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Chapter 1

Introduction

In recent years studies on the distributional properties of extrema of multidimensional stochastic

processes gained significant interest. This is motivated by both new phenomena that appear in

extensions of one-dimensional extreme value theory of random fields [7, 16, 21, 51] and applied

probability problems [4, 5, 17, 23, 25, 50, 52, 53, 61]. In particular, multidimensional Brownian

models have drawn a lot of attention due to their tractability and practical relevancy; see e.g.

[17, 18, 20, 23, 25, 50, 53]. Among many models, Gaussian processes take the central role due to

the significance of central limit theorems. An important methodological tools in the exploration of

theory of extremes of Gaussian processes was developed in the papers of James Pickands III e.g.

[64, 65], where the up-crossing probability was investigated for general Gaussian processes.

Let us recall that a stochastic process is called a Gaussian process if for any n, a1, . . . , an ∈

R, t1, . . . , tn ∈ T random variable
∑n

k=1 akX(tk) has Gaussian distribution. Asymptotic theory for

Gaussian processes finds many applications in physics, finance, queuing theory and risk theory. In

this thesis we are interested in problems that are strongly motivated by open questions in the risk

theory. The idea of diffusion approximation of risk process was introduced in [47], where the author

considers a series of risk processes defined as

Rn(t) = u+ cnt−
1√
n

N(nt)∑
k=1

Xk,

where N(t) is a Poisson process with parameter λ, Xk have finite mean µ and standard deviation

σ and cn = c+ λµ
√
n. One of those model interpretations is that Xk represent claims, cn represent
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contributions by n clients and u represents initial capital. Then, for large enough n, representing

number of clients in the system, such a risk process can be approximated by

R(t) := u+ ct−
√
λσB(t),

where B(t) is a standard Brownian motion. Standard Brownian motion B(t), t ≥ 0 is a Gaussian

process which satisfies

1. B0 = 0 a.s.

2. B has independent increments

3. B(t) has N(0, t) distribution

4. B has almost surely continuous paths.

A natural extention of standard Brownian motion is the fractional Brownian motion BH(t), t ≥ 0,

which is a Gaussian process such that

1. BH(0) = 0 and E[BH(t)] = 0, t ≥ 0,

2. E[B2
H(t)] = t2H , t ≥ 0,

3. BH(t) has a Gaussian distribution for t > 0,

4. BH(t) has stationary increments.

Naturally, Brownian motion is a specific case of fractional Brownian motion with H = 1
2
. Asymp-

totics of Brownian motion and fractional Brownian motion are the main focuses of this dissertation.

More generally one can define the risk process as R(t) := u + ct − X(t), where X(t) is any cen-

tered Gaussian process, u is the initial capital and c is a constant drift. For such risk process, the

probability of ruin is defined as

P{ inf
t∈T

: R(t) < 0} = P{∃t ∈ T : X(t)− ct > u},

where T is some set. Since obtaining exact results for such problems is not practically feasible,

various techniques and methodologies were developed to obtain the asymptotics behaviour of such

5
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probability as u → ∞. Theory of Gaussian extremes has been explored in various directions. One

of the crucial choices is the selection of T . Usually it is given as a compact subset of R (e.g. [0, T ]

interval for some constant T > 0), e.g. [15, 40], however infinite time interval is also investigated

(T = [0,∞)), see e.g. [36]. T can also be a discrete set (see e.g. [48, 55]) or a random set as in

[3].

Other interesting aspect is the dimensionality of the problem. Early research focused on one-

dimensional problems, however recently most focus is laying on the multidimensional problems (see

e.g. [8, 50, 51]). Additionally other types of functional, e.g. Parisian type ruin, defined as

P{∃t ∈ T ∀s ∈ St : X(s)− cs > u}, (1.1)

gained interest, see e.g. contributions [14, 46, 63]. In this dissertation we aim at extending those

results in various directions as described below.

In the one-dimension models, it has been observed that the asymptotics of the ruin concentrates

around the point that maximizes the variance of the Gaussian process. Similar idea is being repli-

cated with the definition of the so-called generalized variance in higher dimensions. As can be

observed through the thesis we prove that with larger values of the generalized variance function,

the process has larger chance to cross high barriers and hence the asymptotics is driven by the

behaviour of such function. In this dissertation the generalized variance function is denoted as

function q. It appears that the shape of q in the neighbourhood of the maximum has a crucial im-

pact on the asymptotical results of the probability of ruin. Its exact form depends on the problem

and will be defined separately in each chapter of the thesis.

This dissertation consists of the analysis of several problems that are motivated by Gaussian risk

models. In Chapter 2 we study the probability of simultaneous ruin of two dimensional Brownian

motion with drifts dependent on initial capital, i.e.

P
{
∃t∈[0,T ]W1(t)− c1u

αt > a1u
β,W2(t)− c2u

αt > a2u
β
}

(1.2)

with Wi correlated Brownian motions, as u → ∞. The motivation for this chapter comes from the

so-called many source exceedance probability (see e.g. [27]) and leads the drift to be a polynomial

6
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function of initial capital. The problems studied in this chapter are related to both finite time and

infinite time models, which in 1-dimensional setting were studied in e.g. [16].

Chapter 3 is devoted to studying the ruin problem modelled by fractional Brownian motion. This

process is an interesting generalization of the Brownian motion that introduces correlation between

the increments of the process. Finite time ruin probability of fractional Brownian motion is defined

as

π̃[0,T ],H(u) = P

{
sup

t∈[0,T ]

: BH(t)− ct > u

}
(1.3)

with c, T > 0, H ∈ (0, 1]. The probability in (1.3) has also been studied in the queuing models setting

for fluid systems as in e.g. [35]. Papers [3, 30] extended the model (1.3) by supposing that T is a

random variable with appropriately chosen tail distribution. Ruin models with fractional Brownian

motion were also studied in higher dimensional setting, see e.g. [52]. Various other contexts and

applications to the extreme value theory can be found in e.g. [9, 33, 34]. However, in majority

of those papers, authors consider continuous time framework and are interested in behaviour of

the supremum in the interval t ∈ [0,∞). Recently, an analog of (1.3) was also considered for

deterministic grid (see e.g. [22, 48]), where the authors study the ruin probability only in certain

equidistant time points. In Chapter 3 we aim to extend this direction of research and investigate

the asymptotics of ruin probability in random inspection times, i.e.

P

{
sup

i≥0,Xi∈[0,T ]

: BH(Xi)− cXi > u

}
,

where BH is a fractional Brownian motion and Xi are the inspection times represented by a count-

ing process. In Chapter 3 we derive exact asymptotics of the probability above as u → ∞.

In [57, 58] the authors studied the Parisian ruin probability of non-simultaneous two-dimensional

Brownian motion, that is

P
{
∃s′∈[0,T ],t′∈[0,T ]∀s∈[s′,s′+H1(u)]∀t∈[t′,t′+H2(u)]W1(s)− c1s > u,W2(t)− c2t > au

}
with Wi correlated Brownian motions, H1(u), H2(u) ∼ 1

u2 . Parisian type ruin has been studied in

many contributions in 1-dimensional setting (e.g. [15], [13]) or in multi-dimensional setting (e.g.

7
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[56, 57]). The choice of H1(u), H2(u) in [57, 58] was connected to variance-covariance structure

of the problem, which gave the ability to obtain the exact asymptotics for this particular case.

In Chapter 4 we extend those results to other orders of H1(u), H2(u). The idea of choosing such

functions is closely connected to the so-called persistence problem (see e.g. [38, 71]). For the case

of Hi(u) of constant length, we restrict the model to positive correlation, which in light of [10, 37]

can be considered as a natural path for understanding the behaviour of large companies from the

same sector with macroeconomic factors overtaking the influence of competition. We calculate

logarithmic asymptotics in the case of H1(u), H2(u) converging to zero as u → ∞. For the case

of H1(u), H2(u) not converging to zero, we show that the length of H1(u), H2(u) can impact the

asymptotics in a significant way. To provide practical application we present a study of simulations

of multivariate Brownian motion.

For two-dimensional set parameter T = [0, 1]2 the non-simultaneous ruin probability can be de-

fined as

P
{
∃s,t∈[0,1]W1(s)− c1s > u,W2(t)− c2t > au

}
with W1,W2 correlated standard Brownian motions. Exact results for this model were given in

[45], but as [59] points out, they are computationally ineffective and are not translatable to higher

dimensions. Additionally, in [69] bounds can be found for two-dimensional model with no drifts.

Asymptotic results for the two-dimensional non-simultaneous model were given in [24] for infinite

time interval and in [18] for finite time interval. Chapter 5 aims at extending the known results to

higher dimension by introducing ruin probability

P
{
∃t ∈ [0, 1]d : W (t)− c · t > αu

}
,

where W (t) is a centered multi-dimensional Brownian motion with correlated components as u →

∞ and c·t is a component-wise multiplication. We specify conditions which are sufficient to observe

no dimension reduction and present exact asymptotics under restriction -

A ≩ 0,αΣ−1
t > 0, α > 0, t ∈ [0,1]d, (1.4)

where the studied process Wt is defined as

W (t) = AB(t)

8
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with B(t) d−dimensional Brownian motion with independent coordinates and Σt is a correlation

matrix of W (t). The conditions above enforce positive correlations between components. The

above assumptions go in line with observations of real financial market, e.g. in [37] it has been

noticed that creating homogeneous groups is a viable strategy for designing the risk models for

larger financial portfolios. As mentioned in [10] large companies often show a positive correlation,

since their performance is more dependant on the state of the economy as a whole than on the

cross-company competition. Additionally, in many sectors a positive correlation between compa-

nies occurs because of high dependence of those sectors on external factors and hence the need to

model positively correlated portfolios. Similarly, claims for specific kinds of insurance (i.e. weather

insurance) can have high positive correlation. We additionally find what is the most likely time of

ruin for W (t) and provide upper bounds for (1).

In order to get a better understanding of the studied problems and to supplement theory with

practice, in Chapter 4 we prepared a subsection dedicated to simulations of the two-dimensional

non-simultaneous processes. These simulations are purely illustrative examples and should not

be treated as a rigorous proof of any sorts. The simulation process, while in this dissertation

used mainly as a presentation tool, can be used in order to yield interesting results to supplement

theoretical findings. We can see the potential applications in e.g.

1. Testing the speed of convergence of the ruin probability with u.

Such application would give a better understanding in quality of the asymptotics ruin of

Gaussian processes with small values of u, which are crucial for practical applications of

asymptotics results.

2. Finding the value of constants that cannot be obtained explicitly.

Many of the constants calculated in the studies of asymptotics of Gaussian processes are

shown to be finite and positive, however no exact value can be calculated for those. Such

attempts have already been made in [12, 28, 49] and can be further enhanced with updated

technology.

9
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1.1 Notation

We introduce some basic mathematical notation that is used consistently in the thesis. By X
d
= Y

we denote equality in distribution of random variables X and Y. Let φt(·, ·) denote the probability

density function of (W1(t),W2(t)) with W1(t),W2(t) being correlated standard Brownian motions.

Similarly define φt(·) to be the probability density function of W1(t). Additionally let Ψ(·) be the

tail distribution of a standard Normal random variable.

For two given positive functions f(·), g(·) we write f(x) ∼ g(x) if lim
x→∞

f(x)
g(x)

= 1 and f(x) = o(g(x))

if lim
x→∞

f(x)
g(x)

= 0. Additionally we define

f(x)
log∼ g(x) ⇐⇒ lim

x→∞

log(f(x))

log(g(x))
= 1.

For the multidimensional problems we write

0 = (0, 0, . . . , 0),1 = (1, 1, . . . , 1) ∈ R ∪ {∞}d.

Furthermore, for any matrices X, Y ∈ Rn×m we write X > Y if and only if

∀i∈1,2,...,n,j∈1,2,...,mXij > Yij,

and X ≩ Y if and only if

∀i∈1,2,...,n,j∈1,2,...,mXij ≥ Yij, ∃i∈1,2,...,n,j∈1,2,...,mXij > Yij

and we write X > 0 if and only if

∀i∈1,2,...,n,j∈1,2,...,mXij > 0,

and X ≩ 0 if and only if

∀i∈1,2,...,n,j∈1,2,...,mXij ≥ 0, ∃i∈1,2,...,n,j∈1,2,...,mXij > 0.

Finally, for X, Y defined as above let

X · Y = (Xi,jYi,j)i∈1,...,n,j∈1,...,m.

10
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Chapter 2

Ruin probability of two-dimensional

Brownian risk model with drift

dependent on initial capital

2.1 Introduction

Let (W1(t),W2(t)), t ≥ 0 be a standard bivariate Brownian motion with constant correlation ρ ∈

(−1, 1), that is we can represent W1(t) = B1(t),W2(t) = ρB1(t) +
√

1− ρ2B2(t) with B1(t), B2(t)

standard independent Brownian motions. Consider

P{∃t∈[0,T ]W1(t)− C1t > A1,W2(t)− C2t > A2}.

The asymptotic properties of the above probability, for Ai = aiu, ai, Ci ∈ R as u → ∞ were recently

analyzed in e.g. [16, 20, 25, 50, 52].

The model considered in this chapter goes in line with [43], where the extrema of one-dimensional

Gaussian processes dependent on u were studied. We extend these findings to the two-dimensional

case and allow for a specific structure of drift dependence on u. To be more precise, we take

Ci = ciu
α and Ai = aiu

β for a = (a1, a2), c = (c1, c2) > (0, 0), α, β ≥ 0 and consider

pα,β,ρ,T (c,a, u) = P
{
∃t∈[0,T ]W1(t)− c1u

αt > a1u
β,W2(t)− c2u

αt > a2u
β
}
. (2.1)

Probability (2.1) plays an important role in many areas of applied probability problems, including

11
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e.g. ruin theory, where the event under pα,β,ρ,T (c,a, u) is called simultaneous ruin with Wi(t) rep-

resenting accumulated claims for two dependent companies, a1u
β, a2u

β > 0 are the initial capitals

and ciu
α are the premium rates; see e.g. [16, 20, 50, 52].

An important motivation to analyze (2.1) comes from simultaneous ruin problem under the many

source setup. To be more precise, letWi,W
′
i be standard Brownian motions with Cov(Wi(t),W

′
i (t)) =

ρt for i = 1, . . . , N and Cov(Wi(t),W
′
j(t)) = 0 for i, j = 1, . . . , N, i ̸= j. Then we consider

P

{
∃t∈[0,T ]

N∑
i=1

(Wi(t)− c1t) > a1N,

N∑
i=1

(W ′
i (t)− c2t) > a2N

}
. (2.2)

One can think of (2.2) as a model of two portfolios consisting of N i.i.d. sub-risk processes,

representing independent businesses, that only share a common initial capital, which is proportional

to the number of companies in the portfolios. Suppose thatN → ∞. Notice that forW,W ′ standard

Brownian motions with Cov(W (t),W ′(t)) = ρt we have

P

{
∃t∈[0,T ]

N∑
i=1

(Wi(t)− c1t) > a1N,
N∑
i=1

(W ′
i (t)− c2t) > a2N

}
= P

{
∃t∈[0,T ]

√
NW (t)− c1Nt > a1N,

√
NW ′(t)− c2Nt > a2N

}
= P

{
∃t∈[0,2T ]W (t)− c1

√
Nt

2
> a1

√
N,W ′(t)− c2

√
Nt

2
> a2

√
N

}
.

By taking u :=
√
N we have that (2.2) equals to p1,1,ρ,2T (c,a, u). Related 1−dimensional many-

source models were considered in the context of fluid queues, see e.g. [27, 53, 72].

Another problem covered by (2.1) is the model of junctions of three independent Brownian motions

B1, B2, B3. Let Y (t) = B1(t) + ct,X1(t) = B2(t) − a2, X2(t) = B3(t) − a3. Suppose that Y (0) >

max(X1(0), X2(0)), i.e. a2, a3 > 0. We are interested in

P
{
∃t∈[0,T ]Y (t) < X1(t), Y (t) < X2(t)

}
(2.3)

as c → ∞. Suppose that c = uC for C > 0. Using self-similarity of Brownian motion, we obtain

P
{
∃t∈[0,T ]B2(t)−B1(t)− Cut > a2, B3(t)−B1(t)− Cut > a3

}
= P

{
∃t∈[0,T ]W1(t)−

C√
2
ut >

a2√
2
,W2(t)−

C√
2
ut >

a3√
2

}
,

where (W1(t),W2(t)), t ≥ 0 is a two-dimensional Brownian motion with Corr(W1(t),W2(t)) =
1
2
.

Therefore (2.3) corresponds to p1,0,ρ,T (c,a, u) with c = (C,C),a = (a2, a3). Similar problem, but for

12
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the junction of two independent Gaussian processes has been studied for two-dimensional integrated

Gaussian processes in e.g. [29][Sect. 4.2] or for Brownian motion in e.g. [62, 67].

The main results of this chapter are given in Theorems 2.2.1, 2.3.2, 2.3.3 and 2.4.1. It appears

that the relation between α and β leads to three scenarios that require separate approaches which

is also reflected in the form of the derived asymptotics. If α < β, the asymptotics is dominated by

uβ, while α ≥ β leads to the case where both uβ and uα have a vast impact on the asymptotics

behavior of (2.1). The model analyzed in this chapter extends findings obtained in [16, 20] to the

case T ∈ (0,∞) and the drift dependent on u. We note however that the proofs of the main results

required modifications of the methodology that exists in the literature, which is reflected in new

types of generalized Pickands constants that appear in the derived asymptotics (see Theorems 2.2.1

and 2.3.3).

The chapter is organized as follows. In the next section we tackle the case α < β, for which we

are able to obtain explicit formula for the cases in which one of the dimensions does not contribute

to the asymptotics. Then we study case α ≥ β, which require more complex approach to the

optimization problem and hence the differentiation between full dimensional case and dimension

reduction case is not given explicitly.

We note that by self-similarity of Brownian motion

pα,β,ρ,T (c,a, u) = pα,β,ρ, T

a21

(a1c,
1

a1
a, u) = pα,β,ρ, T

a22

(a2c,
1

a2
a, u).

Thus, without loss of generality, in the rest of the chapter we assume that 0 < a2 ≤ a1 = 1.

2.2 Case α < β.

Suppose that α < β in (2.1). In this case the first component in (2.1) always influences the asymp-

totics, while the effect of the second one depends on the play between a2 and ρ. The asymptotics

behavior of (2.1) is dominated by uβ, and drifts appear in the results as lower order factors.

Theorem 2.2.1 Let α < β.

(i) If a2 < ρ, then as u → ∞

pα,β,ρ,T (c,a, u) ∼ 2Ψ

(
uβ + c1u

αT√
T

)
.

13
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(ii) If a2 = ρ, then as u → ∞

pα,β,ρ,T (c,a, u) ∼


2Ψ(u

β+c1uαT√
T

) ρc1 > c2

Ψ(u
β+c1uαT√

T
) ρc1 = c2

2Ψ(− ρc1−c2√
(1−ρ2)T

Tuα)Ψ(u
β+c1uαT√

T
) ρc1 < c2

.

(iii) If a2 > ρ, then as u → ∞

pα,β,ρ,T (c,a, u) ∼ Pλ̃u
−2βφT (u

β + c1u
αT, a2u

β + c2u
αT ),

where

Pλ =

∫
R2

P

∃t∈[0,∞)

W1(t)− t
T
> x

W2(t)− a2t
T

> y

eλ1x+λ2ydxdy ∈ (0,∞),

with λ = (λ1, λ2) :=
1
T
(1−a2ρ

1−ρ2
, a2−ρ
1−ρ2

).

2.2.1 Proof of Theorem 2.2.1

We begin with the observation that a bivariate Brownian motion (W1(t),W2(t)), t ≥ 0 can be

represented in the following two ways

(W1(t),W2(t))
d
= (B1(t), ρB1(t) +

√
1− ρ2B2(t))

d
= (ρB2(t) +

√
1− ρ2B1(t), B2(t)), (2.4)

where
d
= denotes equality in distribution and Bi(t), t ≥ 0 are mutually independent standard

Brownian motions.

