη. Then f is constant on dηHη, so
dηHη ⊆ χ(f,Hη) \ χ(f,Ht↾n) and therefore Ht↾|η| = Hη ⊑/f Ht↾n. Thus for any
n ∈ N there is m ⩾ n such that Ht↾m ⊑/f Ht↾n, so by Lemma 3.20, f is not
periodic.

The linearity assumption above is essential. Indeed, consider the function
f : Z → {0, 1} founded on the tree shown in Figure 3. Then f is periodic as
f ↾ 2Z ≡ 0 and f ↾ (2Z+1) ≡ 1, even though the tree is infinite and irreducible.

This concludes our description of a class of strongly generic, non-periodic
subsets of an arbitrary groupG. However, this is not a complete characterization
even in (Z,+), as there are strongly generic subsets which are not even pf-clopen.

Example 3.22. Let v2 : Z → N∪{∞} denote the 2-adic valuation, i.e. v2(0) =
∞ and v2(k) is the highest n ∈ N such that 2n | k for k ̸= 0. Define Aε ⊆ Z,
ε ∈ {0, 1}, as follows:

χAε(k) =
{
ε if k = 0,
v2(k) mod 2 if k ̸= 0.
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Z

2Z + 1
0

2Z

4Z + 2
1

4Z

8Z + 4
0

8Z

16Z + 8
1

16Z
. . .

Figure 4: A tree that leaves the value at k = 0 undefined.

Clearly neither Aε is pf-clopen, because χA0 and χA1 are not pf-continuous at
k = 0. However, both A0 and A1 are strongly generic. To see this for e.g.
A0, by Proposition 3.11 it suffices to check it is locally periodic. Fix any finite
U ⊆ Z and take an even natural number N > v2(u) for all u ∈ U \ {0}. We
claim that

2N + 2N+1Z = {(2k + 1) · 2N : k ∈ Z} ⊆ PerU (χA0).

Indeed, for any k ∈ Z and u ∈ U\{0} we have that v2
(
(2k+1)·2N

)
= N > v2(u),

so v2
(
u+ (2k + 1) · 2N

)
= v2(u), hence χA0

(
u+ (2k + 1) · 2N

)
= χA0(u). Also

χA0

(
(2k + 1) · 2N

)
= N mod 2 = 0 = χA0(0). Hence PerU (χA0) contains the

coset 2N + 2N+1Z and therefore is generic.

Note that both sets considered in the example are “almost tree-founded”,
meaning they are defined in the same way as before by the tree shown in Figure 4,
except for the value at k = 0 which must be assigned manually as either 0 or 1.
We can try to generalize and ask whether the property of being strongly generic
will be preserved if instead of one point we allow such arbitrary assignment on
some small subset of G, e.g. a set of elements corresponding to a nowhere dense
set of infinite branches. We will demonstrate that the answer is quite simply
negative after we formalize the necessary notions. However, the sets with the
described property will be of interest in the next section.

Definition 3.23. Let (T,H, d, v) be as in Definition 3.13 (ii), except we no
longer assume that each g ∈ G belongs to some coset corresponding to a leaf of
T . Thus the set GL =

⋃
η∈TL

dηHη is not necessarily equal to G, but we still
define fT : GL → TL as before. Assume that the set of infinite branches of T is
nowhere dense, i.e. every η ∈ T extends to a leaf.
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G

2G+ (1, 0)

0
2G

4G+ (2, 0)

1
4G

8G+ (4, 0)

0
8G

16G+ (8, 0)

1
16G

. . .

Figure 5: An almost tree-founded set that need not be strongly generic.

(i) A function f : G → {0, 1} is almost founded on (T,H, d, v) if f ↾ GL =
v ◦ fT .

(ii) A function f : G → {0, 1} is almost tree-founded if it is almost founded
on some (T,H, d, v) as above.

(iii) A subset A ⊆ G is almost tree-founded if χA is almost tree-founded.

Example 3.24. Assume A ⊆ G = Z × Q is a subset such that χA is almost
founded on the tree in Figure 5. Then A is strongly generic if and only if χA is
constant on {0}×Q. Indeed: if χA is constant on {0}×Q, then the argument is
the same as in Example 3.22 with the additional remark that {0}×Q ⊆ Per(χA).
On the other hand, if χA is not constant on {0} × Q, take a, b ∈ Q such that
(0, a) ∈ A and (0, b) /∈ A. Then the set A \

(
(0, a − b) + A

)
is non-empty and

contained in {0} × Q, hence not generic.

The following variation on Example 3.22 will be used later:

Example 3.25. Assume G is an infinite profinite group. Take a sequence

G = F0 ⩾\ F1 ⩾\ F2 ⩾\ . . .

of clopen subgroups of G, thus of finite index, and let F∞ :=
⋂∞

n=0 Fn. We
define v : G → N ∪ {∞} so that v(x) is the highest n ∈ N ∪ {∞} such that
x ∈ Fn. Similarly as for valuations, we have that v(xy) ⩾ min{v(x), v(y)} and
these values are equal if v(x) ̸= v(y).
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Consider A =
⋃∞

n=1(F2n−1 \ F2n) ⊆ G, so that

χA(x) =
{

0 if x ∈ F∞,

v(x) mod 2 if x ∈ G \ F∞.

We will prove that A is strongly generic. By Proposition 3.11, it suffices to
check that A is locally periodic. Fix a finite U ⊆ G and take an even natural
number N > v(u) for all u ∈ U \ F∞. We claim that FN \ FN+1 ⊆ PerU (χA).
Indeed, fix t ∈ FN \ FN+1 and u ∈ U . If u ∈ U \ F∞, then v(t) = N > v(u), so
v(ut) = v(u) and so χA(ut) = χA(u). Furthermore, if u ∈ F∞, then χA(ut) =
N mod 2 = 0 = χA(u). Hence PerU (χA) contains FN \ FN+1, so it is generic.

We also prove that A is not periodic. In fact, we claim that Per(χA) = F∞,
which clearly has infinite index. Note that

Per(χA) = {t ∈ G : At−1 = A}

and take any t ∈ F∞. Then Fnt
−1 = Fn for any n ∈ N, thus

At−1 =
∞⋃

n=1
(F2n−1 \ F2n)t−1 =

∞⋃
n=1

(F2n−1 \ F2n) = A

and so t ∈ Per(χA). Now take any t ∈ G \ F∞ and let n = v(t) ∈ N so that
t ∈ Fn \ Fn+1. If n is even, then

A = (F1 \ F2) ∪ . . . ∪ (Fn−1 \ Fn) ∪ (Fn+1 \ Fn+2 ) ∪ . . .

At−1 = (F1 \ F2) ∪ . . . ∪ (Fn−1 \ Fn) ∪ (Fn+1t
−1 \ Fn+2t

−1) ∪ . . .

It follows that A ∩ Fn ⊆ Fn+1 and At−1 ∩ Fn ⊆ Fn+1t
−1. In particular, the

sets on the left side of the inclusions are disjoint. But they are also non-empty,
hence A ̸= At−1. If n is odd, we show in a similar manner that A ̸= At−1. In
either case t /∈ Per(χA), as desired.

3.3 Uniformly strongly generic sets
In this subsection we investigate a particular strengthening of strong genericity.
Assume G is a group definable in a first-order structure M and let M ≼ N .
Recall that one of the central ideas of the thesis is to relate the Ellis groups
of Sext,G(M) and Sext,G(N) using image algebras. This could be particularly
effective in the following case: assume some image algebra consists of definable
sets. Then it can be naturally lifted toN . If the lifted sets still generate a generic
GN -algebra, we can extend it to an image algebra and possibly conclude some
relation between the corresponding Ellis groups.

However, given a strongly generic definable subset A ⊆ G, it may not be
the case that AN ⊆ GN is also strongly generic. For instance, assume N is ℵ0-
saturated. Then AN is strongly generic if and only if A satisfies the following
property:

For each Boolean term τ(X1, . . . , Xn) there is mτ ∈ N such that for any
g1, . . . , gn ∈ G the set τ(g1A, . . . , gnA) is either empty or mτ -generic, (3)

29



where a set B ⊆ G is said to be m-generic if G = h1B ∪ . . . ∪ hmB for some
h1, . . . , hm ∈ G. In fact, (3) holds if and only if AN is strongly generic in GN

for every N ≽M . For this reason we devote some attention to investigating the
property.

Definition 3.26. Assume G is an arbitrary group and A is a G-algebra.

(a) When m ∈ N, an element B ∈ A is said to be m-generic provided that
1 = h1B ∨ . . . ∨ hmB for some h1, . . . , hm ∈ G.

(b) An element A ∈ A is called uniformly strongly generic, abbreviated USG,
if it satisfies the property (3).

Although the generality of the definition will be useful at times, we mainly
focus on uniformly strongly generic subsets of G, that is, sets A ⊆ G that are
USG as elements of the G-algebra P(G). The next two remarks are straightfor-
ward to prove:
Remark 3.27. An element A ∈ A is uniformly strongly generic if and only if it
satisfies (3) restricted to terms τ of the form

τ(X1, . . . , XI , Y1, . . . , YJ) = X1 ∧ . . . XI ∧ (Y1)c ∧ . . . ∧ (YJ)c.

Remark 3.28. Assume φ : A → B is a homomorphism of G-algebras and A ∈ A
is USG. Then φ(A) ∈ B is USG.

Propositions 3.10 and 3.11 and the corresponding notions have a natural
counterpart in the uniform setting.

Definition 3.29. Assume f ∈ 2G.

(a) f is uniformly self-replicating if it satisfies the condition

(∀U ⊆ G
finite

)(∃V ⊆ G
finite

)(∀g ∈ G)(∃h ∈ G)h⊙ (f ↾ U) ⊆ f ↾ V g,

where additionally |V | depends only on |U |.
(b) f is uniformly almost periodic in 2G if for each finite U ⊆ G there is a

finite W ⊆ G such that cl(G⊙ f) ⊆ W−1 ⊙ [f ↾ U ], and |W | depends only
on |U |.

(c) f is uniformly locally periodic if for each finite U ⊆ G there is m ∈ N such
that PerU (f) is m-generic, where m depends only on |U |.

Remark 3.30. For any A ⊆ G, the following are equivalent:

(i) A is uniformly strongly generic;
(ii) χA is uniformly self-replicating;
(iii) χA is uniformly almost periodic in 2G;
(iv) χA is uniformly locally periodic.

Proof. Essentially repeat the reasoning from Propositions 3.10 and 3.11.
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If A ⊆ G, we have the following implications:

A is periodic =⇒ A is USG =⇒ A is strongly generic.

None of these can be reversed without extra assumptions. We later show (see
Corollary 4.15 and Theorem 4.25) that in many groups there are strongly generic
sets that are not USG. Now let us show examples of uniformly strongly generic
sets that are not periodic.

Example 3.31. For any finite group G ̸= {e} let G = Gω ⋊φ Sym(ω), where the
underlying action of the semidirect product is φσ(s) = s ◦ σ−1 for σ ∈ Sym(ω),
s ∈ Gω. Consider the subset A ⊆ G defined as

A = {s ∈ Gω : s(0) = e} × Sym(ω).

We will show that A is uniformly strongly generic but not periodic. Given n ∈ ω,
g ∈ G, let

Ag
n = {s ∈ Gω : s(n) = g} × Sym(ω),

so that A = Ae
0. Then for any ⟨s, σ⟩ ∈ G we have that

⟨s, σ⟩A = {⟨s, σ⟩⟨t, τ⟩ : t(0) = e}
= {⟨sφσ(t), στ⟩ : t(0) = e}
= {⟨sφσ(t), στ⟩ : (sφσ(t))

(
σ(0)

)
= s(σ(0))}

= A
s(σ(0))
σ(0) .

It follows that the G-algebra A ⩽ P(G) generated by A is

A = {C × Sym(ω) : C ⊆ Gω is clopen},

where the topology on Gω is that of a product of finite discrete groups. In par-
ticular, A is infinite, so A is not periodic. On the other hand, consider any
non-empty set B ∈ A of the form

B = a1A ∩ . . . ∩ aIA ∩ b1(G \A) ∩ . . . ∩ bJ(G \A),

where ai, bj ∈ G, and write it as

B = Ag1
n1

∩ . . . ∩AgI
nI

∩ (G \Ah1
m1

) ∩ . . . ∩ (G \AhJ
mJ

).

Then B is |G|I · 2J -generic. Therefore A is uniformly strongly generic.
We show in Appendix A that the Ellis group of S(A) is isomorphic to G.

Example 3.32. Let G = Fx,y denote the free group on generators x, y. Write
S = {x, y, x−1, y−1} and define S∗ to be the set of all words over S, i.e. finite
sequences of elements of S. For any non-empty irreducible word w ∈ S∗ let
Tw ⊆ G denote the set of elements represented by irreducible words beginning
with w. Consider the subset A := Tx ⊆ G. Clearly it is not periodic because

{xnA : n ∈ ω} = {Txn+1 : n ∈ ω}
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is infinite. We will check that A is uniformly strongly generic.
We claim that for any a ∈ A, the set a−1A contains Tyn ∪Ty−n for sufficiently

large n ∈ ω. Indeed, let xuyk be the irreducible word representing a, where
k ∈ Z and u ∈ S∗ does not end with y nor y−1. Now let n > |k| and take
any g ∈ Tyn ∪ Ty−n . If g ∈ Tyn , we can write it as an irreducible word ynv,
where v ∈ S∗ does not begin with y−1. Then ag = xuyn+kv is an irreducible
representation, hence ag ∈ A. If g ∈ Ty−n , we show in a similar way that
ag ∈ A. Hence Tyn ∪ Ty−n ⊆ a−1A whenever n > |k|.

Also for any b /∈ A, the set b−1(G \ A) contains Tyn ∪ Ty−n for sufficiently
large n ∈ ω. To see this, let u ∈ S∗ be an irreducible word representing b. Then
u does not begin with x, hence u−1x is irreducible and b−1A = Tu−1x. Clearly
Tyn ∪ Ty−n is disjoint from this set when n ∈ ω is sufficiently large.

It suffices to show that any non-empty set B in the G-algebra generated by A
is 2-generic. Take any such B and assume without loss of generality that e ∈ B
and B is of the form

B = a−1
1 A ∩ . . . ∩ a−1

I A ∩ b−1
1 (G \A) ∩ . . . ∩ b−1

J (G \A),

so that ai ∈ A and bj /∈ A. It then follows from the previous observations that
Tyn ∪ Ty−n ⊆ B for some n ∈ ω. But the last set is 2-generic because

G = Tyn ∪ y2n−1Ty−n ,

thus also B is 2-generic. Therefore A is uniformly strongly generic.

For the sake of the next example we introduce some notation. When a group
G acts on a set X and x ∈ X, let

dxA = {g ∈ G : gx ∈ A}.

The set P(X) carries a natural structure of a G-algebra such that the map
dx : P(X) → P(G) is a G-algebra homomorphism.
Remark 3.33. Assume G acts transitively on X. Assume A ⊆ X is uniformly
strongly generic and the set {gA : g ∈ G} is infinite. Then for any x ∈ X the
set dxA is uniformly strongly generic and not periodic.

Proof. By Remark 3.28, dxA is USG. Furthermore, because of the transitivity
of the action, dx is a monomorphism, so the family {g · dxA : g ∈ G} is infinite.
Hence dxA is not periodic.

Example 3.34. Let G = PSL(2,R) and consider the usual action of G on the
projective line P(R) = R ∪ {∞}. Let A = [0, 1) ⊆ P(R) and

B = d0A = {M ∈ G : M · 0 ∈ [0, 1)}.

We will check that B is uniformly strongly generic and not periodic. Using
Remark 3.33, it suffices to show that A is uniformly strongly generic and has
infinite orbit. Given distinct y, z ∈ P(R), let [y, z) denote the usual interval if
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y < z and P(R) \ [z, y) otherwise, where R < ∞. Note that the action of G on
P(R) is 2-transitive, thus

{M · [0, 1) : M ∈ G} = {[y, z) : y, z ∈ P(R), y ̸= z}.

In particular, A = [0, 1) has infinite orbit.
Furthermore, take any non-empty set C of the form

C = a1A ∩ . . . aIA ∩ b1(X \A) ∩ . . . ∩ bJ(X \A),

where a1, . . . , aI , b1, . . . , bJ ∈ G. Then C contains an interval of the form [y, z)
for some y < z. We can find M ∈ G such that M · [y, z) = [z, y), so C is
2-generic. Therefore A is uniformly strongly generic.

The last example is based on [HPP06, Remark 5.2 (iv)] where G was an
example of a group definable in an o-minimal structure that is not definably
amenable. The lack of definable amenability is not a coincidence, as made clear
by the next theorem due to Newelski.

Theorem 3.35. Assume A ⊆ G is uniformly strongly generic and the formula
φ(x; y) ≡ x ∈ yA does not have the independence property. Moreover, assume
that the structure (G, ·, A) is definably amenable. Then A is periodic.

Proof. Assume for contradiction that A is not periodic and take a translation
invariant Keisler measure µ on G. By Theorem 3.7, φ(x; y) is unstable, so by
[She90, Theorem 4.7 (2)], for some n ∈ N and η ∈ {0, 1}n the formula

ψ(x; y1, . . . , yn) :=
n∧

i=1
φ(x; yi)ηi

has the strict order property. Thus for any K < ω we can find b0, . . . , bK ⊆ G
such that

ψ(G; b0) ⊋ ψ(G; b1) ⊋ . . . ⊋ ψ(G; bK).
Since A is USG, we can find m ∈ N such that ψ(G; b) \ ψ(G; c) is either empty
or m-generic for any b, c ⊆ G. It follows that µ

(
ψ(G; bk) \ ψ(G; bk+1)

)
⩾ 1

m for
k < K, which is a contradiction when K > m.

We have shown three examples of a group with a subset that is uniformly
strongly generic but not periodic. However, given a concrete group G, it is not
always easy to verify whether it has a subset with this property. In particular,
we were unable to answer the following question:

Question 3.36. Does the group (Z,+) have a uniformly strongly generic subset
which is not periodic?

Note that any such subset would have to be quite complicated; for instance,
when A ⊆ Z is such a set, by the last theorem the formula φ(x; y) ≡ x ∈ y +A
must have the independence property. We share some ideas related to the
problem in Appendix B.

33



4 The Ellis group across models
Consider a group G definable in a first-order structure M . We wish to inves-
tigate the relation between Ellis groups computed in M and its extension M∗

in various scenarios. Although the ultimate goal is to relate the Ellis groups
of the “full” flows Sext,G(M) and Sext,G(M∗), the task seems very difficult in
general. Therefore we focus on some variants of the problem which we find more
tractable.

Our approach is based on the following well known observation, which re-
sembles the idea of localization from stability theory. Consider any G-algebra
A ⩽ P(G). By Theorem 2.24, E(S(A)) is isomorphic to S(Ad) as a G-flow and
semigroup, so we may compute the Ellis group of S(A) directly from S(Ad).
Consider any direct system ⟨Ai : i ∈ I⟩ of G-subalgebras Ai ⩽ A with inclusions
such that A =

⋃
i∈I Ai, e.g. the system of all finitely generated G-subalgebras.

Then Ad is the union and the direct limit of the system ⟨Ad
i : i ∈ I⟩. By

Stone duality, the G-flow S(Ad) is the projective limit of the inverse system
⟨S(Ad

i ) : i ∈ I⟩ with restrictions. By Remark 2.23, these restrictions are also
semigroup epimorphisms with respect to ∗.

Let πj : S(Ad) → S(Ad
j ) denote the restriction. Choose a minimal ideal

I Pm S(Ad) with an idempotent u ∈ J(I). Then Ij := πj [I] Pm S(Ad
j ) and

uj := πj(u) ∈ J(Ij) and πj [uI] = ujIj for each j ∈ I. From here it is not hard
to show that the group uI is isomorphic to the projective limit of the system
⟨ujIj : j ∈ I⟩.

It follows that the Ellis group of S(A) can be retrieved from the Ellis groups
of S(Aj). Thus a good approach to understanding the “full” Ellis group may
be to identify and study some tractable G-subalgebras of the target algebra
together with their “partial” Ellis groups. In this section we focus on a particular
algebra SBP ⩽ P(G), introduced below. This algebra is strictly related to the
algebra of all externally definable subsets of G at least in the case when G is
definable in a densely ordered o-minimal structure, as shown in Corollary 4.34.
Definition 4.1. Let X be a topological space. We say that A ⊆ X has the
strong Baire property (abbreviated SBP) if it satisfies any of the following equiv-
alent conditions:

• A = U∆M for some open U ⊆ X and nowhere dense M ⊆ X;
• bd(A) has empty interior;
• int(A) ∪ int(X \A) is dense.
Throughout the section G is a topological group (meaning that inversion

and multiplication are continuous) satisfying various assumptions specified in-
dividually in subsections. The family of all subsets of G having the strong Baire
property is a G-algebra, which we denote as SBP. The plan is as follows: given
an arbitrary A ⩽ SBP, we first describe the Ellis group of S(A). Next we set
up G as a group definable in a model M , take an elementary extension M ≼M∗

and find a natural G∗-subalgebra A∗ ⩽ SBP∗ corresponding to A. Finally, we
apply our description to relate the Ellis groups of S(A) and S(A∗).
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4.1 Groups with profinite topology
In this subsection we consider an arbitrary group G equipped with the profinite
topology, which makes it a topological group. We first show that SBP includes
virtually all sets considered in the previous section, namely:

Proposition 4.2. If A ⊆ G is almost tree-founded, then A has SBP with respect
to the profinite topology.

Although for an almost tree-founded A ⊆ G the set int(A) ∪ int(Ac) clearly
contains the “tree-founded part” of A, which is dense in the tree, it does not
directly follow that it is dense in the profinite topology, so the proposition needs
a proper proof. We first state a useful lemma:

Lemma 4.3. Assume H is a group and H0, F0 ⩽ H are its subgroups. Then
[H0 : H0 ∩ F0] ⩽ [H : F0]. If additionally F0 has finite index and some coset of
H0 is disjoint from some coset of F0, then the inequality is strict.

Proof. Consider the map τ : H0/(H0 ∩ F0) → H/F0 given by τ
(
x(H0 ∩ F0)

)
=

xF0. It is injective since if x, y ∈ H0 and xF0 = yF0, then y−1x ∈ H0 ∩ F0 and
x(H0 ∩F0) = y(H0 ∩F0). It follows that |H0/(H0 ∩F0)| ⩽ |H/F0|, which proves
the first part. Under the additional assumption, τ is not onto: take y, z ∈ H
with yH0 ∩ zF0 = ∅, equivalently H0 ∩ y−1zF0 = ∅. Then clearly y−1zF0 is
not in the image of τ . Consequently, the inequality is strict.

Proof of Proposition 4.2. Take a tree (T,H, d, v) on which χA is almost founded.
Assume for contradiction that there is a subgroup F ⩽ G of finite index with a
coset aF disjoint from intA∪ intAc. Let Q denote the set of all η ∈ T satisfying
dηHη ∩ aF ̸= ∅. In particular, TL ∩Q = ∅.

We claim that there are η ∈ Q and i, j ∈ ω such that η⌢i /∈ Q, η⌢j ∈ Q
and

[Hη : Hη ∩ F ] is the smallest among all η ∈ Q. (†)

Indeed, take any η0 ∈ Q satisfying (†) and note that by Lemma 4.3, passing to
any extension η0 ⊆ η ∈ Q preserves the minimality. By assumption, there is
a leaf θ ∈ TL extending η0 and then θ /∈ Q. Pick η ∈ T and i ∈ ω such that
η0 ⊆ η ⊆ η⌢i ⊆ θ and η ∈ Q, η⌢i /∈ Q. On the other hand, η⌢j ∈ Q for some
j ∈ ω. Then η, i, j satisfy the desired properties.

Since η ∈ Q, we can assume that a ∈ dηHη, so that a−1dη⌢i ∈ Hη. It
follows that the group H := Hη, its subgroup H0 := Hη⌢i = Hη⌢j ⩽ H and the
subgroup F0 := H∩F ⩽ H of finite index satisfy all assumptions of Lemma 4.3,
since a−1dη⌢iH0 ∩ F0 = ∅. Therefore [Hη⌢j : Hη⌢j ∩ F ] < [Hη : Hη ∩ F ],
contradicting (†).

Given A ⩽ SBP, computing the Ellis group of S(A) is most convenient when
A is d-closed because of Theorem 2.24. This situation is not uncommon, since
the next proposition shows that SBPd = SBP. It follows that when A ⩽ SBP
is arbitrary, the d-closure of A is still contained in SBP.

35



Proposition 4.4. SBP is a d-closed G-algebra.

Proof. By Remark 2.20 (iv), it suffices the check the following: if A ∈ SBP and
B ⊆ G is in the pointwise closure of {Ag−1 : g ∈ G}, then B ∈ SBP. Write
H ⩽fin G when H is a subgroup of G of finite index. Assume for contradiction
that B /∈ SBP, so there is a coset Fc of a subgroup F ⩽fin G in which both B
and Bc are dense. Shifting B if necessary, we can assume that c = e.

Let Fc1, . . . , F cn be a list of all right cosets of F . Since A ∈ SBP, for each
1 ⩽ i ⩽ n we can find a coset Hidi ⊆ Fci of some Hi ⩽fin G on which χA

is constant. By taking the intersection, we can assume that all Hi equal some
H ⩽fin G and clearly H ⊆ F . Let Hf1, . . . ,Hfm denote all right cosets of H in
F . By assumption, we can find aj , bj ∈ Hfj such that aj ∈ B, bj /∈ B.

Since B is in the pointwise closure of {Ag−1 : g ∈ G}, we can find g ∈ G
such that aj ∈ Ag−1, bj /∈ Ag−1 for j = 1, . . . ,m. Pick i ∈ {1, . . . , n} so that
g ∈ Fci. Then dig

−1 ∈ Fcig
−1 = F , so we can find j ∈ {1, . . . , n} such that

dig
−1 ∈ Hfj . It follows that ajg, bjg ∈ Hfjg = Hdi and ajg ∈ A, bjg /∈ A,

contradicting the fact that χA is constant on Hdi.

The same proof yields the following generalization of Proposition 4.4:
Remark 4.5. Assume N0 is a family of finite index normal subgroups of G closed
under finite intersection. Let SBP(N0) denote the G-algebra of subsets of G
having SBP with respect to the topology generated by cosets of subgroups from
N0. Then SBP(N0) is d-closed.

Take any G-subalgebra A ⩽ SBP. We are going to explicitly compute the
Ellis group of S(A). Let

N := {N ⩽ G : N is a normal subgroup of finite index}.

The set NA = N ∩ Ad with reverse inclusion is a directed set. Consider the
projective system of groups (G/N)N∈NA , where for N,N ′ ∈ NA, N ⊆ N ′ we
have the natural quotient map πN,N ′ : G/N → G/N ′.

Theorem 4.6. Assume A ⩽ SBP. The Ellis group of S(A) is isomorphic to
the projective limit

G := proj lim
N∈NA

G/N.

Let ⟨NA⟩ denote the G-algebra generated by NA. In order to prove the
theorem, we will need two lemmas:

Lemma 4.7. Any G-algebra B ⩽ P(G) consisting of periodic sets is d-closed.

Proof. Given any N ∈ B and q ∈ βG, we need to show that dqN ∈ B. Using
Corollary 3.6, we can assume that N ∈ N . Pick a ∈ G such that aN ∈ q. We
have that Ng−1 = Na−1 for g ∈ aN . Thus Ng−1 = Na−1 holds ultimately as
ĝ → q, so by Remark 2.20 (iii),

dqN = lim
ĝ→q

Ng−1 = Na−1 = a−1N ∈ B.
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In particular, ⟨NA⟩ is d-closed, so S(⟨NA⟩) equipped with ∗ is a semigroup.

Lemma 4.8. The semigroup
(
S(⟨NA⟩), ∗

)
is a group isomorphic to G.

Proof. For N ∈ NA, define φN : S(⟨NA⟩) → G/N so that φN (q) is the unique
coset in G/N that belongs to q. Each φN is a homomorphism by Lemma 2.19
and is clearly continuous, where G/N is treated as a discrete group. Applying
the universal property of G to the family ⟨φN : N ∈ NA⟩, we get a continuous
homomorphism φ : S(⟨NA⟩) → G satisfying the usual diagram commutativity.
It is easy to see that φ is injective. It is also surjective, because it has dense
image and S(⟨NA⟩) is compact. Hence φ is an isomorphism of semigroups, thus
in particular, S(⟨NA⟩) is a group.

Proof of Theorem 4.6. Without loss of generality we can assume that A is d-
closed, since in general by Theorem 2.24, we have the semigroup isomorphism
E(S(A)) ∼= S(Ad) and E(S(Ad)) ∼= S((Ad)d) = S(Ad), hence the Ellis group
of S(A) is the same as that of S(Ad). Also NAd = NA.

We first note that for every A ∈ A:

A is nowhere dense ⇐⇒ A is not generic ⇐⇒ A has empty interior.

Indeed, the left-to-right implications are easy and the third one to close the
circle follows from SBP. In particular, the non-generic sets in A are precisely
the nowhere dense sets, so they form a proper G-ideal in A. Therefore we can
find p ∈ S(A) such that every A ∈ p is generic. Such p is a generic point of
the flow S(A), so by Fact 2.5, there is a unique minimal subflow I Pm S(A)
consisting of all such ultrafilters p.

By Remark 2.23, the restriction π : S(A) → S(⟨NA⟩) is a semigroup epi-
morphism. Therefore by Lemma 4.8 and Corollary 2.9, it remains to show that
I ∩ π−1[{ê}] ⊆ J(I). So take any u ∈ I such that π(u) = ê, which means that
NA ⊆ u. Assume for contradiction that u ∗ u ̸= u and take A ∈ A such that
A ∈ u and A /∈ u ∗ u, i.e. A \ duA ∈ u. Since u ∈ I, the set A \ duA has
non-empty interior, so aF ⊆ A \ duA for some a ∈ G and F ∈ N . Letting
B := a−1A ∈ A we get F ⊆ B \ duB.

If F ∈ A, the rest of the proof is easy: we have that F ∈ u, so B ∈ u. But
e ∈ F so e /∈ duB, which means B /∈ u, a contradiction. In general we will
replace B with some C ∈ A and F with some N ∈ NA with similar properties,
so that this argument will work.

Claim. There is C ∈ A of the form τ(f1B, . . . , fmB), where f1, . . . , fm ∈ F
and τ(X1, . . . , Xm) is a nonconstant positive Boolean term, such that C is a
union of cosets of F .

Proof of Claim. Suppose not and take C = τ(f1B, . . . , fmB) ∈ A, where
f1, . . . , fm ∈ F and τ(X1, . . . , Xm) is as above, such that the number of cosets
of F on which χC is constant is maximal. Take a coset Fb on which χC is not
constant. Since C has SBP, there is a coset Hc ⊆ Fb of a subgroup H ⩽ G
of finite index on which χC is constant. We can assume that b = c and so
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Hb ⊆ Fb, hence H ⊆ F . Let g1H, . . . , gnH, where g1, . . . , gn ∈ F , be a list of
all left cosets of H in F .

Two cases are possible: either χC ↾ Hb ≡ 0 or χC ↾ Hb ≡ 1. In the first case
consider the set

C ′ :=
n⋂

i=1
giC ∈ A.

Any coset of F contained in or disjoint from C will remain so with respect to
C ′. Moreover, χC′ ↾ Fb ≡ 0, which contradicts maximality in the definition of
C. In the second case we consider

C ′ :=
n⋃

i=1
giC ∈ A

and arrive at a contradiction in a similar manner. This proves the claim.
Take C ∈ A as in the claim. Since F ∩duB = ∅, for any f ∈ F we have that

fB /∈ u. Also F ⊆ B, so since C is a nontrivial positive Boolean combination
of sets fB, where f ∈ F , it follows that F ⊆ C and C /∈ u. By definition C is
periodic, hence by Corollary 3.6, it can be expressed as a union of cosets of some
N ∈ NA. Since e ∈ C, we have that N ⊆ C and therefore N /∈ u, contradicting
the fact that NA ⊆ u.

Example 4.9. Let G = (Z,+) and consider the set A0 ⊆ Z from Example 3.22,
defined by

χA0(k) =
{

0 if k = 0,
v2(k) mod 2 if k ̸= 0.

Let A = ⟨A0⟩ ⩽ P(Z). We will show that the Ellis group of S(A) is Z2, the
additive group of the 2-adic integers.

First note that for any n ∈ N we have 2nZ ∈ A. Indeed, the set

B := A0 ∩ (4n +A0) =
n−1⋃
k=0

22k+1(2Z + 1) ∈ A

is a union of an odd number of cosets of 4nZ. Therefore it is periodic and
Per(B) = 4nZ, so 4nZ ∈ A by Corollary 3.5 and therefore 2nZ ∈ A as well.

So {2nZ : n ∈ N} ⊆ N ∩ Ad. It remains to show the reverse inclusion and
apply Theorem 4.6, because proj limZ/2nZ = Z2. Assume for contradiction that
there is some subgroup N ∈ N ∩ Ad of the form N = (2ns)Z where s > 1 is
odd. Using Fact 2.22, it is easy to see that Ad is generated as a Boolean algebra
by {dq(k +A0) : q ∈ S(βZ), k ∈ Z}, so N can be expressed as

N = τ(dq1(k1 +A0), . . . , dqm
(km +A0)),

where ki ∈ Z, qi ∈ βZ and τ(X1, . . . , Xm) is a Boolean term. On the one hand,
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for any j ∈ N we have that A0 ∆ (2j +A0) ⊆ 2jZ, so

N ∆ (2j +N) ⊆
m⋃

i=1
dqi

(ki +A0) ∆
(
2j + dqi

(ki +A0)
)

=
m⋃

i=1

(
ki + dqi

(A0)
)

∆
(
ki + dqi

(2j +A0)
)

=
m⋃

i=1
ki + dqi

(
A0 ∆ (2j +A0)

)
⊆

m⋃
i=1

ki + dqi
(2jZ).

Since each dqi(2jZ) is a coset of 2jZ (see Lemma 4.7), the set N ∆ (2j +N) is
contained in a union of m cosets of 2jZ. On the other hand,

N ∆ (2j +N) = (2ns)Z ∆ (2j + (2ns)Z) ⊇ (2ns)Z.

When j ∈ N is sufficiently big, it is a contradiction.

Example 4.10. Assume (G, ·) is a group definable in a stable structure M and
let A = DefG(M) denote the G-algebra of subsets of G definable in M . By
stability, A is equal to Defext,G(M), the G-algebra of subsets of G externally
definable in M . It follows that A is d-closed. It is known that in this case the
Ellis group of S(A) = SG(M) is isomorphic to G/G0 computed in a monster
model. We will reprove this fact using the results from this subsection. Note that
it does not follow immediately from Theorem 4.6 since A need not be contained
in SBP.

Observe that B = ⟨NA⟩ is the family of all strongly generic sets in A. Indeed,
one inclusion follows from the fact that periodic sets are strongly generic and the
other one from Theorem 3.7 and Corollary 3.6. It follows that B is a (unique)
maximal generic subalgebra of A, so by Corollary 2.35, it is an image algebra.

By Corollary 2.37, the Ellis group of S(A) is isomorphic to the Ellis group
of S(B). Since NB = NA and B ⩽ SBP, we get from Theorem 4.6 that the Ellis
group of S(B) is isomorphic to proj limN∈NA

G/N , which is clearly isomorphic
to G/G0 computed in a monster model.

The same reasoning proves that more generally:

Corollary 4.11. Assume A ⩽ P(G) is d-closed and all strongly generic sets
in A are periodic. Then the Ellis group of S(A) is profinite and isomorphic to
proj limN∈NA

G/N .

Now we consider two scenarios of making G a group definable in a model M
and lifting a G-algebra to an elementary extension M∗ ≽M .

1. Fix a subfamily N0 ⊆ N closed under finite intersection and taking
supergroups from N and denote by SBP(N0) the G-algebra of subsets of G
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having SBP with respect to the topology generated by cosets of subgroups from
N0. Take any G-algebra N0 ⊆ A ⩽ SBP(N0). By Remark 4.5, we have that
SBP(N0) is d-closed, so Ad ⩽ SBP(N0).

Lemma 4.12. We have SBP(N0) ∩ N = N0, so in particular Ad ∩ N = N0.

Proof. The right-to-left inclusion is obvious. In order to prove the other one,
fix N ∈ SBP(N0) ∩ N and let

C = {C ∈ G/N : (∃A ∈ ⟨N0⟩)C ⊆ A ⊆ G \N}.