Recall model (2.1) and let γ = α− β. Let auγ (t) = (1 + c1tu
γ, a2 + c2tu

γ),a = (1, a2) and further

qauγ
(t) := auγ (t)Σ−1

t auγ (t)⊤, qa(t) := aΣ−1
t a⊤

where Σt denotes the covariance matrix of (W1(t),W2(t)).

Additionally let

q∗auγ
(t) = min

x≥auγ
qx(t), q∗auγ

= min
t∈[0,T ]

q∗auγ
(t) (2.5)

and

q∗a(t) = min
x≥a

qx(t), q∗a = min
t∈[0,T ]

q∗a(t). (2.6)

14
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Using properties of the tail of normal distribution (see [44]) we have that for t ∈ [0, T ]

logP{W1(t)− c1u
αt > uβ,W2(t)− c2u

αt > a2u
β} = −u2β

q∗auγ
(t)

2
+O(1) (2.7)

as u → ∞. Hence studying the behavior of q∗auγ
(t) is crucial in understanding the asymptotics of

pα,β,ρ,T (c,a, u).

Further, define buγ (t) := auγ (t)Σ−1
t , b(t) := aΣ−1

t and denote

tuγ := u−γ

√
a22 − 2a2ρ+ 1

c21 − 2c1c2ρ+ c22
and t∗uγ := min (tuγ , T ) ,

which we shall prove to be the solution to the quadratic programming problem (2.6).

Finally define λuγ := buγ (t∗uγ ) =
(

1−a2ρ+(c1−ρc2)Tuγ

(1−ρ2)T
, a2−ρ+(c2−ρc1)Tuγ

(1−ρ2)T

)
, which we prove in the follow-

ing lemma to be the function that determines whether one of the coordinates is dominated by the

other. Note that since γ < 0, it can be proven that for large enough u quantity λuγ can be replaced

with λ = 1
T
(1−a2ρ

1−ρ2
, a2−ρ
1−ρ2

) (see proof of Lemma 2.2.4) and investigations of q∗auγ
(t) can be simplified

to investigations of q∗a(t).

Lemma 2.2.2 Let λ > (0, 0). Then t∗uγ is the unique point minimizing function q∗auγ
(t) in the

interval [0, T ].

Proof of Lemma 2.2.2 It follows straightforwardly from [16][Remark A.1] that

q∗auγ
(t) = qauγ

(t).

With direct calculations we obtain that

d

dt
q∗auγ

(t) =
t2u2γ(c21 − 2c1c2ρ+ c22)− (a22 − 2a2ρ+ 1)

t2(1− ρ2)
.

Hence we get that either

t = u−γ

√
a22 − 2a2ρ+ 1

c21 − 2c1c2ρ+ c22

or

t = −u−γ

√
a22 − 2a2ρ+ 1

c21 − 2c1c2ρ+ c22
.

Since a2 ∈ (0, 1], hence tuγ = u−γ
√

a22−2a2ρ+1

c21−2c1c2ρ+c22
> 0 is the only possible critical point. Again direct

calculations gives

d2

dt2
q∗a(tuγ ) =

2(a22 − 2a2ρ+ 1)

t3uγ (1− ρ2)
> 0,

15
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hence t∗uγ = min(tuγ , T ) is the local minima. □

Notice that in the above we do not use any assumptions for γ. However, for γ < 0 we have clearly

that t∗uγ = T for large enough u. We need one more technical lemma that we use in several parts

of the proof.

Lemma 2.2.3 Let α < β,λ > (0, 0), f(u) be a function that satisfies limu→∞ f(u) = 0. Then for

large enough u

P
{
∃t∈[0,T−f(u)]W1(t)− c1u

αt > uβ,W2(t)− c2u
αt > a2u

β
}
≤ Ce−

τ
2
f(u)u2β

e−
q∗a(T )

2
u2β

,

for some τ, C > 0.

Proof of Lemma 2.2.3 We have that for large enough u

P

∃t∈[0,T−f(u)]

W1(t)− c1u
αt > uβ

W2(t)− c2u
αt > a2u

β

 = P
{
∃t∈[0,T−f(u)]

W1(t)

1 + c1uα−βt
> uβ,

W2(t)

a2 + c2uα−βt
> uβ

}

≤ P
{
∃t∈[0,T−f(u)]

W1(t)

1 + c1uα−βt
+

W2(t)

a2 + c2uα−βt
> uβ

}
≤ P

{
∃t∈[0,T−f(u)]Zuγ (t) > uβ

}
,

with Zuγ (t) := b(t)uγ (W1(t),W2(t))⊤

b(t)uγa
⊤
uγ

, buγ (t) := auγΣ−1
t > 0. Straightforward calculations give V ar(Zuγ (t)) =

1
qauγ

(t)
.

Using Lemma 2.2.2 we obtain that maxt∈[0,T ] V ar(Zuγ (t)) = V ar(Zuγ (T )) and further from Taylor

expansion we have for τ := (q∗auγ
(T ))′ > 0

max
t∈[0,T−f(u)]

V ar(Zuγ (t)) = V ar(Zuγ (T − f(u))) =
1

q∗auγ
(T )− τf(u) + o(1)

.

Hence with Borell-TIS inequality (see, e.g., [Thm 2.6.1] [2]) applied to the process Zuγ (t) we have

that for some C > 0

P
{
∃t∈[0,T−f(u)]W1(t)− c1u

αt > uβ,W2(t)− c2u
αt > a2u

β
}

≤ Ce−
τ
2
f(u)u2β

e−
q∗auγ

(T )

2
u2β

.

This completes the proof. □

Further we use the idea of splitting the interval into smaller intervals of an appropriate size. The

following two lemmas build up on that idea.

For ∆ > 0 let ku = T − (k−1)∆
u2β and Eu,k = [(k + 1)u, ku].
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Lemma 2.2.4 Let ρ ∈ (−1, 1),λ > (0, 0), α < β, k ≤ uβ log(uβ)
∆

, α ≤ β and ∆ > 0 be given

constants. Then, as u → ∞,

P
{
∃t∈Eu,k

W1(t)− c1u
αt > uβ,W2(t)− c2u

αt > a2u
β
}

(2.8)

∼ I(∆)u−2βφT (u
β + c1u

αT, a2u
β + c2u

αT )e−
u2β

2
(qa(ku)−qa(T )),

where I(∆) =
∫
R2 P

∃t∈[0,∆]

W1(t)− t
T
> x

W2(t)− a2t
T

> y

eλ1x+λ2ydxdy.

Proof of Lemma 2.2.4 Let Au(x, y) :=
{
W1(ku) = uβ+c1u

αku− x
uβ ,W2(ku) = a2u

β+c2u
αku− y

uβ

}
.

Then for

Pk := P
{
∃t∈Eu,k

W1(t)− c1u
αt > uβ,W2(t)− c2u

αt > a2u
β
}

and E = [−∆, 0], by using the total probability formula, we have

Pk =

∫
R2

P

∃t∈E
W1(

t
u2β + ku)− c1u

α( t
u2β + ku) > uβ

W2(
t

u2β + ku)− c2u
α( t

u2β + ku) > a2u
β

∣∣∣∣∣Au(x, y)


×u−2βφku(u

β + c1u
αku −

x

uβ
, a2u

β + c2u
αku −

y

uβ
)dxdy

=

∫
R2

P

∃t∈E
W1(

t
u2β + ku)−W1(ku)− c1uα−βt

uβ > x
uβ

W2(
t

u2β + ku)−W2(ku)− c2uα−βt
uβ > y

uβ

∣∣∣∣∣Au(x, y)

 (2.9)

×u−2βφku(u
β + c1u

αku −
x

uβ
, a2u

β + c2u
αku −

y

uβ
)dxdy.

Using that

φku(u
β + c1u

αku −
x

uβ
, a2u

β + c2u
αku −

y

uβ
)

= φT (u
β + c1u

αT, a2u
β + c2u

αT )e−
u2β

2
(qa(ku)−qa(T ))eλ1x+λ2y+O(x

2+y2+xy

u2β
)

in order to prove (2.8), it remains to show finiteness of

Iu(∆) =

∫
R2

P

∃t∈E
W1(

t
u2β + ku)−W1(ku)− c1uα−βt

uβ > x
uβ

W2(
t

u2β + ku)−W2(ku)− c2uα−βt
uβ > y

uβ

∣∣∣∣∣Au(x, y)

eλ1x+λ2ydxdy.

For this purpose, define χku(t) :=

 W1(
t

u2β + ku)−W1(ku)− c1uα−βt
uβ

W2(
t

u2β + ku)−W2(ku)− c2uα−βt
uβ

 . Then we have that

E[χku(t)|Au(x, y)] =

(
−c1u

α−βt

uβ
+

t+ c1u
α−βkut

uβku
,−c2u

α−βt

uβ
+

a2t+ c2u
α−βkut

uβku

)
17
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+
(
O
( x

u3β

)
, O
( y

u3β

))
=

(
t

uβku
+O

( x

u3β

)
,
a2t

uβku
+O

( y

u3β

))
and with Σ− t

u2β
being a covariance matrix of χku(t) we have

V ar(χku(t)|Au(x, y)) = Σ− t

u2β
− Σ− t

u2β
Σ−1

ku
Σ− t

u2β
= Σ− t

u2β

(
1 +O

(
1

u2β

))
.

Let  χ∗
1,u,ku,x

(t)

χ∗
2,u,ku,y

(t)

 :=

 uβ(W1(
t

u2β + ku)−W1(ku)− c1uα−βt
uβ )

uβ(W2(
t

u2β + ku)−W2(ku)− c2uα−βt
uβ )

 .

Note that since α < β, then as u → ∞ χ∗
1,u,ku,x

(t) weakly converges to W1(t) − t
T
and χ∗

2,u,ku,y
(t)

weakly converges to W2(t)− a2t
T

and with weak convergence what remains to be proven is the ability

to use the dominated convergence theorem. Indeed, in the asymptotics of (2.9) for sufficiently large

u we get

Iu(∆) =

∫
R2

P

∃t∈E :
χ∗
1,u,ku,x

(t) > x

χ∗
2,u,ku,y

(t) > y

∣∣∣∣∣Au

eλ1x+λ2ydxdy

≤
∫
R−

∫
R−

eλ1x+λ2ydxdy +

∫
R−

∫
R+

P
{
∃t∈[0,∆] : χ

∗
1,u,ku,x(t) > x|Au

}
eλ1x+λ2ydxdy

+

∫
R+

∫
R−

P
{
∃t∈[0,∆] : χ

∗
2,u,ku,y(t) > y|Au

}
eλ1x+λ2ydxdy

+

∫
R+

∫
R+

P
{
∃t∈[0,∆] : χ

∗
1,u,ku,x(t) + χ∗

2,u,ku,y(t) > x+ y|Au

}
eλ1x+λ2ydxdy

≤ 1

λ1λ2

+
1

λ2

∫
R+

C1e
−C2x2

eλ1xdx (2.10)

+
1

λ1

∫
R+

C1e
−C2y2eλ2ydy +

∫
R+

∫
R+

C1e
−C2(x+y)2eλ1x+λ2ydxdy < ∞,

where (2.10) follows from [66][Thm 8.1] with some constants C1, C2 > 0. Thus the dominated

convergence theorem can be applied to (2.9). Combining the weak convergence of χ∗
1,u,ku,x

(t) and

χ∗
2,u,ku,y

(t) with dominated convergence theorem we obtain

Iu(∆) ∼
∫
R2

P

∃t∈[0,∆]

W1(t)− t
T
> x

W2(t)− a2t
T

> y

eλ1x+λ2ydxdy.

□
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Proof of Theorem 2.2.1.

Case (i): a2 < ρ. Notice that

pα,β,ρ,T (c,a, u) ≤ P
{
∃t∈[0,T ]W1(t)− c1u

αt > uβ
}
.

Let B1, B2 be mutually independent Brownian motions. Formula (2.4) and the fact that ρ > 0

imply

pα,β,ρ,T (c,a, u)

= P
{
∃t∈[0,T ]B1(t)− c1u

αt > uβ, ρB1(t) +
√

1− ρ2B2(t)− c2u
αt > a2u

β
}

≥ P
{
∃t∈[0,T ]B1(t)− c1u

αt > uβ, ρ(uβ + c1u
αt) +

√
1− ρ2B2(t)− c2u

αt > a2u
β
}

≥ P
{
∃t∈[0,T ]B1(t)− c1u

αt > uβ
}
P
{
∀t∈[0,T ]

√
1− ρ2B2(t) + (ρc1 − c2)u

αt > (a2 − ρ)uβ
}

= P
{
∃t∈[0,T ]W1(t)− c1u

αt > uβ
}
P
{
∀t∈[0,T ]

√
1− ρ2B2(t) + (ρc1 − c2)u

αt > (a2 − ρ)uβ
}
.

Since a2 < ρ and α < β, hence

P
{
∀t∈[0,T ]

√
1− ρ2B2(t) + (ρc1 − c2)u

αt > (a2 − ρ)uβ
}
∼ 1.

Thus

pα,β,ρ,T (c,a, u) ∼ P
{
∃t∈[0,T ]W1(t)− c1u

αt > uβ
}
.

Combination of the exact distribution of the running supremum given in e.g. [11][2.1.1.4, p. 250]

with asymptotics of the tail distribution function of the standard normal variable completes the

proof of case (i).

Case (ii): a2 = ρ. Using (2.4) we have that

pα,β,ρ,T (c,a, u)

≥ P
{
∃t∈[T (1−u−2β),T ]B1(t)− c1u

αt > uβ, ρB1(t) +
√

1− ρ2B2(t)− c2u
αt > a2u

β
}

≥ P
{
∃t∈[T (1−u−2β),T ]B1(t)− c1u

αt > uβ,
√

1− ρ2B2(t) + (c1ρ− c2)u
αt > 0

}
≥ P

{
∃t∈[T (1−u−2β),T ]B1(t)− c1u

αt > uβ
}
P
{
∀t∈[T (1−u−2β),T ]

√
1− ρ2B2(t) + (c1ρ− c2)u

αt > 0
}
.

Let c∗ = c1ρ−c2√
1−ρ2

. Then for ϵ ∈ (α, β) we have

P
{
∀t∈[T (1−u−2β),T ]

√
1− ρ2B2(t) + (c1ρ− c2)u

αt > 0
}
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≥ P
{
∀t∈[T (1−u−2β),T ]B2(t) + c∗uαt > 0|B2(T (1− u−2β)) + c∗uαT (1− u−2β) > u−ϵ

}
×P
{
B2(T (1− u−2β)) + c∗uαT (1− u−2β) > u−ϵ

}
≥ P

{
∀t∈[0,Tu−2β ]B2(t) + c∗uαt > −u−ϵ

}
P
{
B2(T (1− u−2β)) + c∗uαT (1− u−2β) > u−ϵ

}
= P

{
∀t∈[0,T ]B2(t) + c∗uα−βt > −uβ−ϵ

}
P
{
B2(T (1− u−2β)) + c∗uαT (1− u−2β) > u−ϵ

}
.

Since β > ϵ we have P
{
∀t∈[0,T ]B2(t) + c∗uα−βt > −uβ−ϵ

}
→ 1, as u → ∞. We want to show that

P
{
B2(T (1− u−2β)) + c∗uαT (1− u−2β) > u−ϵ

}
∼ P{B2(T ) + c∗uαT > 0}.

We equivalently shall prove that as u → ∞

e
− (u−ϵ−c∗uα(1−u−2β)T )2

2T (1−u−2β)

e−
(c∗uαT )2

2T

→ 1.

Note that since 0 < α < ϵ < β, then as u → ∞

(u−ϵ − c∗uα(1− u−2β)T )2

2T (1− u−2β)
=

1

2T (1− u−2β)

(
(c∗uαT )2 + (u−ϵ + c∗uα−2βT )2

+ 2(u−ϵ + c∗uα−2βT )c∗uαT
)

=
1

2T (1− u−2β)
((c∗uαT )2 +O(u−2ϵ + u−ϵ+α−2β + u2α−4β) +

+O(u−ϵ+α + u2α−2β))

∼ 1

2T
(c∗uαT )2, (2.11)

where the (2.11) is due to all other exponents being negative. Therefore

P
{
B2(T (1− u−2β)) + c∗uαT (1− u−2β) > u−ϵ

}
∼ P{B2(T ) + c∗uαT > 0},

where additionally we use α < ϵ. Straightforward calculations give, as u → ∞

P{B2(T ) + c∗uαT > 0} ∼


1 ρc1 > c2

1
2

ρc1 = c2

Ψ(− ρc1−c2√
(1−ρ2)T

Tuα) ρc1 < c2

. (2.12)

On the other hand

pα,β,ρ,T (c,a, u) ≤ P
{
∃t∈[T (1−u−2β),T ]W1(t)− c1u

αt > uβ,W2(t)− c2u
αt > a2u

β
}

+P
{
∃t∈[0,T (1−u−2β)]W1(t)− c1u

αt > uβ,W2(t)− c2u
αt > a2u

β
}
.
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With the above we get that

log

(
P
{
∃t∈[0,T (1−u−2β)]W1(t)− c1u

αt > uβ,W2(t)− c2u
αt > a2u

β
}

P{B2(T ) + c∗uαT > 0}P
{
∃t∈[T (1−u−2β),T ]B1(t)− c1uαt > uβ

})

∼ −1

2

(
q∗a(T (1− u−2β))u2β − u2β

T
− T (c∗)2u2α

)
.

Further, direct calculations lead to

−1

2

(
q∗a(T (1− u−2β))u2β − u2β

T
− T (c∗)2u2α

)
= −c1(1− a2ρ)

1− ρ2
uα+β + o(uα+β).

Set ϵ ∈ (α, β). We further notice that

P

∃t∈[T (1−u−2β),T ]

W1(t)− c1u
αt > uβ

W2(t)− c2u
αt > a2u

β

 ≤ P

∃t∈[T (1−u−2β),T ]

uβ + u−ϵ > W1(t)− c1u
αt > uβ

W2(t)− c2u
αt > a2u

β


+P

∃t∈[T (1−u−2β),T ]

W1(t)− c1u
αt > uβ + u−ϵ

W2(t)− c2u
αt > a2u

β

.

We have that

P

∃t∈[T (1−u−2β),T ]

uβ + u−ϵ > W1(t)− c1u
αt > uβ

W2(t)− c2u
αt > a2u

β


≤ P

∃t∈[T (1−u−2β),T ]

uβ + u−ϵ > B1(t)− c1u
αt > uβ√

1− ρ2B2(t) + (c1ρ− c2)u
αt > −ρu−ϵ


≤ P

{
∃t∈[T (1−u−2β),T ]u

β + u−ϵ > B1(t)− c1u
αt > uβ

}
×P
{
∃t∈[T (1−u−2β),T ]

√
1− ρ2B2(t) + (c1ρ− c2)u

αt > −ρu−ϵ
}
.

Notice that

P
{
∃t∈[T (1−u−2β),T ]

√
1− ρ2B2(t) + (c1ρ− c2)u

αt > −ρu−ϵ
}
∼ P

{√
1− ρ2B2(T ) + (c1ρ− c2)u

αT > 0
}

and further from [11][2.1.1.4, p. 250] we have

log

(
P
{
∃t∈[T (1−u−2β),T ]B1(t)− c1u

αt > uβ + u−ϵ
}

P
{
∃t∈[T (1−u−2β),T ]B1(t)− c1uαt > uβ

} )
= −

(
1

2T
(uβ + u−ϵ)2 − 1

2T
u2β

)
∼ −uβ−ϵ

T

and hence

P
{
∃t∈[T (1−u−2β),T ]u

β + u−ϵ > B1(t)− c1u
αt > uβ

}
∼ P

{
∃t∈[T (1−u−2β),T ]B1(t)− c1u

αt > uβ
}
.
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Moreover, similarly as above, for some C > 0

log

(
P
{
∃t∈[T (1−u−2β),T ]W1(t)− c1u

αt > uβ + u−ϵ,W2(t)− c2u
αt > a2u

β
}

P
{
∃t∈[T (1−u−2β),T ]W1(t)− c1uαt > uβ,W2(t)− c2uαt > a2uβ

} )
= −Cuβ−ϵ + o(uβ−ϵ).