Clearly C is finite, so we can find B ∈ ⟨N0⟩ containing the union of C and disjoint
from N . Since B is clopen and N has SBP, we can find a coset K ⊆ G \ B of
a subgroup in N0 contained in N or G \N . We claim that the first possibility
must hold.

Assume for contradiction that K ⊆ G \ N . Then K ∩ C ̸= ∅ for some
N ̸= C ∈ G/N . Let A denote a union of finitely many translates of K by
elements of N covering C. Then A ∈ ⟨N0⟩ and C ⊆ A ⊆ G \ N , hence C ∈ C,
contradicting the fact that K ⊆ G \B.

It follows that K ⊆ N . Let K be a coset of F ∈ N0. Then F ⩽ N and the
conclusion follows because N0 is closed under taking supergroups.

Consider the structure M = (G, ·, A)A∈A and take an elementary extension
M ≼ M∗ = (G∗, ·, A∗)A∈A. The family {A∗ : A ∈ A} is a G-algebra, but not
necessarily a G∗-algebra, so let A∗ denote the G∗-algebra generated by that
family. Also let N ∗

0 = {N∗ : N ∈ N0}, which makes sense as N0 ⊆ A, and

N ∗ := {N ⩽ G∗ : N is a normal subgroup of finite index }.

Clearly N ∗
0 ⊆ N ∗ is a family closed under finite intersection and taking super-

groups from N ∗ and N ∗
0 ⊆ A∗ ⩽ SBP(N ∗

0 ), hence as before (A∗)d ⩽ SBP(N ∗
0 )

and (A∗)d ∩ N ∗ = N ∗
0 . Let E(M) and E(M∗) denote the Ellis group of S(A)

and S(A∗), respectively. By Theorem 4.6, we have that

E(M) ∼= proj lim
N∈N0

G/N and E(M∗) ∼= proj lim
N∗∈N ∗

0

G∗/N∗.

The inverse systems (G/N)N∈N0 and (G∗/N∗)N∗∈N ∗
0

are isomorphic. Therefore
E(M) ∼= E(M∗), so here the Ellis group is preserved between models.

In the next example we assume that the reader is familiar with the relation
≼∗ between models, defined in the beginning of Section 2 in [New12b].

Example 4.13. Consider a group G definable in an arbitrary structure M . Let
Defext,G(M) denote the G-algebra of subsets of G externally definable in M and

N0 := Defext,G(M) ∩ N , A := Defext,G(M) ∩ SBP(N0).

Now let M ≼∗ M∗. Since A ⊆ Defext,G(M), for each A ∈ A, the structure M∗

provides an interpretation AM∗ ∈ Defext,G(M∗). Define A∗ ⩽ Defext,G(M∗) as
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the G∗-algebra generated by the family {AM∗ : A ∈ A}. We also define N ∗
0 and

N ∗ in the same way as in the last scenario.
Since N0 ⊆ A ⩽ SBP(N0), the conclusions from the last scenario remain

true here by the same reasoning. In particular, for the two corresponding alge-
bras A ⩽ Defext,G(M) and A∗ ⩽ Defext,G(M∗) we have that the Ellis groups of
S(A) and S(A∗) are isomorphic.

2. Consider any structure M = (G, ·, C,N), where (G, ·) is a group, C ⊆ G
and N0 := {N(c,G) : c ∈ C} is a family of normal subgroups of G of uniformly
bounded index. Take an elementary extension M ≼ M∗ = (G∗, ·, C∗, N∗) and
let N ∗

0 := {N∗(c,G∗) : c ∈ C∗}. Define N0 as the closure of N0 under finite in-
tersection and supergroups from N , and N ∗

0 in the same way. For any G-algebra
A ⩽ SBP(N0) containing N0 and G∗-algebra A∗ ⩽ SBP(N ∗

0 ) containing N ∗
0 ,

denote by E(M) the Ellis group of S(A) and by E(M∗) the Ellis group of S(A∗).
Reasoning as in the previous scenario, we get

E(M) ∼= proj lim
N∈N0

G/N and E(M∗) ∼= proj lim
N∗∈N ∗

0

G∗/N∗.

This time the Ellis groups need not be isomorphic because the set A∗ may be es-
sentially bigger than A. However, E(M) is still a homomorphic image of E(M∗)
since the system (G/N)N∈N0

is isomorphic to a subsystem of (G∗/N∗)N∗∈N ∗
0

.
Because of Corollary 4.11, given a G-algebra, it is reasonable to ask whether

all of its strongly generic sets are periodic. Below we prove that a weaker variant
of this property holds in SBP (with respect to the profinite topology).

Proposition 4.14. Assume A ∈ SBP is USG. Then A is periodic.

Proof. Consider the structure M = (G, ·, A, F )F ∈N , where N denotes the family
of all normal subgroups of G of finite index. Assume for contradiction that A
is not periodic. Then the following is a consistent 2-type in M :

q(x, y) = {x ∈ A, y /∈ A} ∪ {xF = yF : F ∈ N }.

Take N ≽ M such that N |= q(α, β) for some α, β ∈ N . On the one hand, AN

is strongly generic in GN . On the other hand, we will show that the set

B := α−1AN \ β−1AN

is nowhere dense with respect to the topology on GN generated by cosets of
subgroups FN , where F ∈ N . Since e ∈ B, it follows that B is neither empty
nor generic, which is a contradiction.

Consider any basic open set FNc, where F ∈ N and c ∈ GN . In fact, we
may assume that c ∈ G. Take a ∈ G such that aFN = αFN . Since A has
SBP, χA is constant on some coset Hd ⊆ aFc, where H ∈ N and d ∈ G. It
follows that HNd ⊆ αFNc, so α−1HNd ⊆ FNc. Since N |= q(α, β), we have
the equality α−1HNd = β−1HNd. This basic open set is either contained in
α−1AN and β−1AN , or disjoint from both. Therefore it is disjoint from B, as
needed.
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Corollary 4.15. Assume A ⊆ G is tree-founded where the tree is linear, ir-
reducible and infinite. Then A is strongly generic but not uniformly strongly
generic.

Proof. Follows from Propositions 3.17, 3.21, 4.2 and 4.14.

4.2 Compact groups
In this subsection we assume G is a compact topological group. We begin by
proving that just as in the previous subsection, the G-algebra SBP is d-closed.
This result is joint with Newelski. For any G-algebra A ⩽ P(G), let As denote
the smallest Boolean algebra of subsets of G containing A and closed under
both left and right translation.

Lemma 4.16. Assume A ⩽ SBP is a G-algebra. Then for any C ∈ Ad there
is B ∈ As such that C ∆B is nowhere dense.

Proof. First assume that C = dqA for some A ∈ A, q ∈ βG. Since G is compact,
there is b ∈ G such that each open neighbourhood of b belongs to q. For any
h ∈ int(Ab−1), we have that b ∈ int(h−1A), thus h−1A ∈ q and so h ∈ dqA.
Hence int(Ab−1) ⊆ dqA. Repeating the argument for G\A in place of A, we get
int(G \Ab−1) ⊆ dq(G \A) = G \ dqA. It follows that dqA∆Ab−1 ⊆ bd(Ab−1),
so B := Ab−1 ∈ As has the desired property.

Now assume that C ∈ Ad is arbitrary. Using Fact 2.22, we can write
C = τ(dq1A1, . . . , dqnAn), where τ is a Boolean term and A1, . . . , An ∈ A,
q1, . . . , qn ∈ βG. For i = 1, . . . , n, we use the first part to find Bi ∈ As

such that dqi
Ai ∆ Bi is nowhere dense. Then C ∆ B is nowhere dense, where

B = τ(B1, . . . , Bn) ∈ As.

Proposition 4.17. SBP is a d-closed G-algebra.

Proof. Take any C ∈ SBPd and using Lemma 4.16, find B ∈ SBPs = SBP
such that C ∆B is nowhere dense. Then clearly C ∈ SBP.

Consider any G-algebra A ⩽ SBP. Again we are going to describe the Ellis
group of the flow S(A). Given A ∈ SBP, let ϱ(A) denote the set int(cl(A)),
which is the unique regular open set such that A∆ ϱ(A) is nowhere dense. For
an overview of basic properties of the operation ϱ, see Fact 4.51.

For x, y ∈ G, let

x ∼A y if (∀B ∈ Ad)(x ∈ ϱ(B) ⇐⇒ y ∈ ϱ(B))

and NA := [e]∼A . Clearly ∼A is an equivalence relation on G which is closed
under left and right translation by Corollary 2.21. It follows that NA is a normal
subgroup of G and G/∼A = G/NA.

Theorem 4.18. Assume A ⩽ SBP is a G-algebra. The Ellis group of S(A) is
isomorphic to G/NA.
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First we need the following lemma:

Lemma 4.19. Assume D ∈ SBP and a ∈ ϱ(D), b ∈ G \ ϱ(D). Then there is
g ∈ G such that a ∈ ϱ(gD) and b ∈ ϱ(G \ gD).

Proof. Since ϱ(D) is an open neighbourhood of a, we have that ga ∈ ϱ(D) when
g is sufficiently close to e. Moreover, since b ∈ G\ϱ(D) = cl(int(G\D)), there are
g arbitrarily close to e such that gb ∈ int(G\D). Combining the two statements,
we get that there is g ∈ G such that ga ∈ ϱ(D) and gb ∈ int(G \D) ⊆ ϱ(G \D),
hence a ∈ ϱ(g−1D) and b ∈ ϱ(G \ g−1D).

Proof of Theorem 4.18. Repeating the argument from the proof of Theorem 4.6,
we get that there is a unique minimal ideal I Pm S(Ad), which consists of
generic points of S(Ad), and the generic sets in Ad are precisely the ones with
non-empty interior. Define π : I → G/NA so that

π(q) = {x ∈ G : (∀B ∈ Ad)(x ∈ ϱ(B) =⇒ B ∈ q)}.

First we show that π is well defined, that is, each π(q) is an equivalence class
of ∼A. Fix q ∈ I and note that the set π(q) is non-empty. Indeed, if π(q) = ∅,
then for each a ∈ G there is B ∈ Ad such that a ∈ ϱ(B) and B /∈ q. By the
compactness ofG, we can findB1, . . . , Bn ∈ Ad satisfying ϱ(B1)∪. . .∪ϱ(Bn) = G
and B := B1 ∪ . . .∪Bn /∈ q. It follows that the set G\B is nowhere dense, since

G \B = B ∆G =
(

n⋃
i=1

Bi

)
∆
(

n⋃
i=1

ϱ(Bi)
)

⊆
n⋃

i=1

(
Bi ∆ ϱ(Bi)

)
.

But G \B ∈ q, which contradicts the fact that q is generic.
So there exists a ∈ π(q). We will prove that π(q) = [a]∼A . The right-to-left

inclusion is obvious and for the other one, take b /∈ [a]∼A . By Lemma 4.19,
there is B ∈ Ad such that a ∈ ϱ(B) and b ∈ ϱ(G\B) (or the other way, in which
case we replace B with G \B). Then B ∈ q, so G \B witnesses that b /∈ π(q).

By Lemma 2.8, the proof will be complete once we show that π is a semigroup
epimorphism and π−1[{NA}] ⊆ J(I). To check that it is a homomorphism, fix
p, q ∈ I and take any a ∈ π(p), b ∈ π(q). It suffices to show that ab ∈ π(p ∗ q).
Fix any W ∈ Ad such that ab ∈ ϱ(W ) and pick open neighbourhoods U ⊆ G
of a and V ⊆ G of b satisfying U · V ⊆ ϱ(W ). For each x ∈ U , we have that
b ∈ V ⊆ ϱ(x−1W ), so x−1W ∈ q and therefore x ∈ dqW . It follows that
U ⊆ dqW , hence a ∈ ϱ(dqW ) and so dqW ∈ p, which means that W ∈ p ∗ q.

For surjectivity, fix K ∈ G/NA and write K = aNA, where a ∈ G. The
family

{B ∈ Ad : a ∈ ϱ(B)}
is a filter of Ad consisting of generic sets, so it extends to a generic ultrafilter
q ∈ S(Ad). Then q ∈ I and a ∈ π(q), hence π(q) = [a]∼A = K.

Finally, we check that π−1[{NA}] ⊆ J(I). Assume for contradiction that
π(q) = NA for some q ∈ I \ J(I). Then q ∗ q ̸= q, so there is C ∈ Ad such that
C ∈ q and C /∈ q ∗ q, which implies C \ dqC ∈ q. Since q omits nowhere dense
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sets, there is a non-empty open subset U ⊆ C \ dqC. Pick any g ∈ U . Then
e ∈ ϱ(g−1C), so g−1C ∈ q. Thus g ∈ U ∩ dqC, which is a contradiction.

The description of the relation ∼A, and thus of the Ellis group of S(A), can
be simplified in the following way:
Remark 4.20. For every x, y ∈ G,

x ∼A y ⇐⇒ (∀C ∈ As)(x ∈ ϱ(C) ⇐⇒ y ∈ ϱ(C)).

Proof. The left-to-right implication is trivial since As ⊆ Ad by Corollary 2.21.
For the other one take any B ∈ Ad. By Lemma 4.16, we can write B = C ∆M
for some C ∈ As and nowhere dense M ⊆ G. Then ϱ(B) = ϱ(C), so the
conclusion follows.

By Proposition 4.14, when a group is equipped with the profinite topology,
the algebra SBP does not contain non-periodic uniformly strongly generic sets.
The same is true for compact groups, as we prove below. Recall a basic fact:

Fact 4.21. Every clopen C ⊆ G is periodic.

Proof. We first find an open neighbourhood W ⊆ G of identity such that CW =
C. For any a ∈ C choose an open neighbourhood Wa ⊆ G of identity satisfying
(Wa)2 ⊆ a−1C. The family {a · Wa : a ∈ C} is an open cover of C, so it has a
finite subcover {a1Wa1 , . . . , anWan}. We claim that W := Wa1 ∩ . . . ∩Wan has
the desired property. Indeed, take any b ∈ C and pick i ∈ {1, . . . , n} such that
b ∈ aiWai

. Then
bW ⊆ bWai

⊆ ai(Wai
)2 ⊆ C.

Hence CW ⊆ C and the other inclusion is obvious.
Therefore we have that W ∩ W−1 ⊆ Per(χC). Since W ∩ W−1 is generic

by the compactness of G, it follows that Per(χC) has finite index and so C is
periodic.

Lemma 4.22. Assume U1, U2,W ⊆ G are open, U1 ∪ U2 is dense and W is
non-empty. Then there are open neighbourhoods W ′ and Z of identity such that
for each g ∈ G there is h ∈ G such that hW ′ is contained in U1 or U2 and
ZhW ′ ⊆ gW .

Proof. To each g ∈ G we assign an element hg, an open neighbourhood Og of
g and open neighbourhoods W ′

g, Zg of identity in the following way: we choose
j ∈ {1, 2} so that Uj ∩ gW ̸= ∅ and we let hg denote any element of this
intersection. We then have g−1ehge = g−1hg ∈ g−1Uj ∩ W , so by continuity,
we can find an open neighbourhood Og of g and open neighbourhoods Zg,W

′
g

of identity satisfying O−1
g ZghgW

′
g ⊆ g−1Uj ∩W .

By compactness, there are g1, . . . , gn ∈ G such that G = Og1 ∪ . . . ∪ Ogn .
We will prove that W ′ := W ′

g1
∩ . . . ∩ W ′

gn
and Z := Zg1 ∩ . . . ∩ Zgn are as

desired. Take any g ∈ G, choose i so that g ∈ Ogi
and let h = hgi

. Then
O−1

gi
ZhW ′ ⊆ g−1

i Uj ∩W for some j ∈ {1, 2}. In particular, hW ′ ⊆ Uj (because
gi ∈ Ogi

and e ∈ Z) and ZhW ′ ⊆ gW (as g ∈ Ogi
).
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Proposition 4.23. Assume A ∈ SBP is USG. Then A is clopen.

Proof. Assume for contradiction that A is not clopen, so that without loss of
generality e ∈ bdA. Take N ∈ N such that A \ gA is always either empty or
N -generic.

We will inductively construct non-empty open sets W0, . . . ,WN ⊆ G and
neighbourhoods of identity Z0, . . . , ZN ⊆ G, such that for 0 ⩽ n ⩽ N and
any z ∈ Zn and g1, . . . , gn ∈ G, some left translation of Wn is disjoint from
g1(A \ zA) ∪ . . . ∪ gn(A \ zA).

Let W0 = Z0 = G. Fix n < N and assume that Wi, Zi have already been
defined for i ⩽ n. By Lemma 4.22, we can find open neighbourhoods of identity
Wn+1 ⊆ G and Zn+1 ⊆ Zn such that for each g ∈ G there is h ∈ G such
that hWn+1 is contained in int(A) or int(G \ A) and Zn+1hWn+1 ⊆ gWn. Fix
z ∈ Zn+1 and g1, . . . , gn+1 ∈ G. By the induction hypothesis, some left translate
tWn, where t ∈ G, is disjoint from g1(A \ zA) ∪ . . .∪ gn(A \ zA). Take h ∈ G as
above corresponding to g := g−1

n+1t.
If hWn+1 ⊆ intA, then zhWn+1 is disjoint from A \ zA, so gn+1zhWn+1

is disjoint from gn+1(A \ zA). At the same time it is a subset of tWn, hence
gn+1zhWn+1 is disjoint from g1(A \ zA) ∪ . . . ∪ gn+1(A \ zA).

On the other hand, if hWn+1 ⊆ int(G \ A), then hWn+1 is disjoint from
A \ zA, so gn+1hWn+1 is disjoint from gn+1(A \ zA). At the same time it is a
subset of tWn, hence gn+1hWn+1 is disjoint from g1(A\zA)∪ . . .∪gn+1(A\zA).

This ends the construction. It follows that for any z ∈ ZN the set A \ zA
is not N -generic. Now take an open neighbourhood Z of identity satisfying
ZZ−1 ⊆ ZN , choose a ∈ Z ∩ A, b ∈ Z \ A and let z = ab−1 ∈ ZN . Then
a ∈ A \ zA. Hence A \ zA is neither empty nor N -generic, which contradicts
the choice of N .

Corollary 4.24. If A ∈ SBP is USG, then it is periodic.

Theorem 4.25. Assume G is compact Hausdorff and infinite. Then there is a
strongly generic set in SBP that is not uniformly strongly generic.

Proof. Assume for the contrary that every strongly generic set in SBP is uni-
formly strongly generic, thus periodic by Corollary 4.24. Let us first prove that
G is profinite as a topological group. We provide a sketch and leave out the
technical details. Let E denote the Ellis group of S(SBP). By Theorem 4.18, the
groups E and G are algebraically isomorphic, since G is T2 and so NSBP = {e}.
In fact, they are isomorphic as topological groups via the same isomorphism,
where the topology on E is induced from S(SBP). On the other hand, by
Corollary 4.11 and Proposition 4.17, E is algebraically isomorphic to an appro-
priate projective limit of finite groups. Again it can be checked that these are
isomorphic as topological groups. Hence G is profinite as a topological group.

Consider the set A ⊆ G constructed in Example 3.25. Clearly A ∈ SBP
because bdA ⊆ F∞ is not generic, hence nowhere dense. It was shown that A
is strongly generic and not periodic. This is a contradiction.
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4.3 Precompact groups
We begin by recalling some classical notions related to topological groups. For
an extended study on the subject see e.g. [AT08].

A topological group G is defined to be:

• totally bounded (or precompact), if every open neighbourhood U of identity
is generic;

• (Răıkov) complete, if every Cauchy filter on G converges.

Moreover, it is known to be

• compact if and only if it is totally bounded and complete;

• totally bounded if and only if it is a dense subgroup of a compact topo-
logical group.

We aim to show that completeness does not essentially contribute to most of
the results about compact groups from the previous subsection. Hence in this
subsection we assume that G is just totally bounded, so it is a dense subgroup of
a compact topological group H. Let SBP(G) and SBP(H) denote the algebras
of sets having SBP in G and H, respectively.

Let us first see that the other path of generalization, that is, the complete
groups, does not seem promising in terms of characterizing the Ellis group of
non-trivial algebras.

Proposition 4.26. Consider the complete topological group (R,+). There ex-
ists A ⊆ R with SBP such that ⟨A⟩d = P(R), where ⟨A⟩ denotes the R-algebra
generated by {A}. In particular, SBP(R) is not d-closed.

Proof. Let R be the family of finite unions of bounded open intervals with
rational endpoints. Since R is countable, we can write R = {Rn : n ∈ N}. Pick
a sequence (kn) of integers such that kn +Rn < kn+1 +Rn+1 for n ∈ N, where
by X < Y we mean (∀x ∈ X)(∀y ∈ Y )x < y. Let

A =
∞⋃

n=1
(kn +Rn).

Then A is open and for each finite disjoint U, V ⊆ R there is r ∈ R such that
U ⊆ A− r ⊆ R \ V . Indeed, take any such U, V and take a closed interval [a, b]
such that U ∪ V ⊆ [a, b]. Then there is Rn ∈ R satisfying U ⊆ Rn ⊆ R \ V
and containing some open intervals I, J such that I < [a, b] < J . It follows that
(A− kn) ∩ [a, b] = Rn, so U ⊆ A− kn ⊆ R \ V , as required.

Therefore each subset B ⊆ R is in the pointwise closure of {A− r : r ∈ R},
so by Remark 2.20 (iv), it can be written as B = dqA for some q ∈ S(⟨A⟩).
Hence ⟨A⟩d = P(R).

Remark 4.27. Assume M,A ⊆ G.
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(i) M ⊆ G is nowhere dense if and only if M = M ′ ∩ G for some nowhere
dense M ′ ⊆ H.

(ii) A ∈ SBP(G) if and only if A = A′ ∩G for some A′ ∈ SBP(H).

Proposition 4.28. SBP(G) is d-closed.

Proof. Fix any A ∈ SBP(G) and q ∈ βG. Take A′ ∈ SBP(H) satisfying
A = A′ ∩ G and the unique extension q′ ∈ βH of q. By Proposition 4.17, we
have that dq′(A′) ∈ SBP(H), so dqA = dq′(A′) ∩G ∈ SBP(G).

Take any A ⩽ SBP(G). Yet again we wish to describe the Ellis group of
S(A). The outline of the proof is essentially the same as that of Theorem 4.18
and only some technical details are adjusted to work in the new setting. For
D ∈ SBP(H), let γ(D) = D ∩ G, so γ : SBP(H) → SBP(G) is a G-algebra
epimomorphism. Denote by C the smallest Boolean algebra of subsets of H
containing γ−1[Ad] and closed under left and right translation by elements of
H. For x, y ∈ H, let

x ∼A y if (∀C ∈ C)(x ∈ ϱ(C) ⇐⇒ y ∈ ϱ(C))

and NA := [e]∼A . Clearly ∼A is an equivalence relation on H closed under left
and right translation, so NA is a normal subgroup of H and H/∼A = H/NA.

Theorem 4.29. For any A ⩽ SBP(G), the Ellis group of S(A) is isomorphic
to H/NA.

The following lemma will be used:

Lemma 4.30. Assume a, b ∈ H and a ̸∼A b. Then there is B ∈ γ−1[Ad] such
that a ∈ ϱ(B) and b ∈ ϱ(H \B).

Proof. Without loss of generality there is C ∈ C such that a ∈ ϱ(C) and b /∈
ϱ(C). Let

Q = {hℓ ·B · hr : hℓ, hr ∈ H,B ∈ γ−1[Ad]},
R = {Q1 ∪ . . . ∪Qn : Q1, . . . , Qn ∈ Q},

so that clearly
C = {R1 ∩ . . . ∩Rm : R1, . . . , Rm ∈ R}.

Thus we can write C = R1 ∩ . . . ∩ Rm for some R1, . . . , Rm ∈ R. Given the
identity ϱ(C) = ϱ(R1) ∩ . . . ∩ ϱ(Rm), we have that

a ∈ ϱ(R1) ∩ . . . ∩ ϱ(Rm) and b /∈ ϱ(R1) ∩ . . . ϱ(Rm),

so a ∈ ϱ(Ri) and b /∈ ϱ(Ri) for some i ∈ {1, . . . ,m}. By Lemma 4.19, there
is R ∈ R such that a ∈ ϱ(R) and b ∈ ϱ(H \ R) because R is closed under left
translation.
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Write R = Q1 ∪ . . . ∪Qn, where Q1, . . . , Qn ∈ Q. Then

b ∈ ϱ

 n⋂
j=1

H \Qj

 =
n⋂

j=1
ϱ(H \Qj).

On the other hand, a /∈ ϱ(H \Qj) for some j ∈ {1, . . . , n}, as otherwise

a ∈ ϱ(R) ∩
n⋂

j=1
ϱ(H \Qj) = ϱ(∅) = ∅.

Consequently, b ∈ ϱ(H \Qj) and a /∈ ϱ(H \Qj) for some j ∈ {1, . . . , n}. Since
Q is closed under left translation, by Lemma 4.19, we can find Q ∈ Q such that
a ∈ ϱ(Q) and b ∈ ϱ(H \Q).

Finally, let Q = hℓ ·B · hr for some hℓ, hr ∈ H and B ∈ γ−1[Ad]. Then

h−1
ℓ ah−1

r ∈ ϱ(B) and h−1
ℓ bh−1

r ∈ ϱ(H \B).

Since ϱ(B) and ϱ(H \B) are open, we have that

g−1
ℓ ag−1

r ∈ ϱ(B) and g−1
ℓ bg−1

r ∈ ϱ(H \B),

when gℓ is sufficiently close to hℓ and gr is sufficiently close to hr. Thus we can
find such gℓ, gr in G so that

a ∈ ϱ(gℓBgr) and b ∈ ϱ(H \ gℓBgr).

Clearly gℓBgr ∈ γ−1[Ad] by Corollary 2.21.

Proof of Theorem 4.29. Once more we repeat the argument from the proof of
Theorem 4.6 and conclude that there is a unique minimal ideal I Pm S(Ad),
which consists of generic points of S(Ad), and the generic sets in Ad are precisely
those with non-empty interior. Define π : I → H/NA as

π(q) = {x ∈ H : (∀B ∈ γ−1[Ad])(x ∈ ϱ(B) =⇒ γ(B) ∈ q}.

First we show that π is well defined. Fix q ∈ I and note that the set π(q) is
non-empty. Indeed, if π(q) = ∅, then for each a ∈ H we can find B ∈ γ−1[Ad]
such that a ∈ ϱ(B) but γ(B) /∈ q. By the compactness of H, we can find
B1, . . . , Bn ∈ γ−1[Ad] satisfying ϱ(B1) ∪ . . . ∪ ϱ(Bn) = H and γ(B) /∈ q, where
B := B1 ∪ . . . ∪Bn. The set H \B is nowhere dense in H, since

H \B = B ∆H =
(

n⋃
i=1

Bi

)
∆
(

n⋃
i=1

ϱ(Bi)
)

⊆
n⋃

i=1

(
Bi ∆ ϱ(Bi)

)
.

It follows that the set G \ γ(B) = γ(H \ B) is nowhere dense in G. But
G \ γ(B) ∈ q, which contradicts the fact that q is generic.
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So there exists a ∈ π(q). We will prove that π(q) = [a]∼A . The right-to-left
inclusion is obvious and for the other one, take b /∈ [a]∼A . By Lemma 4.30,
there is B ∈ γ−1[Ad] such that a ∈ ϱ(B) and b ∈ ϱ(H \ B). Then γ(B) ∈ q, so
H \B witnesses that b /∈ π(q).

By Lemma 2.8, the proof will be complete once we show that π is a semigroup
epimorphism and π−1[{NA}] ⊆ J(I). To check that it is a homomorphism, fix
p, q ∈ I and take any a ∈ π(p), b ∈ π(q). It suffices to show that ab ∈ π(p ∗ q).
Fix any W ∈ γ−1[Ad] such that ab ∈ ϱ(W ) and pick open neighbourhoods
U ⊆ H of a and V ⊆ H of b satisfying U · V ⊆ ϱ(W ). For each x ∈ U ∩ G
we have that x−1W ∈ γ−1[Ad] and b ∈ V ⊆ ϱ(x−1W ), so γ(x−1W ) ∈ q and
therefore x ∈ dqγ(W ). It follows that U ∩G ⊆ dqγ(W ). By Remark 4.27, there
is D ∈ SBP(H) such that dqγ(W ) = γ(D). So we have that U ∩ G ⊆ D ∩ G,
hence cl(U) = cl(U ∩ G) ⊆ cl(D ∩ G) ⊆ cl(D) and so U ⊆ ϱ(U) ⊆ ϱ(D). It
follows that a ∈ ϱ(D) and D ∈ γ−1[Ad], thus dqγ(W ) = γ(D) ∈ p, which means
that γ(W ) ∈ p ∗ q.

For surjectivity, fix K ∈ H/NA and write K = aNA, where a ∈ H. The
family

{γ(B) : B ∈ γ−1[Ad] & a ∈ ϱ(B)}

is closed under finite intersection and consists of generic sets. (By a slightly
more elaborate argument it is in fact a filter of Ad, but we do not need it.)
Thus the family extends to a generic ultrafilter q ∈ S(Ad). Then q ∈ I and
a ∈ π(q), hence π(q) = [a]∼A = K.

Finally, we check that π−1[{NA}] ⊆ J(I). Assume for contradiction that
π(q) = NA for some q ∈ I \ J(I). Then q ∗ q ̸= q, so there is B′ ∈ Ad such that
B′ ∈ q and B′ /∈ q ∗ q, which implies B′ \ dqB

′ ∈ q. Since q is generic, there
is a non-empty subset U ′ ⊆ B′ \ dqB

′ open in G. Pick any g ∈ U ′ and write
B′ = γ(B) and U ′ = γ(U), where B ∈ SBP(H) and U ⊆ H is open. We have
γ(U) ⊆ γ(B) and consequently, U ⊆ ϱ(B). It follows that e ∈ g−1U ⊆ ϱ(g−1B)
and g−1B ∈ γ−1[Ad], so g−1B′ = γ(g−1B) ∈ q. Thus g ∈ U ′ ∩ dqB

′, which is a
contradiction.

It follows directly from Lemma 4.30 that
Remark 4.31. For every x, y ∈ G,

x ∼A y ⇐⇒ (∀B ∈ γ−1[Ad])(x ∈ ϱ(B) ⇐⇒ y ∈ ϱ(B)).

In the spirit of further simplification, using techniques as in the proofs of Lem-
mas 4.16 and 4.30 it is possible to prove that in fact for x, y ∈ G,

x ∼A y ⇐⇒ (∀B ∈ γ−1[As])(x ∈ ϱ(B) ⇐⇒ y ∈ ϱ(B)).

4.3.1 Applications in o-minimal structures

So far the results of this section have been purely abstract. Therefore now we
take a moment to show how they can be applied in a classical model-theoretic
setting. Consider an o-minimal structure M = (M,⩽, . . .), where ⩽ is a dense
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linear order without endpoints. Assume G is a group definable in M with
dimG = d and M ≼ N . We write GN for the interpretation of G in N . The
models M and N are equipped with the order topologies and their powers with
the product topologies.

By a fundamental result of Pillay, G can be given a structure of a definable
manifold making it a Hausdorff topological group:

Proposition 4.32 ([Pil88, Proposition 2.5]). Assume G is a group definable in
an o-minimal structure M with dimG = d. There is a topology τ on G and a
large (hence generic) definable subset V ⊆ G such that

• G with the topology τ is a topological group;

• V is a union of disjoint definable subsets U1, . . . , Ur ⊆ G such that for
each i = 1, . . . , r, Ui is τ -open in G and there is a definable (in M)
homeomorphism between Ui with τ and some open subset Vi ⊆ Md.

Although the following results hold true in this setting, for simplicity of the
argument we will assume that G ⊆ Md, V is open in Md and τ ↾ V already
agrees with the topology induced from Md, and also e ∈ V .

The generic subset V N ⊆ GN equipped with the topology induced from
Nd gives rise to a topology on GN (via finitely many translations) which also
makes GN a topological group. Assume that GN is compact with respect to
this topology. Applying the tools developed in the last two subsections we
will explicitly compute and relate the Ellis groups of Sext,G(M) and Sext,G(N).
As usual, we let Defext,G(M) denote the G-algebra of subsets of G externally
definable in M .

Proposition 4.33. Externally definable subsets of Mn have SBP with respect
to the product topology.

Proof. We proceed by induction on n. For n = 0 the claim is trivial, so fix
n ∈ N and assume the claim holds for n. We will prove it holds for n+ 1. Take
any externally definable X ⊆ Mn+1 and write X = Y ∩Mn+1, where Y ⊆ Cn+1

is definable in some C ≽M . By the cell decomposition theorem and since SBP
is a Boolean algebra, we can assume that Y is of the form

Y = {(y, z) ∈ Y0 × C : z < f(y)}

for some definable Y0 ⊆ Cn and f : Y0 → C. It suffices to show that for any
open box B ⊆ Mn+1 there is an open box C ⊆ B that is either contained in or
disjoint from X.

Take any open box B = B0 ×(a, c) ⊆ Mn ×M . By the induction hypothesis,
the externally definable set Y0 ∩ Mn has SBP in Mn, so we can find a box
C0 ⊆ B0 contained in or disjoint from Y0 ∩ Mn. In the second case clearly
C0 × (a, c) ⊆ B is disjoint from X, so assume C0 ⊆ Y0 ∩ Mn. Pick b ∈ (a, c)
and consider the definable set

Y1 = {y ∈ Y0 : f(y) < b} ⊆ Cn.
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By the induction hypothesis, we can find a box D0 ⊆ C0 contained in or disjoint
from Y1 ∩Mn. If D0 ⊆ Y1 ∩Mn, then D0 × (b, c) ⊆ B is a box disjoint from X.
Otherwise D0 ∩ (Y1 ∩ Mn) = ∅ and D0 × (a, b) ⊆ B is a box contained in X.
In either case the proof is complete.

Corollary 4.34. Defext,G(M) ⩽ SBP(G) and Defext,G(N) ⩽ SBP(GN ).
If a box B ⊆ Nn is a product of open intervals with endpoints in M , it will

be called an open M -box. Repeating the proof of Proposition 4.33, we get the
following:
Remark 4.35. Externally definable subsets of Nn have SBP with respect to the
topology on Nn generated by open M -boxes.
Lemma 4.36. G is dense in GN .
Proof. If not, we can find a non-empty open subset U ⊆ GN disjoint from G.
Without loss of generality it is of the form U = tB for some open box B ⊆ V N

and t ∈ GN . By compactness, finitely many left translates of B cover GN

and by Remark 4.35, their intersections with V N have SBP with respect to the
topology on V N generated by open M -boxes. Thus at least one such intersection
sB ∩ V N , where s ∈ GN , contains an open M -box B0 ⊆ V N . Again, finitely
many right translates of B0 cover GN . Since M ≼ N , we can assume that they
are of the form B0r, where r ∈ G. Pick r ∈ G such that st−1 ∈ B0r. It follows
that r−1 ∈ ts−1B0 ⊆ tB, which is a contradiction.

Corollary 4.37. G is a topological subspace of GN .
Proof. It suffices to show that V is a topological subspace of V N . Clearly any
open box B ⊆ V is open in the subspace topology as it is of the form BN ∩ V .
On the other hand, given an open box C ⊆ V N we will show that C ∩ V is
open in V . Take any b ∈ C ∩ V and write C =

∏
(ai, ci), where ai, ci ∈ N .

By Lemma 4.36, we can find x ∈
∏

(ai, bi) ∩ V and y ∈
∏

(bi, ci) ∩ V . Then
B =

∏
(xi, yi) is an open box in V satisfying b ∈ B ⊆ C ∩ V . It follows that

C ∩ V is open in V .

Now we are ready to compute the Ellis groups of the G-flows Sext,G(M) and
Sext,G(N). First we prove that the Ellis group of Sext,G(N) is isomorphic to
GN . Since GN is compact, by Corollary 4.34 and Theorem 4.18, it suffices to
show that NDefext,G(N) = {e}. Take any x ∈ GN \ {e}. Clearly we can find an
open box B ⊆ V N such that e ∈ B and x /∈ clB. Then B ∈ Defext,G(N)d and
B witnesses that x ̸∼Defext,G(N) e, hence x /∈ NDefext,G(N).

Now we show that the Ellis group of Sext,G(M) is also isomorphic to GN .
Using Lemma 4.36 and Corollary 4.37, we see that G is a dense topological sub-
group of the compact group H = GN , hence it is precompact. By Corollary 4.34
and Theorem 4.29, it suffices to show that NDefext,G(M) = {e}. This is done as
in the previous paragraph, since for any open box B in V N , B has SBP in GN

and B ∩G is externally definable in G.
Thus we see that the Ellis groups of Sext,G(M) and Sext,G(N) are both

isomorphic to GN , hence to each other.
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4.4 Types at infinity
In Subsection 4.2 we gave a description of the Ellis group of an arbitrary G-
subalgebra A ⩽ SBP when G is compact. In this subsection we aim to identify
the difficulty in generalizing the argument to arbitrary topological groups.