Therefore the upper and lower bound agree and hence

P
{
∃t∈[T (1−u−2β),T ]B1(t)− c1u

αt > uβ
}
∼ P

{
∃t∈[0,T ]B1(t)− c1u

αt > uβ
}
∼ 2Ψ

(
uβ + c1u

αT√
T

)
.

Combination of the above asymptotics with (2.12) completes the proof.

Case (iii): a2 > ρ. Observe that

pα,β,ρ,T (c,a, u) ≤ P
{
∃
t∈[0,T− log(uβ)

uβ
]
W1(t)− c1u

αt > uβ,W2(t)− c2u
αt > a2u

β

}
+P
{
∃
t∈[T− log(uβ)

uβ
,T ]
W1(t)− c1u

αt > uβ,W2(t)− c2u
αt > a2u

β

}
:= R1 +R2.

From Lemma 2.2.3 (i) with f(u) = log(uβ)
uβ we have that for some C > 0

R1 ≤ Ce−
τ
2
uβ log(uβ)e−

q∗a(T )

2
u2β

= o
(
u−2βφT (u

β + c1u
αT, a2u

β + c2u
αT )

)
,

Further notice that λ̃ := limu→∞ λ = 1
T
(1−a2ρ

1−ρ2
, a2−ρ
1−ρ2

) > (0, 0), hence for ∆ > 0, by Lemma 2.2.4 (i),

we have

pα,β,ρ,T (c,a, u) ≥ P
{
∃t∈[T− ∆

u2β
,T ]W1(t)− c1u

αt > uβ,W2(t)− c2u
αt > a2u

β
}

∼ I(∆)u−2βφT (u
β + c1u

αT, a2u
β + c2u

αT ),

where

I(∆) =

∫
R2

P

∃t∈[0,∆]

W1(t)− t
T
> x

W2(t)− a2t
T

> y

eλ̃1x+λ̃2ydxdy.

Using Taylor expansion we get as u → ∞

u2β(qa(ku)−qa(T )) = −τ1(k−1)∆+τ2(k−1)∆+o

(
1

uβ

)
= −τ1(k−1)∆+O(∆u2(α−β))+o

(
1

uβ

)
,

where τ1 =
a22−2a2ρ+1

T 2(1−ρ2)
> 0, τ2 =

c21−2c1c2ρ+c22
1−ρ2

u2(α−β) = O(u2(α−β)) = o(1).

Let Nu := ⌊uβ log(uβ)
∆

⌋. By combination of the above with Lemma 2.2.4 (i), we get as u → ∞

R2 ≤
Nu∑
k=1

P
{
∃t∈Ek,u

W1(t)− c1u
αt > uβ,W2(t)− c2u

αt > a2u
β
}
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≤
Nu∑
k=1

I(∆)u−2βφT (u
β + c1u

αT, a2u
β + c2u

αT )e−
u2β

2
(qa(ku)−qa(T ))

≤
Nu∑
k=1

e−
−τ1(k−1)∆

2 I(∆)u−2βφT (u
β + c1u

αT, a2u
β + c2u

αT )(1 + o(1))

≤ 1

1− e−
τ1∆
2

I(∆)u−2βφT (u
β + c1u

αT, a2u
β + c2u

αT )(1 + o(1)).

Hence, passing ∆ → ∞, and using that by [20][proof of Thm 2.1]

Pλ̃ := lim
∆→∞

I(∆) =

∫
R2

P

∃t∈[0,∞)

W1(t)− t
T
> x

W2(t)− a2t
T

> y

eλ̃1x+λ̃2ydxdy ∈ (0,∞)

we obtain

lim
u→∞

pα,β,ρ,T (c,a, u)

Pλ̃u
−2βφT (uβ + c1uαT, a2uβ + c2uαT )

= 1.

This completes the proof. □

2.3 Case α = β.

The results of this section are closely connected with [16], thus we use the notation for sets I, J,K

used therein. For a two-dimensional matrix M and two index sets A,B let

MAB = (mab)a∈A,b∈B

and for a vector v and index set A let

vA = (va)a∈A.

Let I(t) be the essential index set, defined in [16] [Lemma 2.1] as follows.

Lemma 2.3.1 ([16] [Lemma 2.1]) For the quadratic optimization problem

q(t) = min
x>(a+ct)

xΣ−1
t x⊤ (2.13)

there exists unique ã and non-empty index set I(t) ⊂ {1, 2} such that

ãI(t) = aI(t) ̸= 0I(t), ãI∁(t) = (Σt)I∁(t)I(t)(Σ
−1
t )I(t)I(t)aI(t)

so

(Σ−1
t )I(t)I(t)aI(t) > 0I(t)
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and

min
x>(a+ct)

xΣ−1
t x⊤ = aI(t)(Σ

−1
t )I(t)I(t)a

⊤
I(t)

with I∁(t) being the complement of set I(t) of the set {1, 2}.

We further define

K(t) := {k ∈ I∁(t) : (Σt)kI(t)(Σ
−1
t )I(t)I(t)aI(t) = ak(t)},

J(t) := {j ∈ I∁(t) : (Σt)jI(t)(t)(Σ
−1
t )I(t)I(t)aI(t) > aj(t)},

where (Σt)jI(t) = ((σt)ji)j=j,i∈I(t),aI(t)(t) = (a+ ct)I(t). Let

t∗0 := min(t0, T ) with t0 :=

√
aIΣ

−1
II a

T
I

cIΣ
−1
II c

T
I

> 0 (2.14)

andI := I(t∗0), K := K(t∗0) and J := J(t∗0). We call I the essential index set, K the weakly essential

index set, since it only contributes to the constant part of the asymptotics and J is called the

unessential index set since it does not contribute to the asymptotics. One can note that

a1 − a2ρ > (ρc2 − c1)min(t0, T ) or a2 − a1ρ > (ρc1 − c2)min(t0, T ). (2.15)

On the basis of this observation, we divide the obtained results into two scenarios: a) full-

dimensional case where both inequalities in (2.15) hold (then both processes W1,W2 in (2.1) affect

the asymptotics) and b) dimension-reduction case where only one inequality in (2.15) occurs (which

implies that one coordinate asymptotically dominates the other).

Due to symmetry of the results, in order to simplify notation, in the following theorem we write

¬1 := 2, ¬2 := 1 and (a1, a2) instead of (1, a2).

Theorem 2.3.2 (Dimension-reduction case) Let α = β.

(i) If I = {i}, J = ∅ and K = {¬i}, then with t0 =
ai
ci

pα,α,ρ,T (c,a, u) ∼


( T
ai−ciT

+ T
ai+ciT

)u−αφT ((ai + ciT )u
α) t0 > T

√
t0
√

π
2
φt0(2aiu

α) t0 = T

√
t0
√
2πφt0(2aiu

α) t0 < T

.
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(ii) If I = {i}, J = {¬i} and K = ∅ then with t0 =
ai
ci

pα,α,ρ,T (c,a, u) ∼



1
2
( T
ai−ciT

+ T
ai+ciT

)u−αφT ((ai + ciT )u
α) t0 > T

√
t0
∫∞
0

Ψ(− c¬i−ρci√
(1−ρ2)ci

x)e−
x2

2 dxφt0(2aiu
α) t0 = T

√
t0
∫∞
−∞ Ψ(− c¬i−ρci√

1−ρ2ci
x)e−

x2

2 dxφt0(2aiu
α) t0 < T

.

The heuristics behind the asymptotics derived in Theorem 2.3.2 is that one of the coordinates

dominates the other and the results are up to constant the same as in the one-dimensional case;

see, e.g., [27].

Theorem 2.3.3 (Full-dimensional case) Let α = β.

If I = {1, 2}, J = ∅ and K = ∅, then

pα,α,ρ,T (c,a, u) ∼


Pλu

−2αφT ((1 + c1T )u
α, (a2 + c2T )u

α) t0 > T

1
2

√
2π(t0)3(1−ρ2)

a22−2a2ρ+1
Hλu

−αφt0((1 + c1t0)u
α, (a2 + c2t0)u

α) t0 = T√
2π(t0)3(1−ρ2)

a22−2a2ρ+1
Hλu

−αφt0((1 + c1t0)u
α, (a2 + c2t0)u

α) t0 < T

,

where

Pλ =

∫
R2

P

∃t∈[0,∞)

W1(t)− t
T
> x

W2(t)− a2t
T

> y

eλ1x+λ2ydxdy ∈ (0,∞)

and

Hλ = lim
∆→∞

1

∆

∫
R2

P

∃t∈[0,∆]

W1(t)− c1t > x,

W2(t)− c2t > y

eλ1x+λ2ydxdy ∈ (0,∞),

with λ = (λ1, λ2) := (1−a2ρ+(c1−ρc2)min(t0,T )
(1−ρ2)min(t0,T )

, a2−ρ+(c2−ρc1)min(t0,T )
(1−ρ2)min(t0,T )

).

The intuitive explanation of the asymptotics of (2.1) presented in Theorem 2.3.3 is that both

components have the same order of magnitude and therefore have a significant effect on the results.

Remark 2.3.4 Theorems 2.3.2 and 2.3.3 are also valid for the infinite time interval, i.e. T = ∞.

In that case we necessarily have t0 < T.
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2.3.1 Proof of Theorem 2.3.2 and Theorem 2.3.3

We begin the proof with the search of the optimal point of the function q(t) defined in (2.13).

Lemma 2.3.5 Let t∗0 := min(t0, T ) with t0 :=

√
aIΣ

−1
II aT

I

cIΣ
−1
II cTI

> 0. Then t∗0 is the unique point mini-

mizing the function q(t) in the interval [0, T ]. Furthermore,

(i) if t0 > T, then

q(T − t) = q(T ) + q′(T )t(1 + o(1)), as t → 0+, (2.16)

with q′(t) =
−aIΣ

−1
II aI+cIΣ

−1
II cI t

2

t2
.

(ii) if t0 ≤ T, then

q(t0 ± t) = q(t0) +
q′′(t0±)

2
t2(1 + o(1)), as t → 0, (2.17)

with q′′(t0±) = 2
aI±Σ−1

I±I±aI±
(t0)3

.

The proof of part (i) of Lemma 2.3.5 follows straightforwardly from Taylor expansion of function

q(T ), while part (ii) of Lemma 2.3.5 is a direct application of [16][Lemma 2.2].

Lemma 2.3.6 Let t0 be the unique point that minimizes the value of q(t) on interval [0,∞).

(i) If t0 > T, then

P
{
∃
t∈[0,T ]\[T− log(uα)

uα
,T ]
W (t)− cuαt > auα

}
≤ Ce−

τ
2
log(uα)uα

e−
q(T )
2

u2α

,

for some τ, C > 0.

(ii) If t0 = T, then

P
{
∃
t∈[0,T ]\[T− log(uα)

uα
,T ]
W (t)− cuαt > auα

}
≤ Ce−

τ
2
log2(u2α)e−

q(T )
2

u2α

,

for some τ, C > 0.

(iii) If t0 < T, then

P
{
∃
t∈[0,∞)\[t0− log(uα)

uα
,t0+

log(uα)
uα

]
W (t)− cuαt > auα

}
≤ Ce−

τ
2
log2(u2α)e−

q(t0)
2

u2α

,

for some τ, C > 0.
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Proof of Lemma 2.3.6 We present detailed proof only for case (i); the other cases follow in a

similar way.

Let δuα := log(uα)
uα . We have that for b(t) = (a+ ct)I(t)(Σt)

−1
I(t)I(t) with ZI(t)(t) :=

b(t)(W1(t),W2(t))⊤I(t)
b(t)(a+ct)⊤

I(t)

,

P
{
∃t∈[0,T−δuα ]W (t)− cuαt > auα

}
≤ P

{
∃t∈[0,T−δuα ]ZI(t)(t) > uα

}
where we use the fact from [Prop 2.1](2.2) [42] that b(t) > 0I(t). Straightforward calculations give

V ar(ZI(t)(t)) = 1
q(t)

. Further since the process (ZI(t)(t), t ≥ 0) has bounded sample path, by the

Borell-TIS inequality (see, e.g.[Thm 2.6.1] [2]) it holds for sufficiently large u and some τ > 0

P
{
∃t∈[0,T−δuα ]ZI(t)(t) > uα

}
≤ e

− (uα−µ)2

2
inf

t∈[0,T−δuα ]
q(t)

,

where µ := E[supt∈[0,T−δuα ] ZI(t)(t)] < ∞. Using Lemma 2.3.5 we obtain that inft∈[0,T−δuα ] q(t) =

q(T ) + τδuα . Thus, we obtain

P
{
∃t∈[0,T−δuα ]ZI(t)(t) > uα

}
≤ e−

q(T )
2

u2α− τ
2
log(uα)uα+O(uα) ≤ Ce−

τ
2
log(uα)uα

e−
q(T )
2

u2α

.

This completes the proof. □

For ∆ > 0 let ku = T − (k−1)∆
u2α and Eu,k = [(k + 1)u, ku]. Moreover let

M {1,2} :=

1 0

0 1

 , M {1} :=

1 0

ρ 0

 , M {2} :=

0 ρ

0 1

 .

Observe that for sufficiently large u > 0 if I(T ) = {1, 2}, then I(ku) = {1, 2}.

Lemma 2.3.7 Let t0 > T, and ∆ > 0.

(i) If I = {i}, J = {¬i} and K = ∅, then as u → ∞

P
{
∃t∈Eu,1W (t)− cuαt > auα

}
∼ HI(∆)u−αφT ((ai + ciT )u

α),

where HI(∆) =
∫
R P
{
∃t∈[0,∆]Wi(t)− ait

T
> x

}
e

ai+ciT

T
xdx.

(ii) If I = {i}, J = ∅ and K = {¬i}, then, as u → ∞

P
{
∃t∈Eu,1W (t)− cuαt > auα

}
∼ 1

2
HI(∆)u−αφT ((ai + ciT )u

α),

where HI(∆) =
∫
R P
{
∃t∈[0,∆]Wi(t)− ait

T
> x

}
e

ai+ciT

T
xdx.

(iii) If I = {1, 2}, J = ∅ and K = ∅, then, as u → ∞

P
{
∃t∈Eu,k

W (t)− cuαt > auα
}
∼ HI(∆)u−2αφT ((a1 + c1T )u

α, (a2 + c2T )u
α)e

q′(T )
2

(k−1)∆,

where HI(∆) =
∫
R2 P

{
∃t∈[0,∆]W (t)− a

T
t > x

}
e(a+cT )Σ−1

T xT
dx.
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Proof of Lemma 2.3.7 Let Ĩ = I(ku), J̃ = J(ku), K̃ = K(ku), n = |Ĩ|, AĨ,u :=
{
W Ĩ(T ) =

((a+cku)u
α−xu−α)Ĩ

}
. Then for Pk := P

{
∃t∈Eu,k

W (t)− cuαt > auα
}
, and E = [−∆, 0], by using

the total probability formula, we have

Pk =

∫
Rn

P

{
∃t∈EW (

t

u2α
+ ku)− c(

t

u2α
+ ku)u

α > auα

∣∣∣∣∣AĨ,u

}
u−αnφku((a+ cku)Ĩu

α −
xĨ

uα
)dxĨ

=

∫
Rn

P

{
∃t∈EW (

t

u2α
+ ku)−M ĨW (T ) +M Ĩ((a+ cku)u

α − x

uα
)− c(

t

u2α
+ ku)u

α > auα

∣∣∣∣∣AĨ,u

}
×u−αnφku((a+ cku)Iu

α − xI

uα
)dxI

=

∫
Rn

P

{
∃t∈EW (

t

u2α
+ ku)−M ĨW (ku)− c

t

uα
> (Id−M Ĩ)(a+ cku)u

α +
M Ĩx

uα

∣∣∣∣∣AĨ,u

}
×u−αnφku((a+ cku)Ĩu

α −
xĨ

uα
)dxĨ .

Using that, as u → ∞,

φku((a+ cku)Ĩu
α −

xĨ

uα
) = φT ((a+ cT )Ĩu

α)eλĨ
xT
Ĩ e

q′(T )
2

∆eO(x
Ĩ
xT
Ĩ
u−2α)

with λĨ = (a+ cT )ĨΣ
−1

Ĩ Ĩ
. In order to prove the thesis it remains to show finiteness of

HĨ,u(∆) :=

∫
Rn

P

{
∃t∈EW (

t

u2α
+ ku)−M ĨW (ku)− c

t

uα
> (Ĩ −M Ĩ)(a+ cku)u

α +
M Ĩx

uα

∣∣∣∣∣AĨ,u

}
×eλĨ

xT
Ĩ dxĨ ,

where

((Ĩ −M Ĩ)(a+ cku))i =


0, if i ∈ Ĩ

(ai + ciT )− ρ(a¬i + c¬iku) = 0, if i ∈ K̃

(ai + ciT )− ρ(a¬i + c¬iku) < 0, if i ∈ J̃

. (2.18)

For this purpose, define χu(t) = (χu;1(t), χu;2(t)) := W ( t
u2α + ku) − M ĨW (ku) − c t

uα and µ̄u :=

E[χu(t)|AĨ,u], Σ̄u := V ar[χu(t)|AĨ,u]. Then we have that

(a) if Ĩ = {i} it holds

µ̄u;i =
ai
T
tu−α + xiO

(
u−3α

)
, µ̄u;¬i =

−c¬iT + ρ(ai + ciT )

T
tu−α + ρxiO

(
u−3α

)
,

Σ̄u;i,i = −tu−2α+O
(
u−4α

)
, Σ̄u;¬i,¬i = (1−ρ2)T−(1−2ρ2)tu−2α+O

(
u−4α

)
, Σ̄u;¬i,i = −ρtu−2α+O

(
u−4α

)
.
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(b) if Ĩ = {1, 2} it holds

µ̄u;1 =
a1
T
tu−α + x1O

(
u−3α

)
, µ̄u;2 =

a2
T
tu−α + x2O

(
u−3α

)
,

Σ̄u;1,1 = −tu−2α +O
(
u−4α

)
, Σ̄u;2,2 = −tu−2α +O

(
u−4α

)
, Σ̄u;1,2 = −ρtu−2α +O

(
u−4α

)
.

Let χ∗
u(t) = (χ∗

u;1(t), χ
∗
u;2(t)) := vĨ,uχu(t) where vĨ,u := (vĨ,u;1, vĨ,u;2)

T with vĨ,u;i =


uα, if i ∈ Ĩ

1, if i ̸∈ Ĩ

.

(a) Suppose that Ĩ = {i}. Then for sufficiently large u

HĨ,u(∆) =

∫
R
P

{
∃t∈E : χ∗

u(t) > vĨ,u((Ĩ −M Ĩ)(a+ cT )uα +
M Ĩx

uα
)

∣∣∣∣∣AĨ,u

}
eλixdx

≤
∫
R−

eλixidxi +

∫
R+

P
{
∃t∈[0,∆] : χ

∗
u;i(t) > x|AĨ,u

}
eλixidxi < ∞, (2.19)

where (2.19) follows from (2.18) and [66][Thm 8.1] with some constants C, C̃ > 0. Combining weak

convergence of χ∗
u(t) with the dominated convergence theorem, we have that as u → ∞

HĨ,u(∆) ∼
∫
R
P

∃t∈[0,∆]

Wi(t)− ai
T
t > xi

√
TZ > ((a¬i + c¬iT )− ρ(ai + ciT ))u

α + ρxi

eλixidxi

∼ CJ̃ ,K̃

∫
R
P
{
∃t∈[0,∆]Wi(t)−

ai
T
t > xi

}
eλixidxi = HI(∆),

where Z ∼ N(0, 1) is independent of (Wi(t) : t ≥ 0) and CJ̃ ,K̃ =


1
2
, if ¬i ∈ K̃

1, if ¬i ∈ J̃

.