Assume G is any topological group and A ⩽ SBP is d-closed.6 Let N WD
denote the family of all nowhere dense sets, so that clearly N WD ⊆ SBP. Since
A ∩ N WD is a proper G-ideal of A, we can find a minimal subflow I Pm S(A)
such that p ∩ N WD = ∅ for each p ∈ I. A good approach to describing the
Ellis group is by characterizing all idempotents v ∈ J(I), as the following basic
fact shows.

Fact 4.38. The relation on I defined by

p ∼ q ⇐⇒ (∃v ∈ J(I)) q = v ∗ p

is a congruence and I/∼ is isomorphic to the Ellis group of S(A).

Proof. Fix u ∈ J(I) and define φ : I → uI by φ(p) = u ∗ p. It suffices to show
that φ is a semigroup epimorphism such that p ∼ q ⇐⇒ φ(p) = φ(q) for
p, q ∈ I. It is a homomorphism since p ∗ u = p for any p ∈ I by Lemma 2.26.
Furthermore, φ(p) = p for p ∈ uI, so φ is an epimorphism. Now fix p, q ∈ I. If
p ∼ q, i.e. q = v ∗ p for some v ∈ J(I), then uq = uvp = up. Conversely, assume
up = uq and let q ∈ vI, where v ∈ J(I). Then vp = vup = vuq = vq = q, hence
p ∼ q.

Thus, roughly speaking, the Ellis group is obtained by dividing the minimal
ideal by its idempotents. In the case of compact groups we have essentially
proved the following characterization of idempotents in I:

q ∈ J(I) ⇐⇒ (∀B ∈ A)
(
e ∈ ϱ(B) ⇒ B ∈ q

)
. (4)

A more technical variant of the condition was also proved for precompact groups.
If q ∈ S(A) satisfies the right hand side of the equivalence (4), we shall say that
it is concentrated around the identity and the set of such types is denoted by
Se(A). The condition (4) (or its variant) was at the core of describing the
Ellis group in compact (or precompact) groups as the quotient of G (or its
compactification) by a normal subgroup obtained as an intersection of certain
open neighbourhoods of identity. Fact 4.38 expands the intuition behind that
description.

In the general setting the right-to-left implication of (4) still holds,7 while
the other implication may fail, as we are about to show. However, any q con-
tradicting this implication must satisfy the following property:

Proposition 4.39. Let q ∈ J(I) and assume there is B ∈ A such that e ∈ ϱ(B)
and B /∈ q. Then there is a non-empty open subset V ⊆ G such that for any
g ∈ G and A ∈ A, if A ⊆ gV , then A /∈ q.

6SBP itself need not be d-closed, see Proposition 4.26.
7To see this, repeat the proof of the inclusion π−1[{NA}] ⊆ J(I) in Theorem 4.18.
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Proof. Pick an open neighbourhood V ⊆ G of e such that V −1V ⊆ ϱ(B).
Assume for contradiction that g ∈ G and A ∈ A satisfy A ⊆ gV and A ∈ q.
Since q = q ∗ q, we have that A ∩ dqA ∈ q and we can find some h ∈ A ∩ dqA.
Then h−1A ⊆ (gV )−1gV = V −1V ⊆ ϱ(B), hence h−1A \ B ∈ N WD. But
h−1A ∈ q and B /∈ q, which contradicts the fact that q ∩ N WD = ∅.

When A = SBP (assuming that it is d-closed), the conclusion of Proposi-
tion 4.39 says that q lies outside every left translate of a certain open set. If
G is compact or even precompact, this is clearly impossible. More generally,
such a type q must lie outside of any B ∈ A such that cl(B) ⊆ G is compact.
Hence we may think of it as lying at infinity, following the topological idea of
“approaching infinity” as “ultimately lying outside every compact subset”.

Definition 4.40. We say that a type q ∈ S(A) is at infinity when there is a
non-empty open subset V ⊆ G such that whenever A ∈ A and A ⊆ gV for some
g ∈ G, we have that A /∈ q. The set of such types is denoted S∞(A).

Corollary 4.41. If q ∈ I is an idempotent, then q is concentrated at identity
or at infinity.

The following example suggests the existence of “smaller” and “bigger” in-
finities, although the notion seems difficult to capture in general.

Example 4.42. Let M = (R,+, ·,⩽) be a real closed, non-archimedean field
and G = (R,+) a group definable in M . Pick any ε > 0 (e.g. infinitesimal)
and let qε ∈ Sext,G(M) be the type corresponding to the left half of the cut
(Aε, R \Aε), where

Aε =
⋃

n∈N
(−∞, n · ε).

More precisely, qε is the unique type containing the family

{Aε} ∪ {(a,∞) : a ∈ Aε}.

Clearly qε is an idempotent and qε ∈ S∞(Defext,G(M)), as witnessed by the
open set (0, ε). However, qε need not be a counterexample to (4), since it is not
almost periodic unless Aε = R.

Furthermore, let q∞ ∈ Sext,G(M) be the unique type containing the family
{(a,∞) : a ∈ R}. Then q∞ ∩ N WD = ∅, I := {q∞} is a minimal ideal of
S∞(Defext,G(M)) and q∞ ∈ J(I). Now the type q∞ is at infinity, witnessed by
V = (0, 1), and it is a counterexample to (4).

The idea of a type at infinity becomes distorted if the algebra A is not
sufficiently rich. For instance, it may happen that a type is both concentrated
at identity and at infinity. In the extreme case of A = {∅, G}, any non-empty,
proper open subset V ⊆ G witnesses that the unique type in S(A) lies at infinity.
Below is another example.
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Example 4.43. Consider the compact group

G = {z ∈ C : |z| = 1} ⩽ C×

equipped with the standard topology. For a, b ∈ G, a ̸= b, let (a, b) denote the
open arc going from a to b in the positive direction. Let A denote the family of
all subsets of G of the form S ∆ N , where S is a union of finitely many open
arcs satisfying (∀z ∈ S) −z ∈ S and N is nowhere dense. Clearly A ⩽ SBP
and it follows from Lemma 4.16 that A is d-closed.

The types concentrated at identity are precisely 1̂− and 1̂+, where 1̂− is the
unique extension of the family

{(g, 1) ∪ (−g,−1) : g ∈ G \ {1}} ∪ {G \N : N ∈ N WD}

and 1̂+ is the unique extension of

{(1, g) ∪ (−1,−g) : g ∈ G \ {1}} ∪ {G \N : N ∈ N WD}.

There is a unique minimal ideal of S(A) and it consists of all types q ∈ S(A)
such that q ∩ N WD = ∅. All these types are at infinity, as witnessed by the
open arc (1, i). In particular, 1̂− and 1̂+ are almost periodic types that are both
concentrated at identity and at infinity.

The following remark gives a technical condition regarding the set S∞(A)
and its relation to Se(A).
Remark 4.44.

(i) S∞(A) ∩ Se(A) = ∅ if and only if every non-empty open V ⊆ G contains
some A ∈ A with non-empty interior.

(ii) S∞(A) = ∅ if and only if every non-empty open V ⊆ G contains some
generic A ∈ A.

Proof. We prove all implications by contraposition.
(i) ( =⇒ ) Take a non-empty open V ⊆ G such that every A ∈ A contained in
V has empty interior. The family

R = {A ∈ A : e ∈ ϱ(A)} ∪ {G \N : N ∈ N WD}

has the finite intersection property. Indeed, take any A1, . . . , An ∈ A with
e ∈ ϱ(Ai) and N ∈ N WD. Then e ∈ ϱ(A1) ∩ . . . ∩ ϱ(An) = ϱ(A1 ∩ . . . ∩ An),
hence A1 ∩ . . . ∩An /∈ N WD and so its intersection with G \N is not empty.

Take any q ∈ S(A) extending R. Then clearly q ∈ Se(A). Moreover, V
witnesses that q ∈ S∞(A), because if A ∈ A is contained in gV for some g ∈ G,
then A is nowhere dense and so A /∈ q. Hence S∞(A) ∩ Se(A) ̸= ∅.
( ⇐= ) Take q ∈ S∞(A) ∩ Se(A). Since q ∈ S∞(A), we can find a non-empty
open V ⊆ G such that A /∈ q whenever A ∈ A and A ⊆ gV for some g ∈ G. It
remains to show that each A ∈ A contained in V has empty interior. Indeed, if
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A ∈ A is contained in V and g ∈ int(A), then e ∈ ϱ(g−1A). Thus also g−1A ∈ q
and g−1A ⊆ g−1V , contradicting the choice of V .
(ii) ( =⇒ ) Take a non-empty open subset V ⊆ G such that any B ∈ A contained
in V is not generic. The following family has the finite intersection property:

R = {G \ gA : A ∈ A, A ⊆ V and g ∈ G}.

Indeed, take any A1, . . . , An ∈ A contained in V and g1, . . . , gn ∈ G. Then
B := A1 ∪ . . . ∪ . . . An ⊆ V is not generic and so g1A1 ∪ . . . ∪ gnAn ̸= G.

Now any q ∈ S(A) extending R clearly belongs to S∞(A).
( ⇐= ) Take q ∈ S∞(A) and non-empty open V ⊆ G such that A /∈ q whenever
A ∈ A and A ⊆ gV for some g ∈ G. If A ∈ A is a subset of V and g1, . . . , gn ∈ G,
then giA ⊆ giV , hence giA /∈ q and so g1A ∪ . . . ∪ gnA ̸= G.

We call the algebra A reflective if every non-empty open V ⊆ G contains a
subset A ∈ A with non-empty interior. Remark 4.44 says that A is reflective
if and only if the types concentrated at identity are different from those at
infinity. For that reason we consider irreflective algebras degenerate and of
secondary importance. It also quickly follows from Remark 4.44 that when A
is reflective, then types at infinity exist precisely when G is not precompact:

Corollary 4.45.

(a) If G is not precompact, then S∞(A) ̸= ∅.
(b) Assume A is reflective. Then the converse of (a) holds.

Proof. (a) Follows directly from Remark 4.44 (ii).
(b) Assume that G is precompact. Since A is reflective, every non-empty open
V ⊆ G contains some A ∈ A with non-empty interior, hence generic. By
Remark 4.44 (ii), it follows that S∞(A) = ∅.

It is natural to think that if infinity exists, then being at infinity is a more
generic condition that not. Below we make this thought precise and prove it.

Proposition 4.46. If S∞(A) ̸= ∅, then every almost periodic point of S(A)
lies at infinity.

Proof. First we prove that there is a non-empty open W ⊆ G such that for each
A ∈ A contained in W and g1, . . . , gn ∈ G, the set g1A∪ . . .∪ gnA is not dense.
For this purpose we consider two cases.

(i) A is reflective.
By Corollary 4.45, we get that G is not precompact, so we can find a non-
empty open neighbourhood V ⊆ G of e that is not generic. Let W ⊆ G
be an open neighbourhood of e such that WW−1 ⊆ V . It suffices to show
that for any g1, . . . , gn ∈ G the set U := g1W ∪ . . . ∪ gnW is not dense.
Indeed, given g1, . . . , gn ∈ G, we can find a /∈ g1V ∪ . . .∪gnV . In particular,
a /∈ UW−1, thus aW ∩ U = ∅.
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(ii) A is not reflective.
Take a non-empty open W ⊆ G such that every A ∈ A contained in W has
empty interior, and so is nowhere dense. Then W is as desired.

Now assume for contradiction that p ∈ S(A) \S∞(A) is almost periodic and
pick A ∈ p such that A ⊆ gW for some g ∈ G. Since cl(G · p) is a minimal
subflow and cl(G · p) ∩ [A] ̸= ∅, by Remark 2.3, there are g1, . . . , gn ∈ G such
that cl(G · p) ⊆ g1[A] ∪ . . . ∪ gn[A]. Let B = G \ (g1A ∪ . . . ∪ gnA). Then
int(B) ̸= ∅, so we can find A′ ∈ p such that A′ ⊆ hB for some h ∈ G. But then
cl(G · p) ∩ [B] ̸= ∅, which is a contradiction.

A consequence of the last result is the following dichotomy. If G is precom-
pact, all idempotents of I are concentrated around the identity and an explicit
description of the Ellis group follows. On the other hand, if G is not precom-
pact, then by Corollary 4.45 and Proposition 4.46, all minimal subflows of S(A),
along with their idempotents, are at infinity. It is thus likely that a completely
different approach is necessary to describe the Ellis group.

4.5 Regular open sets
In the discussion after Proposition 2.36 we explained the significance of the
problem of characterizing maximal generic G-subalgebras of a given d-closed
G-algebra A ⩽ P(G). Following the spirit of the section, we continue to focus
on the more tractable variant of the problem where A ⩽ SBP. Even this case
appears difficult due to the mysterious nature of strong genericity combined
with the complexity of arbitrary nowhere dense sets. In this subsection we aim
to reduce the problem to its variant in the realm of regular open sets, which
we consider a non-trivial simplification. All the results from this subsection are
joint with Newelski.

Let us recall some definitions related to G-algebras of subsets of G while
naturally extending them to arbitrary G-algebras.
Definition 4.47. Assume A is a G-algebra.

(i) A ∈ A is generic if 1 = g1A ∨ . . . ∨ gnA for some g1, . . . , gn ∈ G.
(ii) A is generic if every A ∈ A \ {0} is generic.
(iii) A ∈ A is strongly generic if the generated G-algebra ⟨A⟩ ⩽ A is generic.

Definition 4.48. Assume A ⩽ B are G-algebras. For A ∈ A and q ∈ S(B), let

dq(A) = {h ∈ G : h−1A ∈ q}.

Clearly dq : A → P(G) is a G-algebra homomorphism.
Definition 4.49. Assume A is aG-algebra and A ⩽ P(G) contains

⋃
q∈S(A) dq[A].

For p ∈ S(A), q ∈ S(A), let

p ∗ q = {A ∈ A : dq(A) ∈ p}.

Equivalently, p ∗ q = rq(p), where rq : S(A) → S(A) is the dual of dq : A → A.
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Remark 4.50. Assume A is generic and φ : A → B is aG-algebra homomorphism.
Then φ[A] is generic and φ is a monomorphism.

Throughout the subsection G is an arbitrary topological group. Given any
A ∈ SBP, define ϱ(A) := int(cl(A)). A set A ∈ SBP is called regular open if
ϱ(A) = A. Let N WD and RO denote the families of all nowhere dense subsets
of G and all regular open subsets of G, respectively. We now recall some basic
properties of regular open sets.

Fact 4.51.

(a) N WD is a G-ideal of SBP.
(b) For any A ∈ SBP, the set U = ϱ(A) is a unique regular open set U ⊆ G

satisfying U ∆ A ∈ N WD. In particular, each coset of N WD P SBP
contains exactly one U ∈ RO.

(c) The bijection φ : RO → SBP/N WD defined by φ(U) = U ∆ N WD gives
rise to a G-algebra structure on RO such that φ becomes a G-algebra
isomorphism. The structure can be described explicitly by

U ∨ V := ϱ(U ∪ V ),
U ∧ V := ϱ(U ∩ V ) = U ∩ V,

U⊥ := ϱ(G \ U) = int(G \ U).

In particular, typically RO ̸⩽ SBP, even though RO ⊆ SBP.
(d) ϱ : SBP → RO is a G-algebra epimorphism such that Ker ϱ = N WD.

Consequently, ϱ(A) = ϱ(B) if and only if A∆B ∈ N WD.

The idea of the subsection is based on the following observation, which es-
tablishes a certain correspondence between generic G-subalgebras of SBP and
RO.
Remark 4.52.

(i) Assume B ⩽ RO is generic and q ∈ S(RO). Then B := dq[B] ⩽ P(G) is
generic.

(ii) Assume B ⩽ SBP is generic. Then there is a generic B ⩽ RO and some
q ∈ S(RO) such that ϱ : B → B and dq : B → B are mutually inverse
G-algebra isomorphisms.

Proof. (i) Follows from Remark 4.50.
(ii) Let B := ϱ[B] ⩽ RO. Then B is generic and ϱ : B → B is an isomorphism.
Therefore ϱ∗ : S(B) → S(B) is a bijection, so we can find u ∈ S(B) such that
ϱ∗(u) = ê ∈ S(B). Let q ∈ S(RO) be an arbitrary extension of u. It remains to
show that dq ◦ ϱ = idB. Take B ∈ B. Then dq(ϱ(B)) = du(ϱ(B)) = dê(B) = B,
where the second equality follows from Fact 2.17.
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Now fix A ⩽ SBP that is d-closed. Recall that by Proposition 2.36, if B ⩽ A
is maximal generic, the Ellis group of S(A) can be recovered from B as

E = {q ∈ S(B) : dq[B] ⊆ B}.

The general goal is to describe maximal generic G-subalgebras B ⩽ A and then
the group E . We propose the following approach: let A := ϱ[A] ⩽ RO and
assume we managed to find a maximal generic G-subalgebra B ⩽ A. Then we
pick q ∈ S(RO) and let B := dq[B], which in a perfect world will be a maximal
generic G-subalgebra of A isomorphic to B. Finally, we recover E from B.

Although Remark 4.52 guarantess that every generic B ⩽ A can be obtained
this way from some generic B ⩽ A, there are two issues with this approach:

1. It is not evident whether B := dq[B] ⩽ A is always maximal generic.
2. The condition dq[B] ⊆ B is not invariant under G-algebra isomorphism.

Therefore in general it is not possible to retrieve E directly from an iso-
morphic copy of B, such as B. Thus it is necessary to work through the
isomorphism dq, which may be complicated.

These issues are addressed below, starting with the second one. For this purpose
we define a subset U ⊆ S(RO) such that any isomorphism dv, where v ∈ U, may
be considered relatively simple. We also identify which generic B ⩽ A can be
obtained from a generic B ⩽ A via such an isomorphism.

Definition 4.53.

(a) Let U = {v ∈ S(RO) : V ∈ v for every V ∈ RO with e ∈ V }.
(b) A ⊆ G is tidy if V ⊆ A ⊆ cl(V ) for some V ∈ RO.
(c) A ⩽ SBP is tidy if each A ∈ A is tidy.

The next proposition refines Remark 4.52 by saying that generic algebras
B ⩽ SBP that can be obtained from some generic B ⩽ RO via an ultrafilter
v ∈ U are precisely those that are tidy.

Proposition 4.54.

(i) Assume B ⩽ RO is generic and v ∈ U. Then B := dv[B] ⩽ SBP is tidy
and generic. Moreover, ϱ : B → B and dv : B → B are mutually inverse
G-algebra isomorphisms.

(ii) Assume B ⩽ SBP is tidy and generic. Then there is a generic B ⩽ RO
and some v ∈ U such that ϱ : B → B and dv : B → B are mutually inverse
G-algebra isomorphisms.

Proof.
(i) By Remark 4.50, B ⩽ P(G) is generic and dv : B → B is an isomorphism.
Now we will check that every V ∈ B satisfies V ⊆ dv(V ) ⊆ cl(V ). Fix V ∈ B.
For any h ∈ V we have that h−1V ∈ B is a neighbourhood of e, so h−1V ∈ v
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and so h ∈ dv(V ). Thus V ⊆ dv(V ). Repeating the argument for V ⊥ in place
of V , we get V ⊥ ⊆ dv(V ⊥) = G \ dv(V ), hence V ⊆ dv(V ) ⊆ cl(V ).

It follows that dv(V ) is tidy and dv(V ) ∆ V ∈ N WD, hence dv(V ) ∈ SBP
and ϱ(dv(V )) = V . Consequently, B ⩽ SBP and ϱ ◦ dv = idB.
(ii) The outline of the proof is as in Remark 4.52. We adjust it by showing that
the extension v = q ∈ S(RO) of u ∈ S(B) can be found in U. It suffices to
show that given U ∈ u and V ∈ RO such that e ∈ V , we have that U ∧ V ̸= ∅.
Take B ∈ B such that U = ϱ(B). Since B is tidy, there is U ′ ∈ RO such
that U ′ ⊆ B ⊆ cl(U ′). It follows that U = U ′. Furthermore, e ∈ B because
ϱ(B) = U ∈ u and so B ∈ ϱ∗(u) = ê. Thus e ∈ cl(U) and e ∈ V , which implies
that U ∧ V = U ∩ V ̸= ∅.

Assume B ⩽ SBP is generic and tidy and take v ∈ U and generic B ⩽ RO as
in Proposition 4.54. The isomorphism dv : B → B can be understood as follows.
Any non-empty V ∈ B is strongly generic as an element of B. The operation
dv “corrects” V on a nowhere dense set so that it becomes strongly generic in
the usual sense. Namely, v is an ultrafilter concentrated around identity. For
each point g we consider the left translate gv as a template for a new set B ⊆ G
at g: if V ∈ gv, we include g into B, and otherwise we do not. Then formally
B = dv(V ) and V ⊆ B ⊆ cl(V ) as in the proof of Proposition 4.54. It follows
that B is a strongly generic set in B that differs from V on a nowhere dense set
contained in bd(V ). The above description justifies our view that dv is simple
when v ∈ U.

Proposition 4.54 is particularly strong when G is a precompact topological
group because in this case every generic algebra B ⩽ SBP is tidy, as the next
proposition shows.

Proposition 4.55. Assume G is precompact and A ∈ SBP is strongly generic.
Then A is tidy.

Proof. Assume for contradiction that A is not tidy. In particular, we have that
ϱ(A) ̸⊆ A or A ̸⊆ cl(ϱ(A)). Because ϱ(G \ A) ⊆ G \ A ⇐⇒ A ⊆ cl(ϱ(A)), by
replacing A with G \ A if necessary, we can assume that A ̸⊆ cl(ϱ(A)). Take
a ∈ A \ cl(ϱ(A)) and pick open neighbourhoods U, V ⊆ G of identity such that
ϱ(A) ∩ aU = ∅ and V −1V ⊆ U . Then A ∩ aU is nowhere dense. Since G is
precompact, there are t1, . . . , tn ∈ G such that G = t1V ∪ . . . ∪ tnV .

Take B ⊆ G that is a non-empty intersection of left translates of A which
minimizes the number of i ∈ {1, . . . , n} such that B ∩ tiV /∈ N WD. We will
prove that this number is zero. Indeed, otherwise we can find i ∈ {1, . . . , n}
such that B ∩ tiV /∈ N WD. Pick b ∈ B ∩ tiV and let B′ = B ∩ ba−1A. Then
B′ ̸= ∅ because b ∈ B′. Clearly for each j ∈ {1, . . . , n} if B ∩ tjV ∈ N WD,
then also B′ ∩ tjV ∈ N WD. It remains to show that B′ ∩ tiV is nowhere dense,
contradicting the choice of B. Using b ∈ tiV , it is easy to check that tiV ⊆ bU .
It follows that

B′ ∩ tiV ⊆ ba−1A ∩ bU = ba−1(A ∩ aU) ∈ N WD,
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as desired.
Therefore B ∩ tiV ∈ N WD for each i ∈ {1, . . . , n}. It follows that B is

nowhere dense, hence not generic. This contradicts the assumption that A is
strongly generic.

Now we address the first issue, that is, we show that B := dv[B] is always
a maximal generic G-subalgebra of A when v ∈ U. We also justify that tidy
G-subalgebras B ⩽ A are enough to focus on even when G is not precompact.
As a consequence, we obtain an essentially complete correspondence between
maximal generic G-subalgebras of A and of A.

Notation. Assume B ⩽ SBP, B ⩽ RO and q ∈ S(RO). We write B ∼=q B
to denote the property that ϱ : B → B and dq : B → B are mutually inverse
isomorphisms.

Lemma 4.56. Assume A ⩽ SBP is d-closed, A = ϱ[A] ⩽ RO and q ∈ S(RO).
Then dq[A] ⊆ A.

Proof. Fix V ∈ A and pick A ∈ A such that V = ϱ(A). Using Fact 2.17,

dq(V ) = dq(ϱ(A)) = dϱ∗(q)(A) ∈ A

because ϱ∗(q) ∈ S(SBP) and A is d-closed.

Theorem 4.57. Assume A ⩽ SBP is d-closed, A = ϱ[A] ⩽ RO and v ∈ U.

(i) If B ⩽ A is maximal generic, then B ∼=v B for some tidy, maximal generic
B ⩽ A.

(ii) If B ⩽ A is tidy and maximal generic, then B ∼=u B for some u ∈ U and
maximal generic B ⩽ A.

(iii) If B0 ⩽ A is maximal generic, then there are a maximal generic B ⩽ A, a
tidy, maximal generic B ⩽ A and an isomorphism φ : B0 → B such that
B ∼=v B and φ(B) ∆B ∈ N WD for B ∈ B0.

Proof. (i) By Lemma 4.56 and Proposition 4.54 (i), B := dv[B] ⩽ A is tidy and
generic and satisfies B ∼=v B. To prove maximality, assume B ⩽ B1 ⩽ A is
generic. By Remark 4.50, ϱ ↾ B1 is injective and B ⩽ ϱ[B1] ⩽ A is generic. It
follows that ϱ[B1] = B and so B1 = B. Therefore B ⩽ A is maximal generic.
(ii) By Proposition 4.54 (ii), we can find u ∈ U such that B := ϱ[B] ⩽ A satisfies
B ∼=u B. To prove maximality, assume B ⩽ B1 ⩽ A is generic. By Remark 4.50
and Lemma 4.56, du ↾ B1 is injective and B ⩽ du[B1] ⩽ A is generic. It follows
that du[B1] = B and so B1 = B. Therefore B ⩽ A is maximal generic.
(iii) Let B = ϱ[B0] ⩽ A, B = dv[B] ⩽ A and φ = dv ◦ ϱ : B0 → B. Then B
is generic, B is tidy and generic, B ∼=v B and φ is an isomorphism. If B ∈ B0,
then ϱ(φ(B)) = ϱ(dv(ϱ(B)) = (ϱ ◦dv)(ϱ(B)) = ϱ(B), hence φ(B) ∆B ∈ N WD.
Using Remark 4.52 (ii) together with techniques as in (i) and (ii), it is easy to
prove that B ⩽ A and B ⩽ A are maximal generic.
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Although Theorem 4.57 is the main result of the subsection, we note that a
correspondence between maximal generic G-subalgebras still exists when tidi-
ness is dropped and arbitrary q ∈ S(RO) are allowed.

Lemma 4.58. For each v ∈ U we have that βG ∗ v = cl(G · v) = S(RO).

Proof. The first equality holds as always. For the second, take any non-empty
V ∈ RO and pick g ∈ V . Then e ∈ g−1V , hence g−1V ∈ v and so gv ∈ [V ].

Lemma 4.59. Assume A ⩽ P(G) is d-closed, B ⩽ A is maximal generic and
p ∈ βG. Then dp[B] ⩽ A is maximal generic.

Proof. By Corollary 2.35, B is an image algebra, hence we can write B = dq[A]
for some almost periodic q ∈ S(A). Then dp[B] = dp[dq[A]] = dp∗q[A] ⩽ A is
an image algebra since p ∗ q ∈ S(A) is almost periodic.

Proposition 4.60. Assume A ⩽ SBP is d-closed, A = ϱ[A] ⩽ RO.

(i) If B ⩽ A is maximal generic and q ∈ S(RO), then B := dq[B] ⩽ A is
maximal generic.

(ii) If B ⩽ A is maximal generic, then B ∼=q B for some maximal generic
B ⩽ A and q ∈ S(RO).

Proof. (i) Pick v ∈ U. By Lemma 4.58, we can write q = p ∗ v for some p ∈ βG.
By Theorem 4.57, dv[B] ⩽ A is maximal generic. The conclusion follows from
Lemma 4.59, since dq[B] = dp∗v[B] = dp[dv[B]].
(ii) Use Remark 4.52 (ii) to find a generic B ⩽ A and some q ∈ S(RO) such that
B ∼=q B. For maximality of B, repeat the proof of Theorem 4.57 (iii).

A notable application of Theorem 4.57 is in the o-minimal structures. Let
(M,⩽, . . .) be an o-minimal structure, where ⩽ is a dense linear order without
endpoints, and G a group definable in M . We consider G as a topological group
with the structure given by Proposition 4.32. Let A := Defext,G(M) ⩽ P(G).
It is a d-closed G-algebra and by Corollary 4.34, A ⩽ SBP. Thus Theorem 4.57
applies in this setting.

Let A := ϱ[A] ⩽ RO. It is worth noting that in this case A ⊆ A. We prove
it using the following result of Shelah:

Fact 4.61 ([She09]). Assume N is a model of an NIP theory. Let N ext be the
expansion of N by all externally definable subsets of N . Then the theory of N ext

has NIP and quantifier elimination.

Take A ∈ A. It is easy to see that ϱ(A) is a subset of G definable in M ext.
Since M is o-minimal, its theory has NIP, so by Fact 4.61, M ext has quantifier
elimination. It follows that ϱ(A) is externally definable, i.e. ϱ(A) ∈ A.

We can summarize the results of this subsection using the example at hand.
In order to compute the Ellis group of Sext,G(M), we first find a maximal generic
G-subalgebra B of A. This may be easier than finding such an algebra in A since
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firstly, regular open sets have less complexity than arbitrary sets with SBP, and
secondly, nowhere dense sets can be neglected. Next we pick any v ∈ U and
compute B := dv[B], which is a maximal generic G-subalgebra of Defext,G(M).
The computation should be feasible because of the regular behaviour of dv which
we described before. Finally, we use B to compute E , which is isomorphic to
the Ellis group of Sext,G(M).

Theorem 4.57 guarantees that essentially every maximal generic subalgebra
of A can be obtained this way. Therefore the approach is unlikely to introduce
unnecessary complexity, because if any simple maximal generic subalgebras of
A exist, some of them can be found via the method we propose.

We illustrate the procedure on the following basic example.

Example 4.62. Let M = (R,⩽,+, ·, . . .) be an o-minimal expansion of the
reals. Consider the definable group

G := S1 = {(x, y) ∈ R2 : x2 + y2 = 1} ⊆ R2

equipped with complex numbers multiplication and the Euclidean topology. Let
A = Defext,G(M) and A = ϱ[A]. For a, b ∈ G, we let (a, b) denote the open arc
of S1 that goes from a to b counterclockwise. We similarly define [a, b], [a, b)
etc. Each A ∈ A is a finite union of arcs and points and each V ∈ A is a finite
union of open arcs with distinct endpoints. Thus A is generic and it is a unique
maximal generic G-subalgebra of itself.

The set U is large, but since we are only interested in the algebras dv[A],
where v ∈ U, we only need to describe the image π[U] under the restriction
π : S(RO) → S(A). We have that π[U] = {ê+, ê−}, where ê+ and ê− are
ultrafilters of A determined by

ê+ ⊇ {(e, b) : b ∈ S1 \ {e}},

ê− ⊇ {(a, e) : a ∈ S1 \ {e}}.

For any distinct a, b ∈ S1 we have that dê+
(
(a, b)

)
= [a, b) and dê−

(
(a, b)

)
=

(a, b]. Note how (a, b) is only strongly generic in G up to nowhere dense sets,
but its modification [a, b) (or (a, b]) is strongly generic in the usual sense. Thus
B+ := dê+ [A] consists of finite unions of arcs of the form [a, b) and B− := dê− [A]
consists of finite unions of arcs of the form (a, b]. Both are maximal generic
G-subalgebras of Defext,G(M).

Consider any q ∈ S(B+). Then q is the restriction to B+ of some left
translate gϱ∗(ê+) or gϱ∗(ê−), where g ∈ S1 and ϱ∗ : S(A) → S(A) is the dual
of ϱ. In the first case dq[B+] = B+ and in the second dq[B+] = B−. Thus

E = {q ∈ S(B+) : dq[B+] ⊆ B+} = {gϱ∗(ê+) ∩ B+ : g ∈ S1}.

When gϱ∗(ê+) is identified with g, it is easy to check that the operation ∗ on E
coincides with the group operation of S1. Therefore the Ellis group of Sext,G(M)
is isomorphic to S1.

We conclude the subsection by discussing a final, more elaborate example.
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4.5.1 Groups with definable compact-torsion-free decomposition

In [Jag15] Jagiella explored the topological dynamics of an interesting class of
groups definable in o-minimal expansions of the reals. We briefly recall the
set-up and then analyse the generic algebras of (externally) definable subsets
and their regular open counterparts. In the process, we negatively answer the
following question, motivated by Example 4.62: if G is a group definable in an
o-minimal expansion M of the reals and A = Defext,G(M), must A := ϱ[A]
contain a unique maximal generic subalgebra?

Assume M = (R,⩽,+, ·, . . .) is an o-minimal expansion of the ordered field
of reals and fix a group G definable in M . We consider G as a topological
group with the structure from Proposition 4.32. Moreover, we assume that G
admits a definable compact-torsion-free decomposition, meaning that there exist
definable subgroups K,H ⩽ G such that K is definably compact, H is torsion-
free, G = K ·H and K ∩H = {e}. Since we work in R, the group K is actually
compact. Note that H and K are closed in G by [Pil88, Corollary 2.8].

The algebra A := Defext,G(M) = DefG(R) of R-definable subsets of G is d-
closed. Let SG(R), SK(R), SH(R) denote the Stone space of DefG(R), DefK(R),
DefH(R), respectively. SK(R) and SH(R) are subsemigroups of SG(R) with
respect to the usual operation ∗. The group H naturally acts on G/H ≈ K
and we denote this action as φh : K → K, where h ∈ H. Explicitly, φh(k) is
the unique k′ ∈ K such that hk = k′h′ for some h′ ∈ H. The action extends
to an action of the semigroup SH(R) on SK(R), which also will be denoted as
φp : SK(R) → SK(R) for p ∈ SH(R). We let I denote the set of generic points
of SK(R), which is a unique minimal subflow of SK(R) and is closed under the
action of H. There is an H-invariant type p∞ ∈ SH(R) and for any such type
I ∗ p∞ Pm SG(R). From now p∞ will be fixed.

Since K is compact, each q ∈ SK(R) has a standard part st(q) ∈ K. The
map st : SK(R) → K is a semigroup homomorphism and for each u ∈ J(I), its
restriction st : uI → K is an isomorphism. Define ψ : K → K as ψ = st ◦ φp∞

and let Z = {z ∈ K : ψ(z) = 1K}. The set of idempotents of I ∗ p∞ is precisely
J(I ∗ p∞) = {u ∗ ẑ ∗ p∞ : u ∈ J(I), z ∈ Z}. We have that ψ[K] = NG(H) ∩ K
and ψ ◦ ψ = ψ, hence ψ ↾ NG(H) ∩K = id.

We direct the reader to [Jag15] for more details.
Jagiella describes the set J(I ∗ p∞) in a technically different way:

J(I ∗ p∞) = {q ∗ p∞ : q ∈ I, ψ(st(q)) = 1K}.

The following lemma explains why our description is equivalent.

Lemma 4.63. Let u ∈ J(I) and k ∈ K. Then u ∗ k̂ is the unique type q ∈ uI
such that st(q) = k. Consequently,

{q ∈ I : ψ(st(q)) = 1K} = {u ∗ ẑ : u ∈ J(I), z ∈ Z}.

Proof. The function rk : SK(R) → SK(R) defined by rk(q) = q ∗ k̂ is a G-flow
endomorphism, so the unique minimal subflow I Pm SK(R) is mapped by rk
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onto itself. In particular, u ∗ k̂ = rk(u) ∈ I. Furthermore, u ∗ k̂ ∈ uI since
u ∗ k̂ = u ∗ u ∗ k̂. Finally, st(u ∗ k̂) = st(u) · st(k̂) = 1K · k = k. Uniqueness
follows from the fact that st : uI → K is an isomorphism.

Lemma 4.64. The function m : K × H → G defined as m(k, h) = k · h is a
homeomorphism, where K ×H is equipped with the product topology.

Proof. Clearly m is a continuous bijection. To check that m−1 is continuous,
it suffices to prove that for any net (gi)i∈I in G convergent to some g ∈ G
there is a subnet (gij

)j∈J such that m−1(gij
) converges to m−1(g). Take any

net (gi)i∈I in G convergent to g ∈ G and let (ki, hi) = m−1(gi). Since K is
compact, by passing to a subnet, we can assume that (ki)i∈I converges to some
k ∈ K. Then hi = k−1

i gi → k−1g and k−1g ∈ H, since H is closed. Thus
m−1(gi) = (ki, hi) → (k, k−1g) = m−1(g) in K ×H, as desired.