(b) Suppose that Ĩ = {1, 2}. Then for sufficiently large u

HĨ,u(∆) =

∫
R2

P

{
∃t∈E : χ∗

u(t) > x

∣∣∣∣∣AĨ,u

}
eλx

T

dx

≤
∫
R−

∫
R−

eλx
T

dx+

∫
R−

∫
R+

P
{
∃t∈[0,∆] : χ

∗
u;1(t) > x1|AĨ,u

}
eλx

T

dx

+

∫
R+

∫
R−

P
{
∃t∈[0,∆] : χ

∗
u;2(t) > x2|AĨ,u

}
eλx

T

dx

+

∫
R+

∫
R+

P
{
∃t∈[0,∆] : χ

∗
u;1(t) + χ∗

u;2(t) > x1 + x2|AĨ,u

}
eλx

T

dx

≤ 1

λ1λ2

+
1

λ2

∫
R+

Ce−C̃x2
1eλ1x1dx1 +

1

λ1

∫
R+

Ce−C̃x2
2eλ2x2dx2 (2.20)

+

∫
R2
+

Ce−C̃(x1+x2)2eλx
T

dx < ∞, (2.21)
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where (2.20) follows from (2.18) and [66][Thm 8.1] with some constants C, C̃ > 0. Combining

weak convergence of χ∗
u(t) with the dominated convergence theorem, we have with self-similarity

of Brownian motion that as u → ∞

HĨ,u(∆) ∼
∫
R2

P
{
∃t∈[0,∆]W (t)− a

T
t > x

}
eλx

T

dx = HĨ(∆).

This completes the proof. □

In the following lemma we prove that the constants introduced in Lemma 2.3.7 (iii) are finite and

positive.

Lemma 2.3.8 Let I = {1, 2}, t0 > T. Then

lim
∆→∞

HĨ,u(∆) =

∫
R2

P
{
∃t∈[0,∞)W (t)− a

T
t > x

}
eλx

T

dx ∈ (0,∞).

Proof of Lemma 2.3.8 Note that∫
R2

P
{
∃t∈[0,∞)W (t)− a

T
t > x

}
eλx

T

dx

≤
∞∑
i=0

∫
R2

P
{
∃t∈[i,(i+1)]W (t)− a

T
t > x

}
eλx

T

dx

≤
∞∑
i=0

∫
R2

P
{
∃t∈[i,(i+1)]W1(t)−

t

T
> x1,∃t∈[i,(i+1)]W2(t)−

a2t

T
> x2

}
eλx

T

dx

=
1

λ1λ2

∞∑
i=0

E{eλ1Mi+λ2M∗
i },

where

(Mi,M
∗
i ) =

(
sup

t∈[i,(i+1)]

W1(t)−
t

T
, sup
t∈[i,(i+1)]

W2(t)−
a2t

T

)
.

Using independence of increments of Brownian motion we obtain the following equality in distri-

bution

(Mi,M
∗
i ) =d

(
sup
t∈[0,1]

W1(t)−
t

T
, sup
t∈[0,1]

W2(t)−
a2t

T

)
+ (V1(i)−

i

T
, V2(i)−

a2i

T
)

=: (Q1, Q2) + (V1(i)−
i

T
, V2(i)−

a2i

T
),

with (V1, V2) an independent copy of (W1,W2). Hence

∞∑
i=0

E{eλ1Mi+λ2M∗
i } =

∞∑
i=0

E{eλ1Q1+λ2Q2}E{eλ1(V1(i)− i
T
)+λ2(V2(i)−a2i

T
)}
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= E{eλ1Q1+λ2Q2}
∞∑
i=0

ei(−
λ1−a2λ2

T
+

(λ1+ρλ2)
2

2
+(1−ρ2)

λ22
2
)

= E{eλ1Q1+λ2Q2}
∞∑
i=0

e−
i
2
κ,

where κ = 2λ1+2a2λ2

T
− (λ1 + ρλ2)

2 − (1− ρ2)λ2
2. Straightforward calculations give λ1 + ρλ2 =

1+c1T
T

and

κ =
(1− 2a2ρ+ a22)− (c21 − 2ρc1c2 + c22)T

2

T 2(1− ρ2)
> 0 iff t0 > T.

Thus ∫
R2

P
{
∃t∈[0,∞)W (t)− a

T
t > x

}
eλx

T

dx ≤ 1

λ1λ2

E{eλ1Q1+λ2Q2} e
κ
2

e
κ
2 − 1

< ∞.

Applying Lebesgue’s monotone convergence theorem we obtain

lim
∆→∞

I(∆) =

∫
R2

P
{
∃t∈[0,∞)W (t)− a

T
t > x

}
eλx

T

dx ∈ (0,∞).

□

In the following lemma we show that if t0 < T, then the behaviour of the asymptotics closely

resembles those of the infinite interval.

Lemma 2.3.9 If t0 < T, then as u → ∞

pα,α,ρ,T (c,a, u) ∼ P
{
∃t∈[0,∞)W (t)− ct > au2α

}
.

Proof of Lemma 2.3.9 Using self-similarity of Brownian motion we have

pα,α,ρ,T (c,a, u) = P
{
∃t∈[0,Tu2α]W (t)− ct > au2α

}
.

Clearly we have that

pα,α,ρ,T (c,a, u) ≤ P
{
∃t∈[0,∞)W (t)− ct > au2α

}
.

On the other hand, by the self-similarity of Brownian motion

pα,α,ρ,T (c,a, u) ≥ P
{
∃t∈[u2αt0−uα log(uα),u2αt0+uα log(uα)]W (t)− ct > au2α

}
= P

{
∃
t∈[t0− log(uα)

uα
,t0+

log(uα)
uα

]
W (t)− cuαt > auα

}
.
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Let us denote Eu := [t0 − log(uα)
uα , t0 +

log(uα)
uα ]. From Lemma 2.3.6 we obtain that for some C > 0

P
{
∃t∈[0,T ]\EuW (t)− cuαt > auα

}
≤ Ce−

τ
2
log2(uα)e−

q(t0)
2

u2α

.

Hence again with self-similarity of Brownian motion we have that

P
{
∃t∈[0,∞)\u2αEu

W (t)− ct > au2α
}

= o
(
P
{
∃t∈u2αEu

W (t)− ct > au2α
})

.

This completes the proof. □

Proof of Theorem 2.3.3

Case (i): t0 > T : Observe that

pα,α,ρ,T (c,a, u) ≥ P
{
∃t∈[T− ∆

u2α
,T ]W (t)− cuαt > auα

}
=: Π(u).

On the other hand, we have

P
{
∃t∈[0,T ]W (t)− cuαt > auα

}
≤ P

{
∃
t∈[0,T− log(uα)

uα
]
W (t)− cuαt > auα

}
+P
{
∃
t∈[T− log(uα)

uα
,T− ∆

u2α
]
W (t)− cuαt > auα

}
+Π(u) =: P1(u) + P2(u) + Π(u).

By combination of Lemma 2.3.6 with Lemma 2.3.7 we get P1(u) = o(Π(u)), as u → ∞.

Now, we calculate the upper bound for P2(u). Let Nu := ⌊uα log(uα)
∆

⌋.

We divide the rest of the proof into two cases: (a) I = {i} and (b) I = {1, 2} which require slightly

different approaches.

(a) Suppose that I = {i}. Then

P2(u) ≤
Nu∑
k=2

P
{
∃
t∈[T− k∆

u2α
,T− (k−1)∆

u2α
]
ZI(t)(t) > uα

}
=:

Nu∑
k=2

p2,k(u).

From Lemma A.4 in [16] it follows that for some Ĩ and all t ∈ (T − log(uα)
uα , T − ∆

u2α )

q(t) =
1

t
cT
Ĩ
(Σ−1

T )Ĩ ĨcĨ + 2cT
Ĩ
(Σ−1

T )Ĩ ĨaĨ + aT
Ĩ
(Σ−1

T )Ĩ ĨaĨt.

Furthermore, for all s, t ∈ (T − log(uα)
uα , T − ∆

u2α ) and some C1 > 0 it holds

E[(ZĨ(t)− ZĨ(s))
2] ≤ C1|t− s|.

Thus, by the Piterbarg inequality (see e.g. Lemma 5.1 in [19]) we conclude that

p2,k(u) ≤ ∆

u2α
uαe

−u2α

2
inf

t∈[T− k∆
u2α

,T− (k−1)∆

u2α
]

q(t)
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holds for all large u. Using Lemma 2.3.5 and Taylor expansion of q(t) we obtain for some τ > 0

inf
t∈[T− k∆

uα
,T− (k−1)∆

uα
]

q(t) = q(T ) + τk
∆

2α
.

Hence, we obtain for sufficiently large u

p2,k(u) ≤ u−αe−
q(T )
2 ∆e−

τ∆k
2 .

Thus

P2(u) ≤
Nu∑
k=2

p2,k(u) ≤ u−αe−
q(T )
2 ∆

Nu∑
k=2

e−
τ∆k
2 = u−αe−

2q(T )
2 ∆e−

τ∆
2

1

1− e−
τ∆
2

,

with τ = −q′(T ) > 0. Lemma 2.3.7 gives P2(u) = O(Π(u)), as u → ∞, and letting ∆ → ∞ we

have

lim
∆→∞

lim
u→∞

P2(u)

Π(u)
= lim

∆→∞
C̃e−

τ∆
2 = 0.

(b) Suppose that I = {1, 2}. Then

P2(u) ≤
Nu∑
k=1

P
{
∃
t∈[T− k∆

u2α
,T− (k−1)∆

u2α
]
W (t)− cuαt > auα

}
.

Using Lemma 2.3.7 (iii) we obtain

P2(u) ≤ CHI(∆)u−2αφT ((a1 + c1T )u
α, (a2 + c2T )u

α)
Nu∑
k=2

e
q′(T )

2
(k−1)∆

≤ CHI(∆)u−2αφT ((a1 + c1T )u
α, (a2 + c2T )u

α)e−
τ∆
2

1

1− e−
τ∆
2

,

with τ = −q′(T ) > 0. Lemma 2.3.7 gives P2(u) = O(Π(u)), as u → ∞ and letting ∆ → ∞ we have

lim
∆→∞

lim
u→∞

P2(u)

Π(u)
= lim

∆→∞
C̃e−

τ∆
2 = 0.

This completes the proof of case (i).

Case (ii): t0 = T. For ∆ > 0 let ku = T − (k−1)∆
u2α , Eu,k = [(k + 1)u, ku] and Nu = ⌊uα log(uα)

∆
⌋. Let

denote

pk(u) = P
{
∃t∈Ek,u

W (t)− cuαt > auα
}
and pk,l(u) = P

 ∃t∈Ek,u
W (t)− cuαt > auα

∃s∈El,u
W (s)− cuαs > auα

.
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Observe that

S1(u)− S2(u) :=
Nu∑
k=1

pk(u)−
Nu∑
k=1

Nu∑
l=k+1

pk,l(u) ≤ pα,α,ρ,T (c,a, u) ≤ S1(u) + pNu+1(u).

The analysis of the sums S1(u) and S2(u) follows in a similar way to the proof of Theorem 3.1 in

[16]. The only difference is in the number of components in the sums. In our study, S1(u) consists of

pk(u) for k ∈ {1, . . . , Nu}, whereas in the proof of Theorem 3.1 k ∈ {−Nu, . . . , Nu}. S2(u) remains

the same in both cases. For this reason, we omit the details of the proof.

Case (iii): t0 < T. The combination of Lemma 2.3.9 with Theorem 3.1 in [16] straightforwardly

gives the thesis. □

2.4 Case α > β.

In this case the drift increases at a faster rate than the initial capital, which would suggest that for

sufficiently large u it ultimately dominates. However, the above intuitive approach is not correct.

We prove that this case simplifies to scenarios analyzed in case α = β with the speed parameter

α+β
2

and T = ∞ that was considered in Theorems 2.3.2 and 2.3.3; see also [16] [Theorem 3.1].

Theorem 2.4.1 Let α > β. Then as u → ∞

pα,β,ρ,T (c,a, u) ∼ pα+β
2

,α+β
2

,ρ,∞(c,a, u).

2.4.1 Proof of Theorem 2.4.1

We prove that, as u → ∞,

pα,β,ρ,T (c,a, u) ∼ P
{
∃t∈[0,∞)W1(t)− c1t > uα+β,W2(t)− c2t > a2u

α+β
}
.

Using self-similarity of Brownian motion, we obtain

pα,β,ρ,T (c,a, u) = P
{
∃t∈[0,Tu2α]W1(t)− c1t > uα+β,W2(t)− c2t > a2u

α+β
}

= P
{
∃t∈[0,Tuα−β ]W1(t)− c1u

α+β
2 t > u

α+β
2 ,W2(t)− c2u

α+β
2 t > a2u

α+β
2

}
.

Let u′ = uα+β. Clearly we have that

pα,β,ρ,T (c,a, u) ≤ P
{
∃t∈[0,∞)W1(t)− c1t > u′,W2(t)− c2t > a2u

′}
34

35:52569



≤ P
{
∃t∈[0,∞)\[u′tu′0−

√
u′ log(u′),u′tu′0+

√
u′ log(u′)]W1(t)− c1t > u′,W2(t)− c2t > a2u

′
}

+P
{
∃t∈[u′tu′0−

√
u′ log(u′),u′tu′0+

√
u′ log(u′)]W1(t)− c1t > u′,W2(t)− c2t > a2u

′
}
.

On the other hand, we have

pα,β,ρ,T (c,a, u) ≥ P
{
∃t∈[u′tu′0−

√
u′ log(u′),u′tu′0+

√
u′ log(u′)]W1(t)− c1t > u′,W2(t)− c2t > a2u

′
}

= P
{
∃
t∈[tu′0−

log(u′)√
u′

,tu′0+
log(u′)√

u′
]
W1(t)− c1

√
u′t >

√
u′,W2(t)− c2

√
u′t > a2

√
u′
}
.

Denote Eu′ := [tu′0 − log(u′)√
u′ , tu′0 + log(u′)√

u′ ]. From Lemma 2.2.3 with f(u′) = log(u′)√
u′ we obtain that for

some C > 0

P
{
∃t∈[0,∞)\Eu′

W1(t)− c1
√
u′t >

√
u′,W2(t)− c2

√
u′t > a2

√
u′
}

≤ Ce−
τ
2
log2(u′)e−

q∗a(T )

2
u′
.

With self-similarity of Brownian motion we have that

P

∃t∈[0,∞)\u′Eu′

W1(t)− c1t > u′

W2(t)− c2t > a2u
′

 = o

P

∃t∈u′Eu′

W1(t)− c1t > u′

W2(t)− c2t > a2u
′


 .

This completes the proof. □
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Chapter 3

Finite time ruin probability for

subordinated fractional Brownian motion

3.1 Introduction

Consider the risk process R(t) := u+ ct−X(t) where the risk component is modelled by a centered

Gaussian process with stationary increments, with initial capital u and constant premium rate c.

Since Brownian motion appears naturally as a limiting process, many studies were focusing on

behaviour of Brownian motion driven risk process. The ruin probability of the one dimensional

risk process in finite time horizeon is known and equal to

P
{

inf
t∈[0,T ]

: R(t) < 0

}
= Φ

(
− u√

T
− ci

√
T

)
+ e−2ciuΦ

(
− u√

T
+ ci

√
T

)
.

Definitions of ruin of the risk process above have been extended in multiple directions, e.g. discrete

approach in [48], two-dimensional setup in [18] or infinite time horizon in [23]. A related problem

would be to investigate asymptotics of the ruin of the risk process for different kinds of process

X. For example, in [60] X(t) is modelled by a fractional Brownian motion BH(t), H ∈ (0, 1). In

order to represent the inspection times we introduce Xi :=
∑i

j=1 Zj, where Zj, j ≥ 1 are non-

negative independent identically distributed random variables and then examine the behaviour of

R(Xi), i = 1, 2. Let

π[0,T ],H(u) := P

{
sup

i≥0,Xi∈[0,T ]

: BH(Xi)− cXi > u

}
. (3.1)
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where T > 0. We investigate π[0,T ],H(u), which models the behaviour of the risk process evaluated

at random points in a finite interval. Note that if X1 > T, then there are no random points in

the [0, T ] interval and the probability above is equal to 0. The idea of subordination of Gaussian

processes has been implemented in e.g. [39, 41, 70].

3.2 Main results

Let τ = τ1 := sup{i : Xi ≤ T}, τi = sup{i : Xi < τi−1} denote the numeration of inspection times.

We assume that Z1 has continuous density function fZ with fZ(0) ∈ (0,∞), which allows us to

formulate the following proposition. Its proof is postponed to the next section.

Proposition 3.2.1 If Z1 has continuous density function fZ with fZ(0) ∈ (0,∞), then Xτ has

continuous density function fXτ with fXτ (T ) ∈ (0,∞), for any T ∈ (0,∞).

The next theorem constitutes the main finding of this chapter.

Theorem 3.2.2 Let Z1 have continuous density fZ with fZ(0) ∈ (0,∞). Then as u → ∞

π[0,T ],H(u) ∼
fXτ (T )T

2H

H
u−2Ψ

(
u+ cT

TH

)
.

Recall that from [34] for large enough u we have that in the continuous time setting the asymptotics

of the ruin probability is driven by the variability at the end of [0, T ] interval. Similar behaviour

is observed in this chapter. The asymptotics is driven by the probability of ruin at the end of the

interval. Since the density fXτ is independent on u, the most important factor is the variance of the

fractional Brownian motion itself and the random inspection times only contribute to the constant.

We present below a sample usage of the theorem above to the classical case of Poisson process.

Corollary 3.2.3 Suppose that Zi are exponentially distributed with parameter λ > 0. Then

π[0,T ],H(u) ∼
e−λ(T−1)λT 2H+1

H
u−2Ψ

(
u+ cT

TH

)
.

Proof of Corollary 3.2.3 In order to obtain the closed form of the asymptotics we have to

calculate fXτ (T ). We have that

fXτ (T ) =
∞∑
k=1

fXk
(T )P{N = k},
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where since Zi are exponential, N has a Poisson distribution with parameter Tλ. With [68] [Thm

5.2] we have thatXk conditioned on k point in the interval [0, T ] has distribution as max(U1, . . . , Uk)

with Ui distributed uniformly on [0, T ]. Therefore

fXτ (T ) =
∞∑
k=1

kT k−1 e
−λT (λT )k

k!

= T
e−λT

e−λ

∞∑
k=1

k
e−λ(λ)k

k!

= Te−λ(T−1)λ,

which combined with Theorem 3.2.2 completes the proof. □

3.3 Proofs

Proof of Proposition 3.2.1 Let δ > 0. Since fZ is continuous with fZ(0) ∈ (0,∞) we have that

there exists ϵδ > 0 such that ∀t∈[0,ϵδ]fZ(t) > δ. Let k > ⌊2T
ϵδ
⌋. Additionally, since for large enough k

we have P{τ = k} > 0, then we pick k, which fulfills both conditions. Then we have with

Bk = {(x1, . . . , xk) : 0 < x2 < ϵδ, . . . , 0 < xk < ϵδ, 0 < T −
k∑

l=2

xl < ϵδ}

fXk
(T ) = fZ1+Z2+···+Zk

(T )

=

∫ T

0

fZ1+Z2+···+Zk−1
(T − xk)fZ(xk)dxk

=

∫ T

0

∫ T−xk

0

· · ·
∫ T−

∑k
l=2 xl

0

fZ(T −
k∑

l=2

xl)fZ(x2) . . . fZ(xk)dx2 . . . dxk

≥
∫
Bk

δkdx2 . . . dxk = δkvol(Bk).

Since k > ⌊2T
ϵδ
⌋, then vol(Bk) > 0 and together with P{τ = k} > 0 we have that

fXτ (T ) > δkvol(Bk)P{τ = k} > 0.

Furthermore, notice that from the continuity assumption together with finitness of fZ(0) we have

fZ(x) < M for all x ∈ [0, T ] and some constant M > 0. Therefore fX1(T ) < ∞ and for any k > 1

fXk
(T ) = fZ1+Z2+···+Zk

(T )
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=

∫ T

0

fZ1+Z2+···+Zk−1
(T − xk)fZ(xk)dxk

< M

∫ T

0

fZ1+Z2+···+Zk−1
(T − xk)dxk ≤ M.

With the above we have

fXτ (T ) =
∞∑
k=1

fXk
(T )P{τ = k}

< M
∞∑
k=1

P{τ = k}

= M < ∞.

This completes the proof. □

Proof of Theorem 3.2.2 Since the properties of fractional Brownian motion are vastly different

forH ≥ 1
2
andH < 1

2
the proof is divided onto two parts. Let Tu = [tu, T ] for tu = T (1−log2(u)u−2).

Case: H ≥ 1
2
. We have that

π[0,T ],H(u) ≥ πTu,H(u)

and

π[0,T ],H(u) ≤ πTu,H(u) + π[0,T ]\Tu,H(u).

We begin with investigating the behaviour of πTu,H(u). Notice that

πTu,H(u) ≥ P{BH(Xτ )− cXτ > u,Xτ ∈ Tu}.

With Proposition 3.2.1 we have

P{BH(Xτ )− cXτ > u,Xτ ∈ Tu} =

∫ T
log2(u)

u2

0

P{BH(t+ tu)− c(t+ tu) > u}fXτ (t+ tu)dt

∼ fXτ (T )

∫ T
log2(u)

u2

0

P{BH(t+ tu)− c(t+ tu) > u}dt

=: fXτ (T )ITu .

Notice that uniformly for t ∈ [0, 1] as u → ∞

log

(
P
{
BH(t+ tu)− c(t+ tu) > u+

1√
u

})
= log

(
P

{
BH(1) >

u+ 1√
u
+ c(t+ tu)

(t+ tu)H

})

= −1

2

(
u+ 1√

u
+ c(t+ tu)

(t+ tu)H

)2

+O(1)
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= −1

2

(
u+ c(t+ tu)

(t+ tu)H

)2

−
√
u

(t+ tu)2H
+O(1).

Therefore uniformly for t ∈ [0, 1] as u → ∞

P
{
BH(t+ tu)− c(t+ tu) > u+

1√
u

}
= o(P{BH(t+ tu)− c(t+ tu) > u}).

Using Taylor expansion and the above, we have as u → ∞

ITu =

∫ log2(u)

u2

0

∫ ∞

u

1√
2πT 2H(1− t)2H

e
− (x+cT (1−t))2

2T2H (1−t)2H dxdt

∼
∫ log2(u)

u2

0

∫ u+ 1√
u

u

1√
2πT 2H(1− t)2H

e
− (x+cT (1−t))2

2T2H (1−t)2H dxdt

=

∫ log2(u)

u2

0

∫ u+ 1√
u

u

1√
2πT 2H(1− t)2H

e−
(x+cT )2

2T2H e−
Htx2

T2H eO(t2x2+tx)dxdt

≤
∫ log2(u)

u2

0

∫ u+ 1√
u

u

1√
2πT 2H(1− t)2H

e−
(x+cT )2

2T2H e−
Htu2

T2H dxdt

∼
∫ log2(u)

u2

0

1√
2πT 2H

e−
(x+cT )2

2T2H dx

∫ log2(u)

0

e−
Ht

T2H dt

∼ P{BH(T )− cT > u}u−2

∫ log2(u)

0

e−
Ht

T2H dt

=
T 2H

H
(1− e− log2(u)HT−2H

)u−2P{BH(T )− cT > u}

∼ T 2H

H
u−2P{BH(T )− cT > u}.

Similarly, by substituting x = u+ 1√
u
, we obtain for large enough u

ITu ≥
∫ log2(u)

u2

0

∫ u+ 1√
u

u

1√
2πT 2H(1− t)2H

e−
(x+cT )2

2T2H e−
Ht(u+ 1√

u
)2

T2H dxdt

∼ P{BH(T )− cT > u}u−2

∫ log2(u)

0

e−
Ht

T2H e−
Ht( 2√

u3
+ 1

u3
)

T2H dt

∼ T 2H

H
(1− e− log2(u)HT−2H

)u−2P{BH(T )− cT > u}

∼ T 2H

H
u−2P{BH(T )− cT > u}.

Hence

lim
u→∞

P{BH(Xτ )− cXτ > u,Xτ ∈ Tu}
fXτ (T )T

2HH−1u−2P{BH(T )− cT > u}
= 1.
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On the other hand

πTu,BH
(u) ≤

∞∑
k=1

P

{
sup

i∈{1,...,k}
BH(Xτi)− cXτi > u,Xτk ∈ Tu

}

∼ fXτ (T )ITu +
∞∑
k=2

P

{
sup

i∈{1,...,k}
BH(Xτi)− cXτi > u,Xτk ∈ Tu

}
:= fXτ (T )ITu + Su.

Further we have with (Z ′
2, ...) i.i.d. with the same distribution as Z1

Su ≤
∞∑
k=2

P
{
sup
t∈Tu

BH(t)− ct > u,Xτk ∈ Tu

}

≤ P

{
sup

t∈[0,T ]

BH(t)− ct > u

}
∞∑
k=2

P{Xτk ∈ Tu}

≤ P

{
sup

t∈[0,T ]

BH(t)− ct > u

}
∞∑
k=2

P
{
Xτ ∈ Tu, Z

′
2 <

log2(u)

u2
, . . . , Z ′

k <
log2(u)

u2

}
.

By the assumption that Zi have continuous density function fZ with fZ(0) ∈ (0,∞) and Proposition

3.2.1 we have that for large enough u

∞∑
k=2

P
{
Xτ ∈ Tu, Z

′
2 <

log2(u)

u2
, . . . , Z ′

k <
log2(u)

u2

}
∼ T log2(u)

u2
fXτ (T )

∞∑
k=2

P
{
Z ′

2 <
T log2(u)

u2

}
. . .P

{
Z ′

k <
T log2(u)

u2

}

∼ T log2(u)

u2
fXτ (T )

∞∑
k=1

(
T log2(u)

u2
fZ(0)

)k

=
T log2(u)

u2
fXτ (T )

T log2(u)
u2 fZ(0)

1− T log2(u)
u2 fZ(0)

∼ fXτ (T )fZ(0)
T 2 log4(u)

u4
.

Since for H ≥ 1
2
from [35] [Prop 3.1] we have

P

{
sup

t∈[0,T ]

BH(t)− ct > u

}
∼ CP{BH(T )− cT > u}

for some C > 0 as u → ∞, then for some C ′ > 0

lim
u→∞

Su

ITu
= lim

u→∞
C ′ log

4(u)

u2
= 0.

Therefore as u → ∞

πTu,H(u) ∼
T 2H

H
fXτ (T )u

−2P{BH(T )− cT > u}.
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Note that [35] [Prop 3.1] holds also for T = tu, since condition A, C and D therein are satisfied by

the same argument based on properties of fractional Brownian motion and condition B holds with

b = H
T
since tu → T. Therefore we have that for some C > 0 and large enough u

π[0,T ]\Tu,H(u) ≤ P ( sup
t∈[0,T ]\Tu

BH(t)− ct > u)

∼ CP (BH(tu)− ctu > u)

∼ C
1√
2πtHu

e
− (u+ctu)2

2t2Hu

∼ C
1√

2πTH
e−

(u+cT )2

2T2H e−
2H log2(u)

u2
(u+cT )2

2T2H +o( 1
u)

∼ CP{BH(T )− cT > u}e−
H

T2H log2(u)

= o(u−2P{BH(T )− cT > u}).

Hence we have

π[0,T ],H(u) ∼
T 2H

H
fXτ (T )u

−2P{BH(T )− cT > u},

which completes the proof of case H ≥ 1
2
.

Case: H < 1
2
. Due to negative correlation of increments of fractional Brownian motion forH < 1

2
we

need a different approach then used for the case H ≥ 1
2
. For ∆ > 0 denote Tu,l := [t

(l+1)
u , t

(l)
u ], Nu =

log2(u)u
1−2H

H

∆
, t

(l)
u = T (1 − (l − 1)∆u− 1

H ) and τ
(l)
i = sup(i : Xi ≤ τ

(l)
i−1), τ

(l) = sup(i : Xi ≤ t
(l)
u ), l =

1 . . . Nu. Notice that if Z1 has continuous density function fZ with fZ(0) ∈ (0,∞), then Xτ (l) has

continuous density function fX
τ(l)

with fX
τ(l)

(T ) > 0, which can be proven in the same way as

Proposition 3.2.1. Similarly as in the case H ≥ 1
2
we have

π[0,T ],H(u) ≥ πTu,H(u)

and

π[0,T ],H(u) ≤ πTu,H(u) + π[0,T ]\Tu,H(u).

Then

πTu,H(u) ≤
Nu∑
l=1

∞∑
k=1

P

{
sup

i∈{1,...,k}
BH(Xτ

(l)
i
)− cX

τ
(l)
i

> u,X
τ
(l)
k

∈ Tu,l

}
=:

Nu∑
l=1

πTu,l,H(u).

Further

πTu,l,H(u) = P{BH(Xτ (l))− cXτ (l) > u,Xτ (l) ∈ Tu,l}
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+
∞∑
k=2

P

{
sup

i∈{1,...,k}
BH(Xτ

(l)
i
)− cX

τ
(l)
i

> u,X
τ
(l)
k

∈ Tu,l

}
=: Pu,l + Su,l.

We have for large enough u

Pu,l =

∫ T∆u− 1
H

0

P (BH(t+ t(l+1)
u ))− c(t+ t(l+1)

u )) > u)fX
τ(l)

(t+ t(l+1)
u )dt

∼ fX
τ(l)

(t(l)u )

∫ T∆u− 1
H

0

P (BH(t+ t(l+1)
u ))− c(t+ t(l+1)

u )) > u)dt

:= fX
τ(l)

(t(l)u )IT (l)
u
.

Since for any l density function fX
τ(l)

is continuous and limu→∞ t
(l)
u = T, we have

Pu,l ∼ fX
τ(1)

(T )IT (l)
u
.

With τ (1) = τ and limu→∞ t
(l)
u = T we have that

Nu∑
l=1

Pu,l ∼ fX
τ(1)

(T )
Nu∑
l=1

IT (l)
u

= fX
τ(1)

(T )ITu

∼ fXτ (T )
T 2H

H
u−2P{BH(T )− cT > u},

where ITu is defined as in the case H ≥ 1
2
. Observe that from [35] [Prop 3.1] for H < 1

2
we have for

some C > 0

P

 sup
t∈[0,T∆u− 1

H ]

BH(t+ t(l+1)
u )− c(t+ t(l+1)

u ) > u

 ≤ Cu
1−2H

H P{BH(T )− cT > u}.

Since Zi have continuous density fZ with fZ(0) ∈ (0,∞) we have with Z ′
i, t ≥ 2 i.i.d. with the

same distribution as Zi for some C > 0

Su,l ≤
∞∑
k=2

P

{
sup
t∈T (l)

u

BH(t)− ct > u,X
τ
(l)
k

∈ T (l)
u

}

≤ P

 sup
t∈[0,T∆u− 1

H ]

BH(t+ t(l+1)
u )− c(t+ t(l+1)

u ) > u


∞∑
k=2

P
{
X

τ
(l)
k

∈ T (l)
u

}
≤ Cu

1−2H
H P{BH(T )− cT > u}

∞∑
k=2

P
{
Xτ (l) ∈ T (l)

u , Z ′
2 < T∆u− 1

H , . . . , Z ′
k < T∆u− 1

H

}
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∼ Cu
1−2H

H P{BH(T )− cT > u}T∆u− 1
H fX

τ(l)
(T )

∞∑
k=2

P
{
Z ′

2 < T∆u− 1
H

}
. . .P

{
Z ′

k < T∆u− 1
H

}
∼ Cu

1−2H
H P{BH(T )− cT > u}T∆u− 1

H fX
τ(l)

(T )
∞∑
k=1

(T∆u− 1
H fZ(0))

k

= Cu
1−2H

H P{BH(T )− cT > u}T∆u− 1
H fX

τ(l)
(T )

T∆u− 1
H fZ(0)

1− T∆u− 1
H fZ(0)

∼ Cu
1−2H

H P{BH(T )− cT > u}fX
τ(l)

(T )fZ(0)T
2∆2u− 2

H .

Hence

Nu∑
l=1

Su,l ≤ NuCu
1−2H

H P{BH(T )− cT > u}fX
τ(l)

(T )fZ(0)T
2∆2u− 2

H

≤ CP{BH(T )− cT > u}∆ log2(u)u−4

= o
(
P{BH(T )− cT > u}u−2

)
= o

(
Nu∑
l=1

Pu,l

)
.

For the lower bound we can write

πTu,H(u) ≥
Nu∑
l=1

P{BH(Xτ (l))− cXτ (l) > u,Xτ (l) ∈ Tu,l}

−
Nu∑
l=1

Nu∑
m=l+1

P

 BH(Xτ (l))− cXτ (l) > u,Xτ (l) ∈ Tu,l

BH(Xτ (m))− cXτ (m) > u,Xτ (m) ∈ Tu,m


=:

Nu∑
l=1

Pu,l −
Nu∑
l=1

Nu∑
m=l+1

Du,l,m.

Further notice that for m ≥ l + 2

Du,l,m ≤ sup
(s,t)∈Tu,l×Tu,m

P{BH(s)− cs > u,BH(t)− ct > u,Xτ (l) ∈ Tu,l, Xτ (m) ∈ Tu,m}

≤ sup
(s,t)∈Tu,l×Tu,m

P

 BH(s)− cs > u

BH(t)− ct > u

P
{
Xτ (l) ∈ Tu,l, Z1 < (m− l + 1)

(
T∆u− 1

H

)}

∼ fX
τ(l)

(T )fZ(0)(m− l + 1)
(
T∆u− 1

H

)2
sup

(s,t)∈Tu,l×Tu,m
P

 BH(s)− cs > u

BH(t)− ct > u

.

We have for large enough u and Σs,t being the covariance matrix of (BH(s), BH(t))

P

 BH(s)− cs > u

BH(t)− ct > u

 ∼ 1√
2π|Σs,t|

e−
1
2
(u+cs,u+ct)Σ−1

s,t (u+cs,u+ct)⊤
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∼ 1√
2π|Σs,t|

e−
u2

2
(1,1)Σ−1

s,t (1,1)
⊤
.

Notice that for s > t we have

(1, 1)Σ−1
s,t (1, 1)

⊤ =
(s− t)2H

t2Hs2H − 1
4
(t2H + s2H − (s− t)2H)2

.

Let

M(s, t) =
(
t4H − 2t2Hs2H − 2t2H(s− t)2H + s4H − 2s2H(s− t)2H + (s− t)4H

)2
> 0.

Since (s, t) ∈ Tu,l × Tu,m, therefore limu→∞ s = limu→∞ t = T and hence with direct calculation for

large enough u we obtain

∂

∂s
(1, 1)Σ−1

s,t (1, 1)
⊤ ∼ 8H

M(s, t)
(s− t)2H−1(2t2Hs2H − s4H − t4H) < 0,

∂

∂t
(1, 1)Σ−1

s,t (1, 1)
⊤ ∼ 8H

M(s, t)
(s− t)2H−1(s4H + t4H − 2t2Hs2H) > 0,

which implies that

sup
(s,t)∈Tu,l×Tu,m

P

 BH(s)− cs > u

BH(t)− ct > u

 = P

 BH(t
(l+1)
u )− ct

(l+1)
u > u

BH(t
(m)
u )− ct

(m)
u > u

. (3.2)

Further calculations give, as u → ∞,

(1, 1)Σ−1

t
(l+1)
u ,t

(m)
u

(1, 1)⊤ − 1

T 2H
∼ 1

T 2H
(1 +

1

4
(m− l − 1)2H∆2Hu−2 − 1)

=
(m− l − 1)2H∆2Hu−2

4T 2H
,

which leads to

Nu∑
l=1

Nu∑
m=l+2

Du,l,m ∼
Nu∑
l=1

Nu∑
m=l+2

fX
τ(l)

(T )fZ(0)(m− l + 1)
(
T∆u− 1

H

)2
×e−u2 (m−l−1)2H∆2Hu−2

8T2H P{BH(T )− cT > u}

≤ N2
ufXτ(l)

(T )fZ(0)
(
T∆u− 1

H

)2
P{BH(T )− cT > u}

Nu∑
k=1

e−
k2H∆2H

8T2H

= log4(u)u−4fX
τ(l)

(T )fZ(0)T
2P{BH(T )− cT > u}

Nu∑
k=1

e−
k2H∆2H

8T2H .

Notice that

Nu∑
k=1

e−
k2H∆2H

8T2H =
∆2H

8T 2H

Nu∑
k=1

8T 2H

∆2H
e−

k2H∆2H

8T2H
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∼ ∆2H

8T 2H

∫ ∞

0

e−t2Hdt

=
∆2H

8T 2H

∫ ∞

0

2Hx
1−2H
2H e−xdx

=
2H∆2H

8T 2H
Γ

(
1

2H

)
.

Hence,

Nu∑
l=1

Nu∑
m=l+2

Du,l,m ≤ log4(u)u−4fX
τ(l)

(T )fZ(0)T
22H∆2H

8T 2H
Γ

(
1

2H

)
P{BH(T )− cT > u}

= o

(
Nu∑
l=1

Pu,l

)
, u → ∞.

It remains to deal with the case m = l + 1. Observe that, for

T
√
∆

u,l = (T (1− l∆u− 1
H +

√
∆u− 1

H ), T (1− (l − 1)∆u− 1
H ))

we have

Du,l,l+1 = P

 BH(Xτ (l))− cXτ (l) > u,Xτ (l) ∈ T
√
∆

u,l

BH(Xτ (l+1))− cXτ (l+1) > u,Xτ (l+1) ∈ Tu,l+1


+P

 BH(Xτ (l))− cXτ (l) > u,Xτ (l) ∈ T
√
∆

u,l

BH(Xτ (l+1))− cXτ (l+1) > u,Xτ (l+1) ∈ Tu,l+1


=: D

(1)
u,l,l+1 +D

(2)
u,l,l+1.

Furthermore we have that

D
(1)
u,l,l+1 ≤ sup

(s,t)∈T
√
∆

u,l ×Tu,l+1

P
{
BH(s)− cs > u,BH(t)− ct > u,Xτ (l) ∈ T

√
∆

u,l , Xτ (l+1) ∈ Tu,l+1

}

≤ sup
(s,t)∈Tu,l×Tu,l+1

P

 BH(s)− cs > u

BH(t)− ct > u

P
{
Xτ (l) ∈ Tu,l, Z1 < 2

(
T∆u− 1

H

)}

∼ 2fX
τ(l)

(T )fZ(0)
(
T∆u− 1

H

)2
sup

(s,t)∈Tu,l×Tu,l+1

P

 BH(s)− cs > u

BH(t)− ct > u


≤ 2fX

τ(l)
(T )fZ(0)

(
T∆u− 1

H

)2
P{BH(T )− cT > u}.

Hence

Nu∑
l=1

D
(1)
u,l,l+1 ≤ 2NufX

τ(l)
(T )fZ(0)

(
T∆u− 1

H

)2
P{BH(T )− cT > u}
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= 2 log2(u)u−2− 1
H∆fX

τ(l)
(T )fZ(0)P{BH(T )− cT > u} = o

(
Nu∑
l=1

Pu,l

)
.

Further notice that

S
(2)
u,l,l+1 ≤ P

{
BH(Xτ (l))− cXτ (l) > u,Xτ (l) ∈ (T (1− l∆u− 1

H ), T (1− l∆u− 1
H +

√
∆u− 1

H ))
}

=

∫ T
√
∆u− 1

H

0

P (BH(t+ t(l+1)
u )− c(t+ t(l+1)

u ) > u)fX
τ(l)

(t+ t(l+1)
u )dt

∼ fX
τ(l)

(t(l)u )

∫ T
√
∆u− 1

H

0

P (BH(t+ t(l+1)
u )− c(t+ t(l+1)

u ) > u)dt

≤ fX
τ(l)

(t(l)u )

√
∆

∆

∫ T∆u− 1
H

0

P (BH(t+ t(l+1)
u )− c(t+ t(l+1)

u ) > u)dt (3.3)

∼
√
∆

∆
Pu,l,

where in (3.3) we use that for C ∈ N we have

P
{
BH(t+ t(l+1)

u )− c(t+ t(l+1)
u ) > u

}
≤ P

{
BH(t+ C

√
∆u− 1

H + t(l+1)
u )− c(t+ C

√
∆u− 1

H + t(l+1)
u ) > u

}
.