Corollary 4.65. The function φ : H × K → K defined by φ(h, k) = φh(k) is
continuous.

Proof. Assume (hi, ki)i∈I is a net in H×K convergent to some (h, k) ∈ H×K.
Take h′, h′

i ∈ H such that h · k = φh(k) · h′ and hi · ki = φhi
(ki) · h′

i. Then

φhi
(ki) · h′

i = hi · ki → h · k = φh(k) · h′,

so by Lemma 4.64, φhi
(ki) → φh(k). Hence φ is continuous.

Take any idempotent u ∗ ẑ ∗ p∞ ∈ J(I ∗ p∞), where u ∈ J(I), z ∈ Z. We
will describe the image algebra Im du∗ẑ∗p∞ . Since du∗ẑ∗p∞ = du∗ẑ ◦ dp∞ we first
compute the image of dp∞ .

Lemma 4.66. When dp∞ is treated as a function DefG(R) → DefG(R),

Im dp∞ = {A ·H : A ⊆ K is definable}.

Proof. (⊆) Take any definable X ⊆ G. By Remark 2.20 (i), for any h ∈ H

dp∞(X) · h−1 = dĥ(dp∞(X)) = dĥ∗p∞
(X) = dp∞(X),

hence dp∞(X) = A · H for some A ⊆ K. Moreover, A is definable, since
A = dp∞(X) ∩K.
(⊇) Take any definable A ⊆ K. As in the first part, dp∞(A · H) = B · H for
some definable B ⊆ K. It suffices to prove that B = A. For k ∈ K,

k ∈ dp∞(A ·H) ⇐⇒ k−1A ·H ∈ p∞ ⇐⇒ (k−1A ·H) ∩H ∈ p∞ ⇐⇒ k ∈ A,

where the last equivalence holds because (k−1A ·H) ∩H is equal to H if k ∈ A
and to ∅ otherwise. Hence dp∞(A·H)∩K = A and so B = (B ·H)∩K = A.
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We proceed to compute Im du∗ẑ∗p∞ . Take any definable A ⊆ K and let
Y = du∗ẑ(A ·H). Since Y ⊆ G ≈ K ×H, we may define H-sections Y h, h ∈ H,
of Y :

Y h = {k ∈ K : k · h ∈ Y }.

We will describe Y in terms of its H-sections. Let k ∈ K,h ∈ H. We have that

k · h ∈ Y ⇐⇒ h−1k−1AH ∈ u ∗ ẑ ⇐⇒ φh−1 [k−1A] ·H ∈ u ∗ ẑ
⇐⇒ φh−1 [k−1A] ∈ u ∗ ẑ ⇐⇒ k−1A ∈ φh(u ∗ ẑ).

Therefore Y is given by Y h = dφh(u∗ẑ)(A) and so the corresponding maximal
generic subalgebra of DefG(R) is

Bu,z := Im du∗ẑ∗p∞ = {Y ⊆ K ×H : (∃A ⊆
def.

K)(∀h ∈ H)Y h = dφh(u∗ẑ)(A)}.

Now we compute Bz := ϱ[Bu,z], which turns out to only depend on z. Fix
Y ∈ Bu,z and take a definable A ⊆ K such that Y h = dφh(u∗ẑ)(A) for h ∈ H.

Lemma 4.67. For each h ∈ H there is vh ∈ J(I) such that φh(u ∗ ẑ) =
vh ∗ φ̂h(z).

Proof. Fix h ∈ H. As mentioned in the set-up description, I is closed under the
action of H, i.e. φh[I] ⊆ I. Hence there is vh ∈ J(I) such that φh(u ∗ ẑ) ∈ vhI.
By the continuity of φh,

st(φh(u ∗ ẑ)) = φh(st(u ∗ ẑ)) = φh(z).

The conclusion follows from Lemma 4.63.

Reasoning similarly as in Proposition 4.54 (i), we have:

Fact 4.68. For any v ∈ J(I) and definable B ⊆ K we have that

int(B) ⊆ dvB ⊆ cl(B).

In order to disambiguate the notation, we let ϱG : SBP(G) → RO(G) and
ϱK : SBP(K) → RO(K) denote the functions defined by the same formula
ϱ(X) = int(cl(X)), computed in the respective topological groups.

Lemma 4.69. ϱG(Y ) is given by ϱG(Y )h = ϱK(A)φh(z)−1 for h ∈ H.

Proof. Given h ∈ H, pick vh ∈ J(I) as in Lemma 4.67. Then

Y h = dφh(u∗ẑ)A = dvh
◦ d

φ̂h(z)(A) = dvh

(
A · φh(z)−1)

so by Fact 4.68,

intK(A)φh(z)−1 ⊆ Y h ⊆ clK(A)φh(z)−1.
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We continue to identify G with K × H. The function T : K × H → K × H
defined by T (k, h) = (kφh(z), h) is a homeomorphism and T [Y ]h = Y h · φh(z).
Hence

intK(A) ⊆ T [Y ]h ⊆ clK(A)
for each h ∈ H, so

intK(A) ×H ⊆ T [Y ] ⊆ clK(A) ×H.

By Corollary 4.34, A has SBP, so the sets on the left and on the right differ by a
nowhere dense set from each other, and also from ϱK(A) ×H, which is regular
open. It follows that

T [ϱG(Y )] = ϱG(T [Y ]) = ϱK(A) ×H

and so for h ∈ H,

ϱG(Y )h = T [ϱG(Y )]h · φh(z)−1 = ϱK(A) · φh(z)−1.

Thus by Theorem 4.57, the maximal generic subalgebras of ϱG[DefG(R)] are
given by

Bz = {V ⊆ K ×H : (∃U ∈ AK)(∀h ∈ H)V h = Uφh(z)−1},

where z ∈ Z and AK = ϱK [DefK(R)] = DefK(R) ∩ RO(K).
Now we wish to find out when ϱG[DefG(R)] contains a unique maximal

generic subalgebra. For z ∈ Z, h ∈ H, define δz(h) = zφh(z)−1.

Lemma 4.70. For every z1, z2 ∈ Z,

Bz1 = Bz2 ⇐⇒ δz1 = δz2 .

Proof. Note that for z ∈ Z,

Bz = {V ⊆ K ×H : V 1H ∈ AK & (∀h ∈ H)V h = V 1H δz(h)}.

The right-to-left implication follows. For the other one, assume δz1(b) ̸= δz2(b)
for some b ∈ H. Then we can find U ∈ AK such that Uδz1(b) ̸= Uδz2(b). Define
V ⊆ K × H so that V h = Uδz1(h) for h ∈ H. Clearly V ∈ Bz1 , but V /∈ Bz2

since V b = Uδz1(b) ̸= Uδz2(b) = V 1H δz2(b).

Proposition 4.71. ϱG[DefG(R)] has a unique maximal generic G-subalgebra if
and only if Z = {1K}.

Proof. Clearly 1K ∈ Z. By Lemma 4.70, for any z ∈ Z we have

Bz = B1K
⇐⇒ δz = δ1K

⇐⇒ δz ≡ 1K ⇐⇒ z ∈ NG(H) ∩K.

The maximal generic subalgebra corresponding to all such z is

B1K
= {U ×H : U ∈ AK}.

It follows that this algebra is unique precisely when Z ⊆ NG(H) ∩ K. This is
equivalent to Z = {1K} because ψ ↾ NG(H) ∩K = id and ψ ↾ Z ≡ 1K .
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Finally, to see that ϱG[DefG(R)] can have more than one maximal generic
subalgebra, we check that Z ̸= {1K} holds in a concrete group G, originally
studied in [GPP15]. Consider G := SL2(R), the group of all 2×2 matrices with
determinant equal to 1. It admits a definable compact-torsion-free decomposi-
tion G = KH, where K = SO2(R) is the group of all orthogonal matrices with
determinant equal to 1 and H = T+

2 (R) is the group of all upper-triangular
matrices with determinant equal to 1 and positive elements on the diagonal.

We define an H-invariant type p∞ ∈ SH(R) as

p∞ = tp
((

b∞ c∞
0 (b∞)−1

)
/R
)
,

where b∞ > R and c∞ > dcl(R ∪ {b∞}) in the monster model. For α ∈ R, let
Rα denote the rotation of R2 through α about the origin, so that

SO2(R) = {Rα : α ∈ [0, 2π)}.

If h =
(
b c
0 1

b

)
for some b > 0 and c ∈ R, then φh(Rα) = Rβ , where β is the

angle of the vector

h ·
(

cosα
sinα

)
=
(
b cosα+ c sinα

1
b sinα

)
.

Consequently,

ψ(Rα) = st(φp∞(Rα)) =
{
R0 if α ∈ [0, π),
Rπ if α ∈ [π, 2π),

and Z = {Rα : α ∈ [0, π)} ≠ {R0}.
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A Explicit description of an Ellis group
In this appendix we compute the Ellis group of the flow S(A) introduced in
Example 3.31. For convenience we repeat the definitions here. We also present
a variant of the example where the Ellis group appears more difficult to describe.

Assume G ≠ {e} is a finite group and let G = Gω ⋊φ Sym(ω), where the
underlying action of the product is φσ(s) = s ◦ σ−1 for σ ∈ Sym(ω), s ∈ Gω.
For n ∈ ω, g ∈ G let

Ag
n = {s ∈ Gω : s(n) = g} × Sym(ω).

Define A ⩽ P(G) as the G-algebra generated by Ae
0. For any ⟨s, σ⟩ ∈ G we have

that ⟨s, σ⟩Ae
0 = A

s(σ(0))
σ(0) . As a result,

{⟨s, σ⟩Ae
0 : ⟨s, σ⟩ ∈ G} = {Ag

n : g ∈ G, n ∈ ω}

and
A = {C × Sym(ω) : C ⊆ Gω is clopen}.

It follows that the space S(A) is canonically homeomorphic to Gω. Via this
homeomorphism Gω becomes a G-flow with the action ⟨s, σ⟩ · x = sφσ(x) for
s, x ∈ Gω and σ ∈ Sym(ω). It suffices to compute the Ellis group of Gω. For
g ∈ G, let g̃ ∈ Gω denote the constant function everywhere equal to g. Recall
that for ⟨s, σ⟩ ∈ G, the functions π⟨s,σ⟩ : Gω → Gω are defined as

π⟨s,σ⟩(x) = ⟨s, σ⟩ · x = sφσ(x)

and E(Gω) = cl{π⟨s,σ⟩ : ⟨s, σ⟩ ∈ G} ⊆ (Gω)Gω .

Proposition A.1. The Ellis group of Gω is isomorphic to G.

Before proving the proposition we need to make a few basic observations.
Recall from topological dynamics that the points p, q ∈ Gω are called proximal
if f(p) = f(q) for some f ∈ E(Gω).

Lemma A.2. p, q ∈ Gω are proximal if and only if p(n) = q(n) for infinitely
many n < ω.

Proof. ( =⇒ ) Assume that f(p) = f(q) =: r for some f ∈ E(Gω) and fix K ∈ ω.
It suffices to show that p and q agree on at least K + 1-many values. The set

U = {y ∈ Gω : y(k) = r(k) for k ⩽ K}

is an open neighbourhood of r, so we can find ⟨s, σ⟩ ∈ G such that ⟨s, σ⟩p ∈ U
and ⟨s, σ⟩q ∈ U . In particular, φσ(p)(k) = φσ(q)(k) for k ⩽ K, which means
that p and q agree at least on the K + 1-many values σ−1(0), . . . , σ−1(K).
( ⇐= ) Assume that p(n) = q(n) for infinitely many n ∈ ω. To show that there
is f ∈ E(Gω) such that f(p) = f(q) = ẽ, by compactness it suffices to show
that for any open neighbourhood U ⊆ Gω of ẽ we can find ⟨s, σ⟩ ∈ G such that
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⟨s, σ⟩p ∈ U and ⟨s, σ⟩q ∈ U . Take any such U . Without loss of generality it is
of the form

U = {y ∈ Gω : y(k) = e for k ⩽ K}

for some K ∈ ω. Take σ ∈ Sym(ω) such that σ−1(0), . . . , σ−1(K) are the first
K + 1-many indices n satisfying p(n) = q(n) so that φσ(p) and φσ(q) agree on
each k ⩽ K. Let s = φσ(p)−1. Then ⟨s, σ⟩p ∈ U and ⟨s, σ⟩q ∈ U .

We shall now investigate the structure of almost periodic points in E(Gω).
For p ∈ Gω, u ∈ βω \ ω, define fp

u : Gω → Gω by fp
u(x) = p · x̃(u), where

x(u) = limn→u x(n). We aim to show that the almost periodic points in E(Gω)
are precisely the functions of the form fp

u , where p ∈ Gω, u ∈ βω \ ω.

Fact A.3. Assume X is a G-flow and f ∈ E(X) is almost periodic. Then no
two distinct points in f [X] are proximal.

Proof. Assume f(p) and f(q) are proximal and take f ′ ∈ E(X) such that
f ′(f(p)) = f ′(f(q)). Since f is almost periodic, we can find f ′′ ∈ E(X) such
that f ′′ ◦ f ′ ◦ f = f . It follows that f(p) = f(q).

Remark A.4. Every f ∈ E(Gω) satisfies f(xg̃) = f(x)g̃ for x ∈ Gω, g ∈ G.

Proof. The set of all functions f : Gω → Gω satisfying the formula is closed in
(Gω)Gω and contains {π⟨s,σ⟩ : ⟨s, σ⟩ ∈ G}, hence it contains E(Gω).

Lemma A.5. Assume f ∈ E(Gω) is almost periodic. Then there is p ∈ Gω

such that f [Gω] = {pg̃ : g ∈ G}.

Proof. By Lemma A.2, among any |G|+1-many points in Gω there are two that
are proximal. Hence by Fact A.3, the image of f contains at most |G|-many
points. On the other hand, it follows from Remark A.4 that f [Gω] contains
at least |G|-many elements which are of the form {pg̃ : g ∈ G} for any fixed
p ∈ f [Gω]. Therefore f [Gω] = {pg̃ : g ∈ G}.

Lemma A.6. Assume f ∈ E(Gω) and take p ∈ f [Gω].

(i) For every m ∈ N and x1, . . . , xm ∈ f−1[{p}] there are infinitely many
n ∈ ω such that xi(n) = xj(n) for any 1 ⩽ i, j ⩽ m.

(ii) There is g ∈ G such that for every m ∈ N and x1, . . . , xm ∈ f−1[{p}] there
are infinitely many n ∈ ω such that xi(n) = g for any 1 ⩽ i ⩽ m.

(iii) We can choose p ∈ f [Gω] such that (ii) holds with g = e.

Proof. (i) Take any x1, . . . , xm ∈ f−1[{p}] and fix K ∈ ω. Since f ∈ E(Gω) and

U = {y ∈ Gω : y(k) = p(k) for k ⩽ K}

is an open neighbourhood of p, we can find ⟨s, σ⟩ ∈ G such that ⟨s, σ⟩ · xi ∈ U
for 1 ⩽ i ⩽ m. In particular, x1, . . . , xm agree on σ−1(k) for k ⩽ K, so they
must agree on infinitely many n ∈ ω since K is arbitrary.
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(ii) Assume for contradiction that for each g ∈ G we can find mg ∈ N and
x

(g)
1 , . . . , x

(g)
mg ∈ f−1[{p}] such that for almost all n ∈ ω at least one of x(g)

i (n),
where 1 ⩽ i ⩽ mg, is different from g. Since G is finite, we can rewrite all x(g)

i

as x1, . . . , xm ∈ f−1[{p}], where m =
∑

g∈G mg. Then for almost all n ∈ ω the
elements x1(n), . . . , xm(n) are not all equal, which contradicts (i).
(iii) Take g ∈ G such that the pair (p, g) satisfies (ii). Then the pair (ph̃, gh)
also satisfies it for any h ∈ G. Hence p′ := pg̃−1 is as desired.

For the next two facts fix an almost periodic point f ∈ E(Gω). Furthermore,
pick p ∈ f [Gω] as in item (iii) of the last lemma and let

u = {x−1[{e}] : x ∈ f−1[{p}]} ⊆ P(ω).

Lemma A.7. u is a non-principal ultrafilter on ω.

Proof. By the choice of p, for every I1, . . . , Im ∈ u we have that∣∣∣∣∣
m⋂

i=1
Ii

∣∣∣∣∣ = ∞.

It remains to show that for any I ⊆ ω we have I ∈ u or ω \ I ∈ u. Fix I ⊆ ω,
choose some distinct h1, h2 ∈ G and define x ∈ Gω by

x(n) =
{
h1 if n ∈ I,

h2 if n /∈ I.

By Lemma A.5, f(x) = pg̃ for some g ∈ G. Hence by Remark A.4, f(xg̃−1) = p,
so (xg̃−1)−1[{e}] belongs to u and equals either I or ω \ I.

Proposition A.8. We have that f = fp
u .

Proof. Take any x ∈ Gω and using Lemma A.5, write f(x) = pg̃ for some g ∈ G.
Then f(xg̃−1) = p, so by the definition of u we have that (xg̃−1)−1[{e}] ∈ u.
Equivalently, x(u) = g, hence f(x) = p · x̃(u) = fp

u(x).

So far we have proved that every almost periodic point of E(Gω) is of the
form fp

u for some p ∈ Gω, u ∈ βω \ ω. Now we prove the converse.

Proposition A.9. For any p ∈ Gω, u ∈ βω \ ω we have that fp
u ∈ E(Gω).

Moreover, it is an almost periodic point of E(Gω).

Proof. Fix an open basic neighbourhood V of fp
u in (Gω)Gω . To show that

fp
u ∈ E(Gω), it suffices to find ⟨s, σ⟩ ∈ G such that π⟨s,σ⟩ ∈ V . We may write

V = {f ∈ (Gω)Gω

: f(xi) ∈ Ui for i = 1, . . . ,m},

where xi ∈ Gω and Ui is an open neighbourhood of fp
u(xi) for i = 1, . . . ,m. Let

gi = xi(u) so that fp
u(xi) = pg̃i. We may also assume that

Ui = {y ∈ Gω : y(k) = p(k)gi for k ⩽ K}
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for each i = 1, . . . ,m and some fixed K ∈ ω. The set

I =
m⋂

i=1
x−1

i [{gi}] ∈ u

is infinite, so we can find σ ∈ Sym(ω) such that σ−1(0), . . . , σ−1(K) ∈ I. It is
routine to check that π⟨p,σ⟩ ∈ V .