Therefore

Nu∑
l=1

D
(2)
u,l,l+1 ≤

Nu∑
l=1

√
∆

∆
Pu,l,

which leads to

lim
∆→∞

lim
u→∞

∑Nu

l=1

∑Nu

m=l+1Du,l,m∑Nu

l=1 Pu,l

= 0.

Concluding, we have that

πTu,H(u) ∼
Nu∑
l=1

Pu,l ∼ fXτ (T )
T 2H

H
u−2P{BH(T )− cT > u}.

Finally, by the same arguments as in proof of case H ≥ 1
2
of [35][Prop. 3.1] for T = tu by using

tu → T , we have that for some C > 0 and large enough u

π[0,T ]\Tu,H(u) ≤ P ( sup
t∈[0,T ]\Tu

BH(t)− ct > u)

= CP (BH(tu)− ctu > u)u
1−2H

H

∼ Cu
1−2H

H
1√
2πtHu

e
− (u+ctu)2

2t2Hu
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∼ Cu
1−2H

H
1√

2πTH
e−

(u+cT )2

2T2H e−
2H log2(u)

u2
(u+cT )2

2T2H +o( 1
u)

∼ Cu
1−2H

H P (BH(T )− cT > u)e−
H

T2H log2(u)

= o(u−2P (BH(T )− cT > u)).

This completes the proof. □
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Chapter 4

Logarithmic asymptotics of Parisian ruin

probability for positively correlated

Brownian motions

4.1 Introduction

We define

W (t) := (W1(s),W2(t)) = (B1(s), ρB1(t) +
√

1− ρ2B2(t)), s, t ≥ 0,

where B1, B2 are two independent standard Brownian motions and ρ ∈ [−1, 1] to reflect the depen-

dence between the components. In the context of risk theory Wi are representing incoming claims

to the system, while ci represent premiums and ui represent initial capitals. The model above has

been studied in e.g. [18], where the two-dimensional non-simultaneous ruin probability

π(c1, c2, u, au) := P
{
∃s,t∈[0,1]W

∗
1 (s) > u,W ∗

2 (t) > au
}

(4.1)

with W ∗
i (t) = Wi(t) − cit, i = 1, 2 was discussed. One of the extensions to the model above is the

so-called Parisian ruin, which has been studied in e.g. [15] and differs from the above approach by

defining ruin by crossing the barrier (u, au) on an interval of length C
u2 , C > 0. In this chapter we

investigate a non-simultaneous Parisian ruin probability for two-dimensional time to be spent over
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the barrier H(u) = (H1(u), H2(u)) defined by

PA×B,H(u)(c1, c2, u, au) := P
{
∃s′∈A,t′∈B∀s∈[s′,s′+H1(u)]∀t∈[t′,t′+H2(u)]W

∗
1 (s) > u,W ∗

2 (t) > au
}
, (4.2)

and cumulative Parisian ruin probability

SA×B,H(u)(c1, c2, u, au) := P
{∫

A

1(W ∗
1 (s) > u)ds > H1(u),

∫
B

1(W ∗
2 (t) > au)dt > H2(u)

}
for some H1(u), H2(u) ≥ 0 functions dependant on u and compact sets A,B = [0, T ]. Since from

self-similarity of Brownian motion we have that for c′1 =
c1√
T
, u′ = u√

T

B(tT )− c1t > u
D⇔

√
TB(t)− c1t > u ⇔ B(t)− c′1t > u′,

then without loss of generality one can assume T = 1.

4.2 Notation and preliminaries

In this section we introduce the notation used in this chapter. We define B∗
i = Bi − ci with Bi

standard Brownian motion and ci ∈ R. Let

Σs,t =

 s ρmin(s, t)

ρmin(s, t) t


be the covariance matrix of (W1(s),W2(t)). We denote a = (1, a)⊤,

qa(s, t) := a⊤Σ−1
s,ta (4.3)

b(s, t) := Σ−1
s,ta

and set

q∗a(s, t) = min
x≥a

qx(s, t), q∗a = min
s,t∈[0,1]

q∗a(s, t). (4.4)

This quadratic optimization problem has appeared in many papers, e.g. [8, 21, 26, 32]. In [18]

instead of a, ā(s, t) = (1 + c1s
u
, a + c2t

u
)⊤ was used. As it will appear in proofs of Theorem 4.3.1

and Theorem 4.3.2, since we are interested in logarithmic asymptotics, using a is no different from

using ā(s, t), since the logarythmic order of both asymptotics is the same. From [26] we have

lim
u→∞

1

u2
logP{∃s,t∈[0,1]W

∗
1 (s) > u,W ∗

2 (t) > au} = −q∗a
2
. (4.5)

It appears that the function q plays a crucial role in calculating the logarithmic asymptotics of

ruin of two-dimensional Brownian motion process.
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4.3 Main results

The results are split onto two scenarios, dependent on the behaviour of function H(u), as u → ∞.

The first scenario considers the case H(u) → (0, 0). Note that in [57] for Parisian ruin this scenario

was investigated for the special case H(u) = O( 1
u2 ). In the second scenario we investigate the case

limu→∞ H(u) = (H1, H2) ≥ (0, 0), which we consider only for ρ > 0.

4.3.1 Case limu→∞H(u) = (0, 0)

Let H(u) be such that limu→∞H(u) = (0, 0). We show that the logarithmic asymptotics limit is

equal to the value of qa(s, t) in its minimal point on the interval [0, 1]2. By differentiating in [18]

[Lem 3.1] it was proven that the optimal point of the function q∗a(s, t) is dependent on the relation

between a and ρ through the function Aa =
1
4a
(1−

√
8a2 + 1).

Theorem 4.3.1 Let H(u) be such that limu→∞H(u) = (0, 0). Then

lim
u→∞

log(P[0,1]2,H(u)(c1, c2, u, au))

u2
= −1

2
q∗a

(
1,min

(
1,

a

ρ(2aρ− 1)

))
.

The proof of the theorem is postponed to the next section.

4.3.2 Case limu→∞H(u) > (0, 0), ρ > 0

Let H(u) be such that limu→∞H(u) > (0, 0). Since the period spent by the process over the

barrier asymptotically is independent on u, the asymptotics of log(P[0,1]2,H(u)(c1, c2, u, au)) is vastly

different from what we observed in the previous section. Intuitively, with positively correlated

processes, greater variance of each individual process leads to greater ruin probability, hence the

area over which the ruin most likely happens is the one which is the closest possible to the end of

the [0, 1]2.

Theorem 4.3.2 Let ρ ≥ 0, H(u) be such that limu→∞ H(u) = (H1, H2), H1, H2 ∈ (0, 1). Then

lim
u→∞

log(P[0,1]2,H(u)(c1, c2, u, au))

u2
= −1

2
q∗a(1−H1, 1−H2).

The proof of Theorem 4.3.2 is postponed to the next section. We note that the logarithmic asymp-

totics obtained in Theorem 4.3.2 is equal to the value in the minimal point of the function qa(s, t) on
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the interval [0, 1−H1]× [0, 1−H2]. Since ρ > 0, then function q is monotone and hence the optimal

point of the function q∗a(s, t), which determines the asymptotics for the ruin based on supremum

functional is the point (1, 1). For the Parisian ruin on a large interval the behaviour is different and

the supremum approach cannot be mimicked to obtain even logarythmic asymptotics.

Remark 4.3.3 Using Theorem 2.2 from [18] we have that

lim
u→∞

log(P[0,1]2,H(u)(c1, c2, u, au))

log(π(c1, c2, u, au))
=


1, if limu→∞H1(u) = limu→∞H2(u) = 0

0, otherwise

,

where P was defined in (4.2) and π was defined in (4.1).

Remark 4.3.4 For limu→∞ H1(u) = limu→∞H2(u) = 0 we note that

lim
u→∞

log(P[0,1]2,H(u)(c1, c2, u, au))

log(S[0,1]2,H(u)(c1, c2, u, au))
= 1 (4.6)

since

P[0,1]2,H(u) ≤ S[0,1]2,H(u) ≤ π(c1, c2, u, au)

and hence inequalities in both directions hold. For limu→∞H1(u) > 0 or limu→∞H2(u) > 0 following

the proof we observe that the definition of Parisian and sojourn ruin coincide and hence (4.6) holds

as well.

4.4 Proofs

Proof of Theorem 4.3.1 We split the proof into two cases: t∗ = 1 and t∗ < 1.

Case t∗ = 1. We have that

P[0,1]2,H(u)(c1, c2, u, au) ≤ π(c1, c2, u, au).

From [18][Thm 2.2, case i-iv] we have that

lim
u→∞

log(π(c1, c2, u, au))

u2
= −1

2
q∗a(1, 1).

On the other hand for HM(u) = max(H1(u), H2(u)) we have that

P[0,1]2,H(u)(c1, c2, u, au)
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≥ P
{
∀s∈[1−H1(u),1],t∈[1−H2(u),1]W

∗
1 (s) > u,W ∗

2 (t) > au
}

≥ P
{
∀s∈[1−HM (u),1]W

∗
1 (s) > u,W ∗

2 (s) > au
}

= P

∀s∈[1−HM (u),1]

W ∗
1 (s) > u

W ∗
2 (s) > au

∣∣∣∣∣ W ∗
1 (1−HM(u)) > u+

√
u

W ∗
2 (1−HM(u)) > a(u+

√
u)


×P

 W ∗
1 (1−HM(u)) > u+

√
u

W ∗
2 (1−HM(u)) > a(u+

√
u)


≥ P

∀s∈[1−HM (u),1]

W ∗
1 (s)−W ∗

1 (1−HM(u)) > −
√
u

W ∗
2 (s)−W ∗

2 (1−HM(u)) > −a
√
u

∣∣∣∣∣ W ∗
1 (1−HM(u)) > u+

√
u

W ∗
2 (1−HM(u)) > a(u+

√
u)


×P

 W ∗
1 (1−HM(u)) > u+

√
u

W ∗
2 (1−HM(u)) > a(u+

√
u)


= P

∀s∈[0,HM (u)]

W ∗
1 (s) > −

√
u

W ∗
2 (s) > −a

√
u

P

 W ∗
1 (1−HM(u)) > u+

√
u

W ∗
2 (1−HM(u)) > a(u+

√
u)

,

where in the last equality we use independence of increments of Brownian motion. Further, using

self-similarity of Brownian motion, we have

P

∀s∈[0,HM (u)]

W ∗
1 (s) > −

√
u

W ∗
2 (s) > −a

√
u

 = P

∀s∈[0,1]
H2

M(u)W1(s)− c1sHM(u) > −
√
u

H2
M(u)W2(s)− c2sHM(u) > −a

√
u


= P

∀s∈[0,1]
W1(s) >

−
√
u+c1sHM (u)

H2
M (u)

W2(s) >
−a

√
u+c2sHM (u)

H2
M (u)

.

Since limu→∞HM(u) = 0, we have that limu→∞
−
√
u+c1sHM (u)

H2
M (u)

= −∞, limu→∞
−a

√
u+c2sHM (u)

H2
M (u)

= −∞

and therefore

lim
u→∞

P

∀s∈[0,1]
W1(s) >

−
√
u+c1sHM (u)

H2
M (u)

W2(s) >
−a

√
u+c2sHM (u)

H2
M (u)

 = 1.

Hence for large enough u we have

P[0,1]2,H(u)(c1, c2, u, au) ≥ P
{
W ∗

1 (1−HM(u)) > u+
√
u,W ∗

2 (1−HM(u)) > a(u+
√
u)
}
.

Now notice that as u → ∞

P
{
W ∗

1 (1−HM(u)) > u+
√
u,W ∗

2 (1−HM(u)) > a(u+
√
u)
}

∼ 1

2π(1−HM(u))
e−

(u+
√
u)2

2
q∗a(1−HM (u),1−HM (u)).
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Since limu→∞ q∗a(1−HM(u), 1−HM(u)) = q∗a(1, 1), then we have that

lim
u→∞

log(P{W ∗
1 (1−HM(u)) > u+

√
u,W ∗

2 (1−HM(u)) > a(u+
√
u)})

− (u+
√
u)2

2
q∗a(1, 1)

= lim
u→∞

log(P{W ∗
1 (1−HM(u)) > u+

√
u,W ∗

2 (1−HM(u)) > a(u+
√
u)})

−u2

2
q∗a(1, 1)

= 1.

Therefore lower and upper bound coincide and the proof of case t∗ = 1. is complete.

Case t∗ < 1. We have that

P[0,1]2,H(u)(c1, c2, u, au) ≤ π(c1, c2, u, au).

From [18][Thm 2.2, case v-vi] we have that

lim
u→∞

log(π(c1, c2, u, au))

−u2

2
q∗a(1, t

∗)
= 1.

On the other hand for some function h(u), to be specified below, and sufficiently large u so that

t∗ +H2(u) < 1−H1(u) we have

P[0,1]2,H(u)(c1, c2, u, au)

≥ P
{
∀s∈[1−H1(u),1],t∈[t∗,t∗+H2(u)]W

∗
1 (s) > u,W ∗

2 (t) > au
}

≥ P

∀s∈[1−H1(u),1],t∈[t∗,t∗+H2(u)]

W ∗
1 (s) > u

W ∗
2 (t) > au

∣∣∣∣∣ W ∗
1 (1−H1(u)) > u+ h(u)

W ∗
2 (t

∗) > a(u+ h(u))


×P{W ∗

1 (1−H1(u)) > u+ h(u),W ∗
2 (t

∗) > a(u+ h(u))}

≥ P

∀s∈[1−H1(u),1],t∈[t∗,t∗+H2(u)]

W ∗
1 (s)−W ∗

1 (1−H1(u)) > −h(u)

W ∗
2 (t)−W ∗

2 (t
∗) > −ah(u)

∣∣∣∣∣ W ∗
1 (1−H1(u)) = u+ h(u)

W ∗
2 (t

∗) = a(u+ h(u))


×P{W ∗

1 (1−H1(u)) > u+ h(u),W ∗
2 (t

∗) > a(u+ h(u))}

=: P
{
∀s∈[0,H1(u)]W

∗
1 (s) > −h(u)

}
P
{
∀t∈[t∗,t∗+H2(u)]χu(t) > 0

}
×P{W ∗

1 (1−H1(u)) > u+ h(u),W ∗
2 (t

∗) > a(u+ h(u))},

where the last equality holds by independence of increments of Brownian motion and since 1 −

H1(y) > t∗ +H2(u). Using properties of Normal distribution we have that

χu(t) :=

W ∗
2 (t)−W ∗

2 (t
∗) + ah(u)

∣∣∣∣∣ W ∗
1 (1−H1(u)) = u+ h(u)

W ∗
2 (t

∗) = a(u+ h(u))


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is a Gaussian process with

E[χu(t)] =
ρ(t− t∗)(2a2ρ2 − 3aρ+ 1)

1−H1(u)− aρ(1− 2H1(u))
u+

(t− t∗)(2a2ρ3 − aρ2 − 2aρ2 + ρ)

1−H1(u)− aρ(1− 2H1(u))
h(u)+ah(u)+o(h(u)+u)

and

V ar(χu(t)) =
(t− t∗)(2aρ3(t− t∗) + 2H1(u)aρ− ρ2(t− t∗)− aρ−H1(u) + 1)

1−H1(u)− aρ(1− 2H1(u))
.

By picking h(u) such that h(u) = o(u), uH2(u) = o(h(u)) and limu→∞ h(u) = ∞ we have that

E[χu(t)] = ah(u) + o(h(u)).

Therefore, since V ar(χu(t)) is finite and limu→∞ P
{
inft∈[t∗,t∗+H2(u)] χu(t) < 0

}
= 0, we have

lim
u→∞

P
{
∀t∈[t∗,t∗+H2(u)]χu(t) > 0

}
= 1.

With the same choice of h(u) we have that

lim
u→∞

P
{
∀s∈[0,H1(u)]W

∗
1 (s) > −h(u)

}
= 1.

Therefore for large enough u we can write

P[0,1]2,H(u)(c1, c2, u, au) ≥ P{W ∗
1 (1−H1(u)) > u+ h(u),W ∗

2 (t
∗) > a(u+ h(u))}.

Further we have

lim
u→∞

log(P{W ∗
1 (1−H1(u)) > u+ h(u),W ∗

2 (t
∗) > a(u+ h(u))})

− (u+h(u))2

2
q∗a(1, t

∗)

= lim
u→∞

log(P{W ∗
1 (1−H1(u)) > u+ h(u),W ∗

2 (t
∗) > a(u+ h(u))})

−u2

2
q∗a(1, t

∗)
= 1.

Therefore upper and lower bound coincide and the proof of the case t∗ < 1 is complete. □

Proof of Theorem 4.3.2 Note that for any ϵ > 0 we have that for sufficiently large u

|Hi(u)−Hi| < ϵ

and hence

lim
u→∞

q∗a(1−H1, 1−H2)

q∗a(1−H1(u), 1−H2(u))
= 1. (4.7)

Therefore, we consider H(u) = (H1, H2) for constant H1, H2 and by (4.7) the proof also covers any

other H(u), such that limu→∞ H(u) = (H1, H2). We first consider a special case of H1 = H2 = H,

which will allow us to simplify the calculations for the more general case.
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Lower bound. We have that

P[0,1]2,H(u)(c1, c2, u, au) ≥ P[1−H,1]2,H(u)(c1, c2, u, au).

Furthermore using independence of increments of Brownian motion we have for (W̃ ∗
1 (s), W̃

∗
2 (t))

Brownian motion independent of W with W̃
∗ d
= −W ∗

P[1−H,1]2,H(u)(c1, c2, u, au) ≥ P

∀s,t∈[1−H,1]2
W ∗

1 (s) > u

W ∗
2 (t) > au

∣∣∣∣∣ W ∗
1 (1−H) > u+

√
u

W ∗
2 (1−H) > a(u+

√
u)


×P
{
W ∗

1 (1−H) > u+
√
u,W ∗

2 (1−H) > a(u+
√
u)
}

≥ P
{
∀s,t∈[0,H]2W̃

∗
1 (s) <

√
u, W̃ ∗

2 (t) < a
√
u
}

×P
{
W ∗

1 (1−H) > u+
√
u,W ∗

2 (1−H) > a(u+
√
u)
}
.

We have that limu→∞ P
{
∀s,t∈[0,H]2W̃

∗
1 (s) <

√
u, W̃ ∗

2 (t) < a
√
u
}
= 1. Moreover for u → ∞

P
{
W ∗

1 (1−H) > u+
√
u,W ∗

2 (1−H) > a(u+
√
u)
}
∼ 1√

2π|Σ(1−H,1−H)|
e−

(u+
√
u)2

2
q∗a(1−H,1−H).

Therefore

lim
u→∞

log(P[0,1]2,H(u)(c1, c2, u, au))

− (u+
√
u)2

2
q∗a(1−H, 1−H)

= lim
u→∞

log(P[0,1]2,H(u)(c1, c2, u, au))

−u2

2
q∗a(1−H, 1−H)

≥ 1.

Upper bound. Notice that

P[0,1]2,H(u)(c1, c2, u, au) ≤ P[1−H,1]2,H(u)(c1, c2, u, au) + π[0,1−H]2,H(u)(c1, c2, u, au)

≤ P{W ∗
1 (1−H) > u,W ∗

2 (1−H) > au}+ π[0,1−H]2,H(u)(c1, c2, u, au).

Following the proof of [18][Lemma 3.1] we have that since the correlation between W1 and W2 is

positive, then both partial derivatives of the function q∗a(s, t) are positive and hence (1−H, 1−H)

is the optimal point of the function q∗a(s, t) on the interval [0, 1−H]2. With [26] we therefore have

that

lim
u→∞

log(π[0,1−H]2,H(u)(c1, c2, u, au))

−u2

2
q∗a(1−H, 1−H)

= 1.

Furthermore from the properties of two-dimensional random Normal variable we have that

lim
u→∞

log(P{W ∗
1 (1−H) > u,W ∗

2 (1−H) > au})
−u2

2
q∗a(1−H, 1−H)

= 1.
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Therefore, the upper bound agrees with the lower bound and the proof for the case H1 = H2 = H

is complete.

We continue with the proof of case H1 > H2.

Lower bound. We have that

P[0,1]2,H(u)(c1, c2, u, au)

≥ P[1−H1,1]×[1−H2,1],H(u)(c1, c2, u, au)

≥ P

∀s∈[1−H1,1],t∈[1−H2,1]

W ∗
1 (s) > u

W ∗
2 (t) > au

∣∣∣∣∣ ∀r∈[1−H1,1−H2]W
∗
1 (r) > u+

√
u

W ∗
2 (1−H2) > a(u+

√
u)


×P

 ∀r∈[1−H1,1−H2]W
∗
1 (r) > u+

√
u

W ∗
2 (1−H2) > a(u+

√
u)


= P

∀s∈[1−H2,1],t∈[1−H2,1]

W ∗
1 (s) > u

W ∗
2 (t) > au

∣∣∣∣∣ ∀r∈[1−H1,1−H2]W
∗
1 (r) > u+

√
u

W ∗
2 (1−H2) > a(u+

√
u)


×P

 ∀r∈[1−H1,1−H2]W
∗
1 (r) > u+

√
u

W ∗
2 (1−H2) > a(u+

√
u)


≥ P

∀s∈[1−H2,1],t∈[1−H2,1]

W ∗
1 (s) > u

W ∗
2 (t) > au

∣∣∣∣∣ W ∗
1 (1−H2) > u+

√
u

W ∗
2 (1−H2) > a(u+

√
u)


×P

 ∀r∈[1−H1,1−H2]W
∗
1 (r) > u+

√
u

W ∗
2 (1−H2) > a(u+

√
u)


:= P1(u)P2(u).

The asymptotics of P1(u) as u → ∞ can be handled as in previous case for H = H2 and hence we

know that limu→∞ P1(u) = 1. Furthermore for some A > 0 we have that

P2(u) ≥ P

 ∀r∈[1−H1,1−H2]W
∗
1 (r) > u+

√
u

W ∗
2 (1−H2) > a(u+

√
u)

∣∣∣∣∣ W ∗
1 (1−H1) > u+ A

√
u

W ∗
2 (1−H2) > a(u+

√
u)


×P

 W ∗
1 (1−H1) > u+ A

√
u

W ∗
2 (1−H2) > a(u+

√
u)


≥ P

∀r∈[1−H1,1−H2]W
∗
1 (r) > u+

√
u

∣∣∣∣∣ W ∗
1 (1−H1) = u+ A

√
u

W ∗
2 (1−H2) = a(u+

√
u)


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×P

 W ∗
1 (1−H1) > u+ A

√
u

W ∗
2 (1−H2) > a(u+

√
u)


:= P

{
∀r∈[1−H1,1−H2]χu(r) > 0

}
×P

 W ∗
1 (1−H1) > u+ A

√
u

W ∗
2 (1−H2) > a(u+

√
u)

,

where χu(r) is a Gaussian process with

E[χu(r)] = C1(r − (1−H1))u+ C2(r)
√
u+ o(

√
u)

and

V ar(χu(r)) =
−1 + r +H1 +H2 −H2r −H1H2 + ρ2r − ρ2r2 −H1ρ

2r

1−H2 − ρ2(1−H1)

for C1 =
(a−ρ)ρ

1−H2−ρ2(1−H1)
, C2(r) =

A(1−H2−ρ2r)−1+H2+ρ2−aρ+aρr−H1ρ2+H1aρ
1−H2−ρ2(1−H1)

. Notice that by picking large

enough constant A we have that C2(r) > 0 for r close to 1−H1. Therefore we can write that

E[χu(r)] > C
√
u

for large enough u, some positive constant C and any r ∈ [1−H1, 1−H2]. Since variance of χu(r)

does not depend on u and we have continuity of sample paths we therefore have that

lim
u→∞

P
{
∀r∈[1−H1,1−H2]χu(r) > 0

}
= 1.

Further we have that for some constant B

lim
u→∞

log

P

 W ∗
1 (1−H1) > u+ A

√
u

W ∗
2 (1−H2) > a(u+

√
u)




− (u+B
√
u)2

2
q∗a(1−H1, 1−H2)

= lim
u→∞

log

P

 W ∗
1 (1−H1) > u+ A

√
u

W ∗
2 (1−H2) > a(u+

√
u)




−u2

2
q∗a(1−H1, 1−H2)

= 1.

Upper bound. We again have that

P[0,1]2,H(u)(c1, c2, u, au) ≤ P{W ∗
1 (1−H1) > u,W ∗

2 (1−H2) > au}+π[0,1−H1]×[0,1−H2],H(u)(c1, c2, u, au).

Similarly as in case H1 = H2 we see that

lim
u→∞

log(π[0,1−H]2,H(u)(c1, c2, u, au))

−u2

2
q∗a(1−H1, 1−H2)

= 1
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and

lim
u→∞

log(P{W ∗
1 (1−H) > u,W ∗

2 (1−H) > au})
−u2

2
q∗a(1−H1, 1−H2)

= 1.

The upper bound is hence the same as lower bound and the proof of the case H1 > H2 is complete.

In the case H1 < H2 proof would follow the same steps as the proof of the case H1 > H2 and hence

is omitted. □

4.5 Simulations

The aim of this section is to shed some light on the behavior of the ruin probability defined in (4.1)

and to study the practical aspect of calculated asymptotic probability. Recall that

qa(s, t) := a⊤Σ−1
s,ta. (4.8)

To cover the wide variety of the spectrum we will study in depth three cases:

1. a = 1, ρ = 0.75, c1 = −0.5, c2 = 0.25.

(a) Shape of function qa(s, t) with u = 2 (b) Shape of function qa(s, t) with u = 10

Figure 4.1: Plots of function qa(s, t) for the case a = 1, ρ = 0.75, c1 = −0.5, c2 = 0.25.

In this case we observe a high positive correlation between the components. For small values

of u we still see the impacts of drifts and hence the point maximizing (4.8) for a specific
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u is different than the asymptotically optimal point (1,1). However, for sufficiently large u,

impact of drifts vanishes and we see that the theoretical and simulated points maximizing

function q coincide with the point (1, 1) and the behavior of the function is linear-like in both

coordinate directions.

2. a = 0.25, ρ = −0.25, c1 = −0.5, c2 = 0.25.

(a) Shape of function qa(s, t) with u = 2 (b) Shape of function qa(s, t) with u = 10

Figure 4.2: Plots of function qa(s, t) for the case a = 0.25, ρ = −0.25, c1 = −0.5, c2 = 0.25.

In this case we take mildly negatively correlated processes, for which the point maximizing

function q is near the point (1, 0.9). In the t-axis we observe a much slower decay than on the

s-axis. In the close-up we can discover that the behavior there is locally quadratic.

3. a = 0.1, ρ = −0.9, c1 = −1, c2 = −1.
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(a) Shape of function qa(s, t) with u = 2 (b) Shape of function qa(s, t) with u = 10

Figure 4.3: Plots of function qa(s, t) for the case a = 0.1, ρ = −0.9, c1 = −1, c2 = −1.

Finally let us consider the highly negative correlated processes with large drifts. For such

Brownian motions we see the major difference in both the optimal point, which is around the

point (1, 0.09), and the impact of the drifts for small values of u.

We further present the sample realisations of the W ∗
1 ,W

∗
2 processes, which we use to illustrate the

most likely paths of ruin occurrence. The presented cases correspond to the cases analyzed above

in the context of a shape of generalized variance.
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Figure 4.4: Sample realisation of the processes W ∗
1 ,W

∗
2 crossing the threshold for the case a =

1, ρ = 0.75, c1 = −0.5, c2 = 0.25.

In the first case we observe that both the paths are most likely breaking the barrier at the end

of the interval, since both coordinates of the process cooperate to cross the threshold. Note that

since a = 1, the thresholds for both coordinates overlap. Moreover, since the variance of each

components is increasing, the barrier gets easier to be crossed at the end of the interval.
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Figure 4.5: Sample realisation of the processes W ∗
1 ,W

∗
2 crossing the threshold for the case a =

0.25, ρ = −0.25, c1 = −0.5, c2 = 0.25.

In the second case, we usually can observe the second component breaking the barrier a bit earlier

and then falling below the threshold again. This is related to the negative correlation between

processes, however since it is a very mild one and the threshold that the second process has to cross

is relatively small, the impact of the parameters on the optimal point is not major.
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Figure 4.6: Sample realisation of the processes W ∗
1 ,W

∗
2 crossing the threshold for the case a =

0.1, ρ = −0.9, c1 = −1, c2 = −1.

In the last case we see that the high negative correlation impacts the behavior of the optimal point

in a very significant way. The point of crossing the barrier for the second axis has to be relatively

quick, so that the negative correlation does not drag the first component in the negative direction.

4.5.1 Technical details and propositions of improvements

For the purposes of simulations we used Python package ”numba” for parallel calculations, but for

u ≥ 4 due to the increasing amount of points in the grid, the calculations were taking a long time.

To enhance the simulation process one can do the following

1. Exchange equidistant grid to grid concentrated nearby the optimal point of function q.

To avoid the problem of number of points on the interval increasing with u, one can use dense

enough points only in the area that is given by theoretical calculations to be crucial for the

asymptotics. However, with small u this might lead to inaccurate results.
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2. Use clusters of computers or cloud computing.

In many cases the events that we are trying to simulate are very rare events. For the applica-

tion to be practical, the accuracy needs to increase, hence relaxing parameter assumptions is

not a viable solution. However, using stronger machines would allow to run those calculations

in parallel and decently fast and could lead to very interesting results.
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Chapter 5

Non-simultaneous ruin probability for

positively correlated Brownian risk

model

5.1 Introduction

For d ≥ 2 consider the following Brownian risk model

Ri(ti) = ui + citi −Wi(ti), ti > 0, i = 1, 2, . . . , d,

where the vector-valued random fieldW (t) = (Wi(ti))i∈1,2,...,d , t = (t1, t2, . . . , td) is multi-dimensional

Brownian motion defined below and can be interpreted as the accumulated claims of appropriate

business lines, ui > 0 are the initial capitals and ci are the premium rates. The correlation matrix

for the d-dimensional Brownian motion is expressed as

Σt := AA⊤ · (min(ti, tj))i,j∈1,2,...,d = (ρij min(ti, tj))i,j∈1,2,...,d,Σ = Σ(1,1,...,1)

for ρij ∈ (−1, 1), A such that W (t) = AB(t) with B(t) a d-dimensional Brownian motion with

independent components and recall that ”·” representing component-wise multiplication. Further

we denote W ∗(t) = W (t) − c · t. Asymptotics of the multidimensional portfolios has been inves-

tigated deeply in recent years for various models of ruin. In [20] and [31] the simultaneous ruin
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probability for two portfolios

πρ(c1, c2;u, au) = P{∃s ∈ [0, 1] : W ∗
1 (s) > u,W ∗

2 (s) > au}

has been studied. The two-dimensional simultaneous time ruin model was also investigated in [56]

for Parisian type ruins. Moreover, higher dimensional models for simultaneous infinite time ruin

were studied in [50].

The aim of this chapter is to study the non-simultaneous ruin probability, i.e.

πΣ,α(c, u) = P
{
∃t ∈ [0, 1]d : W ∗(t) > αu

}
as u → ∞, where α = (α1, α2, . . . , αd) ∈ Rd, c = (c1, c2, . . . , cd). In the two-dimensional non-

simultaneous setting, see e.g. [18], authors observe that the non-simultaneous ruin probability

depends on the behaviour of the so-called generalized variance function around its maximal point.

Higher dimensions create even more significantly different cases. Denote by W I , tI , cI ,αI the

restriction ofW , t, c,α to the indices from index set I ⊆ {1, 2, . . . , n}. Notice that (sinceWi(0) = 0)

if αi ≤ 0, then for I = {1, . . . , i− 1, i+ 1, . . . , d} we have as u → ∞

P
{
∃t ∈ [0, 1]d : W ∗(t) > αu

}
∼ P

{
∃t ∈ [0, 1]d : W ∗

I(tI) > αIu
}
,

i.e. coordinate i is negligible. Hence without loss of generality in the rest of this chapter we can

assume α > 0. From (1.4) we have that covariance matrix Σt is non-singular. We define

qα(t) := αΣ−1
t α⊤

and set

q∗α(t) = min
x≥α

qx(t), q∗α = min
t∈[0,1]d

q∗α(t). (5.1)

As it was established in e.g. [26]

lim
u→∞

1

u2
logP{W ∗(t) > αu} = −q∗α(t)

2
(5.2)

and

lim
u→∞

1

u2
logP{∃t∈[0,1]d : W

∗(t) > αu} = −q∗α
2
. (5.3)

Hence the shape of function qα plays a crucial role in understanding the behaviour of the asymp-

totics and will be investigated thoroughly in further parts of the paper.
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5.2 Main result

Before stating the main results we present an accurate bound for πΣt,α(c, u), that can be calculated

thanks to the assumption A ≩ 0.

Theorem 5.2.1 If A ≩ 0 and α > 0 then

P{W ∗(1) > αu} ≤ πΣt,α(c, u) ≤ CP{W ∗(1) > αu},

where C = 1∏d
i=1 Ψ(max(0,c′i))

with c′ = Σ− 1
2 c.

Let φ(·) denote the probability density function of W (1). The next result constitutes the main

finding of this chapter.

Theorem 5.2.2 If A ≩ 0, t ∈ [0, 1]d and αΣ−1
t > 0,α > 0 then as u → ∞

πΣt,α(c, u) ∼ CΣt,αu
−dφ(αu+ c), (5.4)

where

CΣt =

∫
Rd

P
{
∃t ∈ [0,∞)d : W (t)−α · t > x

}
eαΣ−1

1 x⊤
dx ∈ (0,∞).

The above results coincide with two-dimensional results found in [18] for ρ > 0. If the correla-

tion between processes is positive, then the asymptotics focuses on the area that maximises the

variance for each individual process, which in this case is 1. Similar behaviour was observed for two-

dimensional process also in [20], where the asymptotics for simultaneous two-dimensional Brownian

motion was studied.

5.3 Proofs

Proof of Theorem 5.2.1 The lower bound is straightforward, since we replace the suprema

over the whole set with just value at point t = 1. For the upper bound we will use similar idea as

in [18][Theorem 1.1] and apply the bound

P

{
sup
t∈[0,1]

(B(t)− ct) > u

}
≤ P{B(1) > u+ c}

Ψ(max (0, c))
, (5.5)
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see [20, 54]. For B∗(t) being d−dimensional Brownian motion with independent components and

drift c′ = A−1c we have

πΣt,α(c, u) = P
{
∃t∈[0,1]dAB

∗(t) > αu
}
.

By the assumption that A > 0 we have

P
{
∃t∈[0,1]dAB

∗(t) > αu
}

≤ P{AV > αu}

where (V )i = supt∈[0,1]B
∗
i (t). Further let gi denote the joint density of (V1, . . . , Vi−1, B

∗
i+1(1), . . . , B

∗
d(1)),

which exist due to [6][Theorem 7.1]. Then, with (5.5)

πΣt,α(c, u) ≤ P{AV > αu}

=

∫
Rd−1

P
{
A(x1, . . . , xd−1, Vd)

⊤ > αu
}
gd(x1, x2, . . . , xd−1)d(x1, x2, . . . , xd−1)

≤
∫
Rd−1

P
{
A(x1, . . . , xd−1, B

∗
d(1))

⊤ > αu
}

Ψ(max (0, c′d))
gd(x1, x2, . . . , xd−1)d(x1, x2, . . . , xd−1)

=
1

Ψ (max (0, c′d))
P
{
A(V1, . . . , Vd−1, B

∗
d(1))

⊤ > αu
}

=
1

Ψ (max (0, c′d))

∫
Rd−1

P
{
A(x1, . . . , xd−2, Vd−1, xd)

⊤ > αu
}

gd−1(x1, x2, . . . , xd)d(x1, x2, . . . , xd−2, xd)

≤ 1

Ψ (max (0, c′d))

1

Ψ
(
max

(
0, c′d−1

))
×
∫
Rd−1

P
{
A(x1, . . . , xd−2, B

∗
d−1(1), xd−1)

⊤ > αu
}

gd−1(x1, x2, . . . , xd−2, xd)d(x1, x2, . . . , xd−2, xd)

=
1

Ψ (max (0, c′d))

1

Ψ
(
max

(
0, c′d−1

))P{A(V1, . . . , Vd−2, B
∗
d−1(1), B

∗
d(1))

⊤ > αu
}

Using iterative arguments we finally get

πΣt,α(c, u) ≤ 1∏d
i=1Ψ(max (0, c′i))

P{AB∗(1) > αu}

=
1∏d

i=1Ψ(max (0, c′i))
P{W ∗(1) > αu}.

This completes the proof. □

The following lemma will be useful in the proof of Theorem 5.2.2.

Lemma 5.3.1 Assume A ≩ 0,αΣ−1
t > 0, t ∈ [0, 1]d. Then for any t ∈ [0, 1]d and any s in the

neighbourhood of t there exist vectors of positive coordinates Ct ∈ R+
d such that as s → t

qα(s)− qα(t) = Ct · (t− s)(1 + o(1)).

69

70:35781



Proof of Lemma 5.3.1 We observe that for any i ∈ (1, . . . , d) we have

∂

∂ti
qα(t) = α

∂

∂ti
Σ−1

t α⊤

= −αΣ−1
t

(
∂

∂ti
Σt

)
Σ−1

t α⊤ < 0, (5.6)

where the last inequality follows from αΣ−1
t = (Σ−1

t α⊤)⊤ ≩ 0 and the fact that Σt by definition is

non-decreasing in each coordinate. Using multidimensional Taylor expansion we get that

qα(s)− qα(t) = ∇q(t) · (s− t) +O((t− s) · (t− s)),

where ∇q denotes the gradient of function q. With (5.6) we have that ∇q(t) < 0 and hence the

proof is complete. □

Remark 5.3.2 It follows from the proof of Lemma 5.3.1 that if A ≩ 0,αΣ−1
t > 0, t ∈ [0, 1]d, then

function qα(t) attains its unique minimum over set [0, 1]d at t = 1.

Next for any ∆ > 0 let

ku = (1− (k1 − 1)∆

u2
, . . . , 1− (kd − 1)∆

u2
) (k + 1)u = (1− k1∆

u2
, . . . , 1− kd∆

u2
),

where ∀i∈1,...,dki ∈ {1, 2, . . . , ⌊u log u⌋}. Denote also Eku = [(k + 1)u,ku] and E = [−∆, 0]d. Let

I(∆) = lim
u→∞

∫
Rd

P
{
∃t ∈ E : W (

t

u2
+ ku)−W (ku) >

x

u

∣∣∣W ∗(ku) = αu− x

u

}
eαΣ−1

1 x⊤
dx.

Lemma 5.3.3 Let Σt ≩ 0,∆ > 0,α > 0 be given. Then as u → ∞

P{∃t ∈ Eku : W ∗(t) > αu} = I(∆)u−de−u2C·(1−ku)φ(αu+ c),

with

I(∆) < ∞.