To prove that fp
u is almost periodic, fix f ∈ E(Gω). It is enough to find

f ′ ∈ E(Gω) such that f ′◦f◦fp
u = fp

u . Equivalently, f ′◦f(y) = y for y ∈ fp
u [Gω] =

{pg̃ : g ∈ G}. By Remark A.4, this is further equivalent to f ′(f(p)) = p. Hence
f ′ = π⟨s,id⟩, where s = pf(p)−1, is a good choice.

We are now ready to prove the main proposition.

Proof of Proposition A.1. Given x, p ∈ Gω, u ∈ βω \ ω and f ∈ E(Gω), we have
that

f ◦ fp
u(x) = f

(
p · x̃(u)

)
= f(p) · x̃(u),

hence f ◦ fp
u = ff

u
(p). It follows that fp

u generates the ideal

I = {f ◦ fp
u : f ∈ E(Gω)}

= {ff(p)
u : f ∈ E(Gω)}

= {fq
u : q ∈ Gω},

which only depends on u, so we denote it as Iu. In this ideal fp
u belongs to the

Ellis group

E = fp
uIu = {fp

u ◦ fq
u : q ∈ Gω}

= {fp·q̃(u)
u : q ∈ Gω}

= {fp·g̃
u : g ∈ G}.

We may choose fp
u as the idempotent of this group, which means that p(u) = e.

It remains to show that the map ψ : G → E , ψ(g) = fpg̃
u is an isomorphism. It

is clearly bijective. For g, h ∈ G we have that

fpg̃
u ◦ fph̃

u = fp·g̃· ˜(ph̃)(u)
u = fp·g̃·p̃(u)·h

u = fpg̃h
u ,

hence ψ(gh) = ψ(g) ◦ ψ(h).

A.1 A variant
An interesting variant of the previous example is the following: assume G ̸= {e}
is a finite group and let G = GZ ⋊φ Z. Here Z is identified with a subgroup
{σm : m ∈ Z} ⩽ Sym(Z), where σm(n) = n+m for m,n ∈ Z, and the underlying
action of the semidirect product is the same as before, that is, φm(x) = x ◦ σ−1

m

for m ∈ Z, x ∈ GZ. For n ∈ Z, g ∈ G let

Ag
n = {x ∈ GZ : x(n) = g} × Z.
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The subset A := Ae
0 ⊆ G is uniformly strongly generic and not periodic. Let

A ⩽ P(G) denote the G-algebra generated by A. By the same reasoning as in
the previous example we have that the G-flow S(A) is canonically isomorphic
to GZ with the action ⟨s,m⟩ · x = sφm(x) for ⟨s,m⟩ ∈ G and x ∈ GZ.

We have not been able to compute the Ellis group of GZ. We will prove the
following:

Proposition A.10. The Ellis group of GZ has cardinality at least 2ℵ0 .

Lemma A.11. Two points p, q ∈ GZ are proximal if and only if they agree on
arbitrary long intervals in Z, i.e. for each K ∈ N there is n ∈ Z such that
p(n+ k) = q(n+ k) for 0 ⩽ k ⩽ K.

Proof. Essentially the same as that of Lemma A.2.

Let C ⊆ GZ denote the set of all continuous functions p : Z → G, where
Z is equipped with the profinite topology and G is discrete. Clearly C ⩽ GZ.
Furthermore, it is not hard to see that |C| = 2ℵ0 (adjust the construction from
Example 3.14).

Lemma A.12. Distinct points in C are not proximal.

Proof. Take any distinct p, q ∈ C. Then p−1q ̸= ẽ, so there is a coset K ⊆ Z of
a finite index subgroup of Z such that p(k) ̸= q(k) for k ∈ K. In particular, it
is not the case that p and q agree on arbitrary long intervals in Z, hence they
are not proximal.

Proof of Proposition A.10. Take any minimal ideal I Pm E(GZ) and f ∈ J(I).
By Lemma A.12, f is injective on C, so |f [GZ]| = 2ℵ0 . Hence it suffices to show
that the Ellis group fI acts transitively on f [GZ].

Take any p, q ∈ f [GZ] and let x = qp−1 ∈ GZ. Recall that π⟨x,0⟩ is an element
of E(GZ) defined by π⟨x,0⟩(y) = xy. Then f ◦ π⟨x,0⟩ ◦ f ∈ fI and

(f ◦ π⟨x,0⟩ ◦ f)(p) = (f ◦ π⟨x,0⟩)(p) = f(xp) = f(q) = q,

where the first and fourth equality hold because f ∈ J(I) and thus f ↾ Im f is
the identity map.

We have proved that when f ∈ E(GZ) is an almost periodic point, f [GZ]
has 2ℵ0 -many elements. This is very different from the previous example, where
f [GZ] would be finite of size |G|.

Question A.13. Can the Ellis group of S(A) be computed explicitly?
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B USG families
This appendix is devoted to some exploration of Question 3.36. In an arbitrary
group G we show a correspondence between non-periodic USG subsets of G and
certain families of finite partial functions G → {0, 1}, which we call non-periodic
USG families. A family corresponding to A ⊆ G can be thought of as consisting
of finite “chunks” of A, which turn out to contain enough information to capture
the property of A being USG or periodic. The condition of non-periodicity of a
USG family takes a particularly simple form in case G = (Z,+). It follows that
in order to prove the existence of a non-periodic USG subset of Z, it suffices to
construct a non-periodic USG family there, which might be an easier task.

Assume G is a group. We regard 2G as a G-flow with the action given by

(g ⊙ f)(x) = f(xg), or equivalently, g ⊙ χA = χAg−1

for g ∈ G, f ∈ 2G, A ⊆ G. When X ⊆ G and g ∈ G, f ∈ 2X , we also define
g ⊙ f ∈ 2Xg−1 in the same way. Clearly f1 ⊆ f2 ⇐⇒ g ⊙ f1 ⊆ g ⊙ f2 for
g ∈ G, f1 ∈ 2X , f2 ∈ 2Y and X,Y ⊆ G.

Notation.

• For any set X, let [X]<ω denote the family of all finite subsets of X.
• 2⩽G is the set of all functions f : X → {0, 1}, where X ⊆ G.
• 2<G is the set of all functions η : U → {0, 1}, where U ∈ [G]<ω.
• For η ∈ 2<G, [η] = {f ∈ 2G : η ⊆ f}.
• For U ∈ [G]<ω, f ∈ 2⩽G, we write U ≼ f when

(∃g ∈ G)U ⊆ dom(g ⊙ f).

• For η ∈ 2<G, f ∈ 2⩽G we say that η occurs in f , denoted η ⊑ f , when

(∃g ∈ G) η ⊆ g ⊙ f.

Definition B.1. Assume A ⊆ 2<G.

(i) We say that a property P (η) is satisfied by cofinally many elements η ∈ A,
denoted (∃∞η ∈ A)P (η), provided that for every U ∈ [G]<ω there is η ∈ A
such that U ≼ η and P (η) holds.

(ii) We say that a property P (η) is satisfied by sufficiently large η ∈ A, denoted
(∀∞η ∈ A)P (η), when there is U ∈ [G]<ω such that for each η ∈ A with
U ≼ η, P (η) holds.

We have the de Morgan-like duality

¬(∀∞η ∈ A)P (η) ⇐⇒ (∃∞η ∈ A) ¬P (η).

Remark B.2. Assume A ⊆ 2<G.
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• If both P (η) and Q(η) hold for sufficiently large η ∈ A, then P (η) ∧Q(η)
holds for sufficiently large η ∈ A.

• If P (η) holds for sufficiently large η ∈ A and Q(η) holds for cofinally many
η ∈ A, then P (η) ∧Q(η) holds for cofinally many η ∈ A.

Proof. Follows from the fact that if U ∪ V ≼ η, then U ≼ η and V ≼ η.

Definition B.3. Assume A ⊆ 2<G.

(1) A is cofinal if (∃∞η ∈ 2<G) η ∈ A.
(2) A is a strongly generic family when for each η ∈ 2<G occurring in cofinally

many elements of A there is V ∈ [G]<ω such that all sufficiently large θ ∈ A
satisfy

(∀g ∈ G)
(
V ⊆ dom(g ⊙ θ) =⇒ η ⊑ (g ⊙ θ) ↾ V

)
.

(3) We call A a uniformly strongly generic family, abbreviated as USG family,
if it satisfies the strengthening of (2) such that |V | only depends on |η|.

(4) t ∈ G is a period of A if for sufficiently large θ ∈ A neither of the two
elements of 2<G

{(e, 0), (t, 1)}, {(e, 1), (t, 0)}
occurs in θ.8 The set of all periods of A is denoted Per(A).

(5) A is periodic if Per(A) is a generic subset of G.

It is worth noting that item (2) of the last definition is to some degree anal-
ogous to Definition 3.9, where η corresponds to f ↾ U and ⊑ replaces (∃h).
The analogy further extends between item (3) and Definition 3.29 (a). As we
are about to show, a [uniformly] strongly generic family encodes a [uniformly]
strongly generic subset of G up to the minimal subflow it generates in 2G. Be-
cause the condition (2) is relaxed with the use of cofinally many and sufficiently
large instead of some and all, the family is allowed to contain a certain amount
of “noise” which does not affect the subset of G it encodes. However, each
pattern that exhibits itself across cofinally many elements of the family will be
reflected in the encoded subset.

Now we state the main result of the appendix.

Theorem B.4. The following are equivalent:

(1) There is a non-periodic USG subset A ⊆ G.
(2) There is a non-periodic USG cofinal family A ⊆ 2<G.

Before proving the theorem we introduce some ideas.

Proposition B.5. Assume A ⊆ G is USG. Then every B ⊆ G such that
χB ∈ cl(G⊙χA) is USG. Moreover, for each Boolean term τ precisely the same
numbers mτ witness that A and B satisfy the condition (3) from the definition
of a USG set.

8We abuse the terminology and consider the condition satisfied when t = e, even though
technically {e} × {0, 1} /∈ 2<G. Thus we always have e ∈ Per(A).
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Proof. Take B ⊆ G with χB ∈ cl(G⊙χA). By Remark 2.20 (iv), there is q ∈ βG
such that B = dqA, so B is USG by Remark 3.28. The rest follows from the
analysis of the proof of Remark 3.28 and the fact that χA is almost periodic by
Theorem 3.12, hence symmetrically χA ∈ cl(G⊙ χB).

It follows from the last proposition that whether A ⊆ G is USG only depends
on the subflow of 2G generated by χA. Therefore we may think of being USG
as a property of subflows of 2G. Since 2G is a Stone space, its closed subsets
correspond to filters of the Boolean algebra CO(2G) in the classical way. Below
we define a similar correspondence which better suits our purposes.

Definition B.6. The content of a subflow X ⊆ 2G is the family

c(X) = {η ∈ 2<G : X ∩ [η] ̸= ∅}.

The following notion allows to retrieve a subflow back from its content.

Definition B.7. Assume A ⊆ 2<G. A point f ∈ 2G is said to be a limit point
of A when each finite η ⊆ f occurs in cofinally many elements of A.

Remark B.8. If X ⊆ 2G is a subflow, then X is the set of limit points of c(X).

Proof. (⊆) Assume f ∈ X, take any finite η ⊆ f and fix U ∈ [G]<ω. Then
θ := f ↾ (U ∪ dom η) ∈ c(X) satisfies U ≼ θ and η occurs in θ.
(⊇) Assume f /∈ X. Then there is a finite η ⊆ f such that X ∩ [η] = ∅. Thus
η does not occur in any element of c(X), so f is not a limit point of c(X).

Lemma B.9. Every cofinal A ⊆ 2<G has a limit point. Moreover, the set of
limit points of any A ⊆ 2<G is a subflow of 2G.

Proof. To prove that A has a limit point, assume for contradiction that for each
f ∈ 2G there is a finite η ⊆ f such that for sufficiently large θ ∈ A, η does
not occur in θ. By the compactness of 2G, we can find η1, . . . , ηn ∈ 2<G such
that 2G = [η1] ∪ . . . ∪ [ηn] and for sufficiently large θ ∈ A none of ηi occurs
in θ. Since A is cofinal, it follows that for cofinally many θ ∈ A we have that
η1, . . . , ηn ̸⊑ θ. Thus we can find θ ∈ A with that property and g ∈ G such
that dom η1 ∪ . . . ∪ dom ηn ⊆ dom(g ⊙ θ). Take f ∈ 2G extending g ⊙ θ. Then
f /∈ [η1] ∪ . . . ∪ [ηn], which is a contradiction. The rest is clear.

Note that the correspondence from Remark B.8 does not work the other
way, that is, an arbitrary family A ⊆ 2<G need not coincide with the content
of the subflow consisting of its limit points. For instance, when A ⊆ 2<G is a
content, it has the following property:

(∀η ∈ A)(∀g ∈ G)(∃ε ∈ {0, 1}) η ∪ {(g, ε)} ∈ A,

which an arbitrary family need not have. For this reason there is slightly more
freedom in building USG families than in directly building a USG subset of
G. We hope this little additional freedom can make it easier to construct such
subsets in concrete groups like (Z,+).
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Remark B.10. For f ∈ 2G and η ∈ 2<G we have η ∈ c(cl(G⊙ f)) ⇐⇒ η ⊑ f .
The following two lemmas explain the connection between USG families and

USG subsets of G.

Lemma B.11. Assume A ⊆ G is USG. Then A := c(cl(G ⊙ χA)) is a USG
family.

Proof. Fix η ∈ 2<G occurring in cofinally many elements of A. By the last
remark, η occurs in χA. Since shifting χA changes neither the assumption nor
the conclusion, we can assume that η ⊆ χA.

Let U = dom η ∈ [G]<ω. By Remark 3.30, χA is uniformly self-replicating,
so we can find V ∈ [G]<ω such that

(∀s ∈ G)(∃t ∈ G) t⊙ η ⊆ χA ↾ V s. (∗)

Moreover, |V | only depends on |U | = |η|.
Take any θ ∈ A and g ∈ G such that V ⊆ dom(g ⊙ θ). Since θ ∈ A, there is

h ∈ G such that h⊙ θ ⊆ χA. Letting s = gh−1 in (∗), we get that η ⊑ χA ↾ V s.
Since

s⊙ (χA ↾ V s) = (gh−1 ⊙ χA) ↾ V = (g ⊙ θ) ↾ V,

it follows that η ⊑ (g ⊙ θ) ↾ V .

Lemma B.12. Assume A ⊆ 2<G is a USG family, A ⊆ G and χA is a limit
point of A. Then A is USG.

Proof. By Remark 3.30, it suffices to show that χA is uniformly self-replicating.
Take any U ∈ [G]<ω and let η = χA ↾ U ∈ 2<G. Then η occurs in cofinally
many elements of A, so there is V ∈ [G]<ω such that all sufficiently large θ ∈ A
satisfy

(∀g ∈ G)
(
V ⊆ dom(g ⊙ θ) =⇒ η ⊑ (g ⊙ θ) ↾ V

)
. (∗)

Moreover, |V | only depends on |η| = |U |. Fix s ∈ G. It remains to show that η
occurs in χA ↾ V s. Since χA ↾ V s occurs in cofinally many elements of A, we
can find θ ∈ A satisfying (∗) such that χA ↾ V s ⊑ θ. Take h ∈ G such that
χA ↾ V s ⊆ h⊙θ. In particular, V ⊆ dom(sh⊙θ), hence η occurs in (sh⊙θ) ↾ V .
It then occurs in (h⊙ θ) ↾ V s = χA ↾ V s, as desired.

Now we establish the relation between periods of strongly generic families
and their limit points.

Lemma B.13. Assume A ⊆ 2<G is a strongly generic family and f ∈ 2G is a
limit point of A. Define f∗ ∈ 2G by f∗(x) = f(x−1). Then Per(A) = Per(f∗).

Proof. (⊆) Fix t ∈ Per(A) so that for sufficiently large θ ∈ A neither of
{(e, 0), (t, 1)}, {(e, 1), (t, 0)} occurs in θ. Then neither of these occurs in f , as
f is a limit point of A. It follows that f(tx) = f(x) for each x ∈ G, hence
t−1 ∈ Per(f∗) and thus t ∈ Per(f∗).
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(⊇) Fix t /∈ Per(A) so that one of the patterns {(e, 0), (t, 1)}, {(e, 1), (t, 0)}
occurs in cofinally many θ ∈ A. Let η denote that pattern. Since A is strongly
generic, we can find V ∈ [G]<ω such that for all sufficiently large θ ∈ A

(∀g ∈ G)
(
V ⊆ dom(g ⊙ θ) =⇒ η ⊑ (g ⊙ θ) ↾ V

)
. (∗)

The pattern f ↾ V occurs in cofinally many elements of A, so we can find θ ∈ A
satisfying (∗) such that f ↾ V occurs in θ. Take g ∈ G such that f ↾ V ⊆ g ⊙ θ.
By (∗), η occurs in (g ⊙ θ) ↾ V = f ↾ V , which means that f(x) ̸= f(tx) for
some x ∈ G. Hence t−1 /∈ Per(f∗) and so t /∈ Per(f∗).

Corollary B.14. Assume A ⊆ 2<G is strongly generic. Then Per(A) ⩽ G. In
particular, A is periodic if and only if Per(A) has finite index.

Proof. If A is not cofinal, then Per(A) = G. Otherwise A has a limit point
f ∈ 2G. By Lemma B.13, Per(A) = Per(f∗) ⩽ G.

Corollary B.15. Consider the group G = (Z,+) and assume A ⊆ 2<Z is
strongly generic. Then A is periodic if and only if some n ∈ N \ {0} is a period
of A.

We are now ready to prove the main theorem.

Proof of Theorem B.4. (1) =⇒ (2) Take a USG non-periodic subset A ⊆ G
and let A := c(cl(G ⊙ χA)). Clearly A is cofinal and by Lemma B.11, it is
a USG family. Furthermore, χA is a limit point of A, so by Lemma B.13,
Per(A) = Per(χ∗

A) = Per(χA−1). Since A is non-periodic, by Remark 3.4, A−1 is
also non-periodic. Therefore Per(A) has infinite index and so A is non-periodic.
(2) =⇒ (1) Assume A ⊆ 2<G is a non-periodic USG cofinal family and take
A ⊆ G such that χA is a limit point of A. By Lemma B.12, A is USG. Again
Per(A) = Per(χA−1), hence A−1 is non-periodic and so A is non-periodic.

Thus the following is an equivalent formulation of Question 3.36:

Question B.16. Is there a non-periodic USG cofinal family A ⊆ 2<Z?
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