Moreover, for ku = 1, for large enough u we have that

I(∆) =

∫
Rd

P
{
∃t ∈ [0,∆]d : W (t)−α · t > x

}
eαΣ−1

1 x⊤
dx.
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Proof of Lemma 5.3.3 By the total probability formula we have

P{∃t ∈ Eku : W ∗(t) > αu}

= u−d

∫
Rd

P
{
∃t ∈ Eku : W ∗(t) > αu

∣∣∣W ∗(ku) = αu− x

u

}
φku(αu+ ck⊤

u − x

u
)dx

= u−d

∫
Rd

P
{
∃t ∈ E : W (

t

u2
+ ku)−W (ku) >

x

u

∣∣∣W ∗(ku) = αu− x

u

}
φku(αu+ ck⊤

u − x

u
)dx,

where

φku(αu+ ck⊤
u − x

u
) :=

1

(2π)
d
2 |Σku|

e−
1
2
(αu+ck⊤

u −x
u
)Σ−1

ku
(αu+ck⊤

u −x
u
)⊤

=
1

(2π)
d
2 |Σku|

e−
1
2
(αu+ck⊤

u −x
u
)Σ−1

ku
(αu+ck⊤

u −x
u
)⊤e

1
2
(αu+c)Σ−1(αu+c)⊤− 1

2
(αu+c)Σ−1(αu+c)⊤

=
1

(2π)
d
2 |Σku|

e−
1
2
(αu+c)Σ−1(αu+c)⊤e−( 1

2
(αu+c)Σ−1

ku
(αu+c)⊤− 1

2
(αu+c)Σ−1(αu+c)⊤)

×e−(ku−1−x
u
)Σ−1(αu+ck⊤

u −x
u
)⊤

=
1

(2π)
d
2 |Σku|

e−
1
2
(αu+c)Σ−1(αu+c)⊤e−

1
2
(qα(ku)−qα(1))e−( 1

2
c(Σ−1

ku
−Σ−1)(αu+c)⊤

×e−(ku−1)Σ−1
ku

(αu+ck⊤
u −x

u
)⊤eαΣ−1x⊤

e
x
u
Σ−1

ku
(ck⊤

u −x
u
)⊤ .

Finally, using Lemma 5.3.1 we have that for some vector C > 0

qα(ku)− qα(1) = C · (1− ku)(1 + o(1))

and hence as u → ∞

lim
u→∞

φku(αu+ ck⊤
u − x

u
)

φ(αu+ c)e−u2C·(1−ku)eαΣ−1x⊤ = 1.

Hence it remains to investigate the behaviour of

I(∆) =

∫
Rd

P
{
∃t ∈ E : W (

t

u2
+ ku)−W (ku) >

x

u

∣∣∣W ∗(ku) = αu− x

u

}
eαΣ−1

1 x⊤
dx

:=

∫
Rd

P
{
∃t ∈ [0,∆]d : Xku(t) > x

}
eαΣ−1

1 x⊤
dx

with

Xku(t) := W (
t

u2
+ ku)−W (ku) >

x

u

∣∣∣W ∗(ku) = αu− x

u

and Xku(t) is a Gaussian process with mean

E[Xku(t)] = u(SΣ−1
ku
(αu+ ck⊤

u − x

u
)⊤)
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and covariance matrix

ΣXku (t)
= u2(ΣW (ku− t

u2
)−W (ku) − SΣ−1

ku
S⊤),

where

S = Cov(W (ku −
t

u2
)−W (ku),W (ku)).

Observe that

Si,j =


0, if ki < kj

−σi,jti
u2 , else

, ΣW (ku+
t
u2

)−W (ku) =
1

u2
Σt.

We prove finitness of the integral above by induction. Case d = 2 was proven in [18]. Suppose that

for every k < n ∫
Rk

P
{
∃t ∈ [0,∆]k : Xku(t) > x

}
eαΣ−1

1 x⊤
dx < ∞. (5.7)

We aim to show that ∫
Rn

P{∃t ∈ [0,∆]n : Xku(t) > x}eαΣ−1
1 x⊤

dx < ∞.

Denote by Ji = 1, 2, . . . , n \ {i}. Now observe that using that αΣ−1 > 0 there exists C > 0 such

that ∫
Rn

P{∃t ∈ [0,∆]n : Xku(t) > x}eαΣ−1
1 x⊤

dx

≤
∫
Rn
+

P{∃t ∈ [0,∆]n : Xku(t) > x}eαΣ−1
1 x⊤

dx

+
n∑

i=1

∫
R−

eCxidxi

∫
Rn−1

P
{
∃t ∈ [0,∆]n−1 : Xku,Ji(tJi) > xJi

}
eαJi

(Σ−1
1 )Jix

⊤
JidxJi ,

where R+ = [0,∞) and R− = (−∞, 0). Hence using (5.7) it remains to show that∫
Rn
+

P{∃t ∈ [0,∆]n : Xku(t) > x}eαΣ−1
1 x⊤

dx < ∞.

Since αΣ−1 ≥ 0 and ∆ < ∞, using [66][Thm 8.1] we have that there exist constants C1, C2 > 0

such that as u → ∞∫
Rn
+

P{∃t ∈ [0,∆]n : Xku(t) > x}eαΣ−1
1 x⊤

dx ≤
∫
Rn
+

P

{
∃t ∈ [0,∆]n :

n∑
i=1

Xku,i(ti) >
n∑

i=1

xi

}
eαΣ−1

1 x⊤
dx
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≤
∫
Rn
+

C1e
−C2(

∑n
i=1 xi)

2

eαΣ−1
1 x⊤

dx < ∞.

Finally using dominated convergence theorem, for ku = 1 we get as u → ∞

S = − t

u2
Σ,

hence

E[Xku(t)] = −α · t+O

(
1

u

)
and

ΣXku (t)
= Σ+O

(
1

u2

)
1 . . . 1

...
. . .

...

1 . . . 1


and therefore as u → ∞

I(∆) ∼
∫
Rd

P
{
∃t ∈ [0,∆]d : W (t)−α · t > x

}
eαΣ−1

1 x⊤
dx.

□

Lemma 5.3.4 Let Σt > 0,αΣ−1
t > 0. Then∫

Rd

P
{
∃t ∈ [0,∆]d : W (t)−α · t > x

}
eαΣ−1

1 x⊤
dx ∈ (0,∞).

Proof of Lemma 5.3.4 Note that for x < 0 we have

P
{
∃t ∈ [0,∆]d : W (t)−α · t > x

}
= 1.

Further since αΣ−1
1 > 0, then∫

Rd

P
{
∃t ∈ [0,∆]d : W (t)−α · t > x

}
eαΣ−1

1 x⊤
dx ≥

∫
R−

d

eαΣ−1
1 x⊤

dx > 0.

Recall that for µ > 0 and X a d−dimensional random vector with finite moment generating

function we have ∫
Rd

P{X > x}eµ·xdx =
1∏n

i=1 µi

E[eµ⊤X ].

Take ∆ = n and denote λ = αΣ−1
1 . Then

I(n) ≤
n−1∑
i=0

∫
Rd

P{∃t ∈ [i, i+ 1] : W (t)−α · t > x}eαΣ−1
1 x⊤

dx
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=
1∏d

i=1 λi

n−1∑
i=0

E[eλ⊤M(i)],

where

M(i) = sup
s∈[i,i+1]

W (s)−α · s.

Let i = (i1, i2, . . . , id), where without loss of generality i1 ≤ i2 ≤ · · · ≤ id and (j1, . . . , jm) be a vector

of unique values of i, where j1 < j2 < · · · < jm. Define for b ∈ {1, . . . ,m}lb = mink∈(1,2,...,d){ik = jb}.

Then using independence of increments of Brownian motion we have

M(i) = sup
s∈[i,i+1]

W (s)−α · s− (0, . . . ,Wlm(jm), . . . ,Wd(jm)) + (0, . . . ,Wlm(jm), . . . ,Wd(jm))

= sup
s∈[i,i+1]

(W1(s1), . . . ,Wlm−1(slm−1),Wl(jm), . . . ,Wd(jm))−α · s

+(0, . . . , 0,Wlm(slm)−Wl(jm), . . . ,Wd(sd)−Wd(jm))

= sup
s∈[(i1,...,ilm−1),(i1,...,ilm−1)+1]

(W1(s1), . . . ,Wlm−1(slm−1),Wl(jm), . . . ,Wd(jm))− (α1, . . . , αlm−1) · s

−(αlm , . . . , αd) · (jm, . . . , jm) + sup
t∈[0,1]d−lm+1

(0, . . . , 0, W̄lm(t1), . . . , W̄d(td−lm+1))

−(0, . . . , 0, αlm , . . . , αd) · (0, . . . , 0, t)

:= sup
s∈[(i1,...,ilm−1),(i1,...,ilm−1)+1]

(W1(s1), . . . ,Wlm−1(slm−1),Wl(jm), . . . ,Wd(jm))

−(α1, . . . , αd) · (s, jm, . . . , jm) +Qm,

where W̄ is an independent copy of W . If m > 1 then again with independence of increments we

get

M(i) = sup
s∈[(i1,...,ilm−1),(i1,...,ilm−1)+1]

(W1(s1), . . . ,Wlm−1−1(slm−1−1),Wlm−1(jm−1), . . . ,Wd(jm−1))

−(α1, . . . , αd) · (s, jm, . . . , jm)

+(0, . . . , 0,Wlm(jm)−Wlm(jm−1 + 1), . . . ,Wd(jm)−Wd(jm−1 + 1))

+(0, . . . , 0,Wlm−1(slm−1)−Wh(jm−1), . . . ,Wlm−1(slm−1)−Wlm−1(jm−1), 0, . . . , 0)

+(0, . . . , 0,Wlm(jm−1 + 1)−Wlm(jm−1), . . . ,Wd(jm−1 + 1)−Wd(jm−1)) +Qm

= sup
s∈[(i1,...,ilm−1−1),(i1,...,ilm−1−1)+1]

(W1(s1), . . . ,Wlm−1−1(slm−1−1),Wh(jm−1), . . . ,Wd(jm−1))

−(α1, . . . , αd) · (s, jm−1, . . . , jm−1, jm, . . . , jm)

+(0, . . . , 0,W lm(jm − jm−1 − 1), . . . ,W d(jm − jm−1 − 1))

+ sup
t∈[(ilm−1

,...,ilm−1),(ilm−1
,...,ilm−1)+1]

(0, . . . , 0,Wlm−1(slm−1)−Wlm−1(jm−1),
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. . . ,Wlm−1(slm−1)−Wlm−1(jm−1), 0, . . . , 0)

+(0, . . . , 0,Wlm(jm−1 + 1)−Wlm(jm−1), . . . ,Wd(jm−1 + 1)−Wd(jm−1)) +Qm

= sup
s∈[(i1,...,ilm−1−1),(i1,...,ilm−1−1)+1]

(W1(s1), . . . ,Wlm−1−1(slm−1−1),Wlm−1(jm−1), . . . ,Wd(jm−1))

−(α1, . . . , αd) · (s, jm−1, . . . , jm−1, jm − 1, . . . , jm − 1)

+(0, . . . , 0,W lm(jm − jm−1 − 1), . . . ,W d(jm − jm−1 − 1))

+ sup
t∈[0,1]lm−lm−1

(0, . . . , 0, W̃lm−1(t1), . . . , W̃lm−1(tlm−lm−1), 0, . . . , 0)

+(0, . . . , 0, W̃lm(1), . . . , W̃d(1)) +Qm

−(0, . . . , 0, αlm−1 , . . . , αlm−1, 0, . . . , 0) · (0, . . . , 0, t, 1, . . . , 1)

:= sup
s∈[(i1,...,ilm−1−1),(i1,...,ilm−1−1)+1]

(W1(s1), . . . ,Wlm−1−1(slm−1−1),Wlm−1(jm−1), . . . ,Wd(jm−1))

−(α1, . . . , αd) · (s, jm−1, . . . , jm−1, jm − 1, . . . , jm − 1)

+(0, . . . , 0,W lm(jm − jm−1 − 1), . . . ,W d(jm − jm−1 − 1)) +Qm−1 +Qm,

where W , W̃ are independent copies of W , also independent of W̄ . Iterating for all m steps, in

the end we get that for some C ∈ Rd

M(i) =
m∑
j=1

Qj + (W1(j1), . . . ,Wl2−1(j1),Wl2(j2)− 1, . . . ,Wl3−1(j2)− 1, . . . ,Wlm(jm)− (m− 1))

−α · (j1, . . . , j1, j2 − 1, . . . , j2 − 1, . . . , jm − (m− 1))

≤ C +
m∑
j=1

Qj + (W ∗
1 (j1), . . . ,W

∗
l2−1(j1),W

∗
l2
(j2), . . . ,W

∗
l3−1(j2), . . . ,W

∗
lm(jm))

where

Qj = sup
t∈[0,1]lj+1−lj

(0, . . . , 0,Wlj(t1), . . . ,Wlj+1−1(tlj+1−lj),Wlj+1
(1), . . . ,Wd(1))

−(0, . . . , 0, αlj , . . . , αd) · (0, . . . , 0, t, 1, . . . , 1)

with lm+1 = d+ 1. Denote Qm,i =
∑m

j=1 Qj and further

Q∗ = max
m∈{1,...,d}

max
i∈perm({1,...,d})

λ⊤Qm,i.

Since with [1][Thm. 5.1] we have that Qm,i < ∞, hence using that d < ∞ we have that

I(n) ≤ 1∏d
i=1 λi

eλ
⊤CeQ

∗
n−1∑
i=0

E[eλ
⊤(W ∗

1 (j1),...,W
∗
l2−1(j1),W

∗
l2
(j2),...,W ∗

l3−1(j2),...,W
∗
lm

(jm))],
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For A(t)A(t)⊤ = Σt, χ := (W1(j1), . . . ,Wl2−1(j1),Wl2(j2), . . . ,Wl3−1(j2), . . . ,Wlm(jm)) we have

E[eλ⊤χ] =
m∏
k=1

lm−1∏
v=0

E[e(A(i)⊤λ)ijk+v
Bijk+v

(jk)]

=
m∏
k=1

lm−1∏
v=0

e
jk(A(i)⊤λ)2ijk+v

2 = e
λ⊤Σiλ

2

≤ e
α⊤Σ−1

1 ΣΣ−1
1 α·i

2 = e
α⊤Σ−1

1 α·i
2

= e
λ⊤α·i

2 .

Therefore

I(n) ≤ 1∏d
i=1 λi

eλ
⊤CeQ

∗
n−1∑
i=0

e
λ⊤α·i

2
−λ⊤α·i

=
1∏d

i=1 λi

eλ
⊤CeQ

∗
n−1∑
i=0

e−
λ⊤α·i

2 < ∞.

By letting n → ∞ we obtain the claim. □

Proof of Theorem 5.2.2 Define b(t) := αΣ−1
t > 0. Notice that for any H ⊂ [0, 1]d we can write

P{∃t∈HW (t) > αu} ≤ P
{
∃t∈H

b(t)W (t)⊤

b(t)α⊤ > u

}
.

Further denote by Z(t) := b(t)W (t)
b(t)α

and observe that

V ar(Z(t)) =
1

qα(t)
.

From Remark 5.3.2 we have that function qα is minimised at 1. For any ϵ > 0 define

Hϵ = [1− ϵ, 1]d, Fu = [1− 1

u
, 1]d.

Since supt∈[0,1]d\Hϵ
V ar(Z(t)) < V ar(Z(1)), hence for any small enough ϵ using Borell-TIS inequal-

ity (see e.g. [Thm 2.6.1] [2]) we have

P
{
∃t∈[0,1]d\Hϵ

W (t) > αu
}
≤ e−r u

2V ar(Z(1)) ,

for large enough u and some r > 1. Since C is independent of u this also gives us that

P
{
∃t∈[0,1]d\Hϵ

W ∗(t) > αu
}
≤ e−r′ u

2V ar(Z(1)) , (5.8)
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for large enough u and some r′ > 1. Next notice that using Taylor expansion we see that for all

t ∈ Hϵ \ Fu we have

V ar(Z(1))− V ar(Z(t)) > τ
1

u

for large enough u and some τ > 0. Since Z is a Hölder continous random field, then applying

[66][Thm 8.1] for some C1, C2, c1 > 0 we have

P
{
∃t∈Hϵ\FuW (t) > αu

}
≤ P

{
∃t∈Hϵ\Fu

Z(t)√
V ar(Z(t))

>
u√

V ar(Z(t))

}

≤ P

{
∃t∈Hϵ\Fu

Z(t)√
V ar(Z(t))

>
u√

V ar(Z(1))− τ
u

}

≤ C1u
c1e

− u2

2(V ar(Z(1))− τ
u )

∼ C1u
c1e−

u2

2V ar(Z(1))
−C2u.

Hence we can also get for some C ′
1, C

′
2, c

′
1 > 0

P
{
∃t∈Hϵ\FuW

∗(t) > αu
}

≤ C ′
1u

c′1e−
u2

2V ar(Z(1))
−C′

2u. (5.9)

Next, using Lemma 5.3.3 for any ∆ > 0 we get

πΣt,α(c, u) ≥ P
{
∃t ∈ [1− ∆

u2
, 1]d : W ∗(t) > αu

}
= I(∆)u−dφ(αu+ c),

where

I(∆) =

∫
Rd

P
{
∃t ∈ [0,∆]d : W (t)−α · t > x

}
eαΣ−1

1 x⊤
dx.

Inequalities (5.8) and (5.9) give us that

P
{
∃t∈[0,1]d\Fu

W ∗(t) > αu
}
= o (P{∃t∈FuW

∗(t) > αu}) .

Hence with Nu = (⌊ u
∆
⌋, . . . , ⌊ u

∆
⌋) we have

πΣt,α(c, u) ≤ P{∃t∈FuW
∗(t) > αu}(1 + o(1))

≤
Nu∑
i=1

P{∃t ∈ Eiu : W ∗(t) > αu}(1 + o(1)).
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For any 1 < i < Nu denote E ′
iu−k = [iu − k

u2 , iu]. With Lemma 2.2.4 and Lemma 5.3.1 we have

that for some C > 0

P{∃t ∈ Eiu : W ∗(t) > αu} ≤
(∆,...,∆)∑

k=1

P
{
∃t ∈ E ′

iu−k : W ∗(t) > αu
}

≤ ∆d max
k∈(1,(∆,...,∆))

P
{
∃t ∈ E ′

iu−k : W ∗(t) > αu
}

≤ ∆du−de−u2C(1−iu)⊤φ(αu+ c) max
k∈(1,(∆,...,∆))

Iiu−k,

where

Iiu−k =

∫
Rn

P{∃t ∈ [0, 1]n : Xiu−k(t) > x}eαΣ−1
1 x⊤

dx

withXiu−k(t) defined as in Lemma 2.2.4. Using the proof of Lemma 2.2.4 for any k ∈ (1, (∆, . . . ,∆))

we have that Iiu−k < ∞ and hence maxk∈(1,(∆,...,∆)) Iiu−k < ∞. Therefore we have that

πΣt,α(c, u) ≤ P
{
∃t ∈ [1− ∆

u2
, 1]d : W ∗(t) > αu

}
+

∑
1<i<Nu

∆d max
k∈(1,(∆,...,∆))

Iiu−ku
−de−u2C(1−iu)⊤φ(αu+ c)(1 + o(1))

= P
{
∃t ∈ [1− ∆

u2
, 1]d : W ∗(t) > αu

}
+

∑
1<i<Nu

∆d max
k∈(1,(∆,...,∆))

Iiu−ku
−de−∆Ci⊤φ(αu+ c)(1 + o(1)).

Using the above we get that with C = (C1, C2, . . . , Cd) > 0 and some C > 0 we have

πΣt,α(c, u) ≤ u−dφ(αu+ c)I(∆)(1 + o(1)) + Cu−d∆dφ(αu+ c)
d∏

j=1

e−Cj∆

1− e−Cj∆
(1 + o(1)).

Using Lemma 5.3.4 to observe that lim∆→∞ I(∆) ∈ (0,∞), we let ∆ → ∞ and get that

πΣt,α(c, u) ≤
∫
Rd

P
{
∃t ∈ [0,∞)d : W (t)−α · t > x

}
eαΣ−1

1 x⊤
dxu−dφ(αu+ c)(1 + o(1)),

which completes the proof. □
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