
Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Rozprawa doktorska

Krzysztof Kowalski

Asymptotyczne zachowanie ekstremalnej pozycji w
gałązkowym spacerze losowym

Promotor:
prof. dr hab. Dariusz Buraczewski

Wrocław 2025



University of Wrocław
Department of Mathematics and Computer Science

Doctoral thesis

Krzysztof Kowalski

Asymptotic behavior of the extremal position in a
branching random walk

Supervisor:
prof. dr hab. Dariusz Buraczewski

Wrocław 2025

2:49768



Streszczenie

Procesy gałązkowe stanowią dynamicznie rozwijający się obszar teorii praw-
dopodobieństwa. Początkowo wykorzystywane do opisu prostych procesów naro-
dzin i śmierci, znalazły następnie szerokie zastosowania w fizyce oraz biologii, w
tym w modelowaniu reakcji nuklearnych czy dynamiki epidemii.

Klasyczny gałązkowy spacer losowy rozpoczyna się od pojedynczej cząstki umie-
szczonej w punkcie początkowym. W chwili 1 cząstka ta znika, a jej miejsce zajmuje
losowa liczba nowych cząstek, z których każda przyjmuje losową pozycję. W kole-
jnych chwilach każda cząstka niezależnie powtarza ten proces - jest zastępowana
przez losową liczbę potomków, których pozycje powstają w wyniku losowego prze-
sunięcia pozycji rodzica. Proces ten jest kontynuowany w nieskończoność. W tej
rozprawie rozważane są dwie modyfikacje gałązkowych spacerów losowych: modele
wielotypowe oraz modele z zaburzeniami.

Model wielotypowy stanowi naturalne uogólnienie konstrukcji klasycznej, umożli-
wiając analizę cząstek należących do odmiennych klas, które determinują zarówno
rozkład pozycji, jak i liczebność potomstwa. Pozwala to na opis zjawisk o większym
stopniu złożoności, takich jak dynamika populacji komórek o zróżnicowanych feno-
typach. Uwzględnienie wielu typów prowadzi do możliwości interakcji między nimi,
co może skutkować zaskakującymi zachowaniami, takimi jak rozprzestrzenianie się
populacji w znacząco wyższym tempie, niż ma to miejsce w modelu z którymkolwiek
z typów rozważanym osobno.

Model z zaburzeniami wprowadza dodatkową losowość do mechanizmu ustalania
pozycji cząstki, co zwiększa elastyczność w opisie procesów stochastycznych. Dłu-
goterminowe własności takiego modelu mogą wykazywać istotne różnice względem
klasycznego przypadku.

Analiza asymptotycznego zachowania ekstremalnej pozycji stanowi od wielu lat
przedmiot intensywnych badań w kontekście klasycznych gałązkowych spacerów
losowych, ponieważ dostarcza zasadniczych informacji o długoterminowej dynam-
ice procesu i umożliwia pogłębione zrozumienie mechanizmów występujących w
biologii, fizyce czy epidemiologii. Głównym celem niniejszej rozprawy jest opisanie
tego zachowania w obu wymienionych wyżej modyfikacjach w możliwie najbardziej
ogólnym ujęciu.
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Abstract

Branching processes are a rapidly developing area of probability theory. Initially
introduced to describe simple birth-and-death dynamics, they have subsequently
found numerous applications in physics and biology, including models of nuclear
reactions and epidemic spread.

The classical branching random walk starts with a single particle located at the
origin. At time 1, this particle dies and is replaced by a random number of randomly
placed offspring. At the next time step, every particle repeats the process and is
again replaced by a random number of descendants whose positions are determined
by a random displacement of the parent’s position. The process is then iterated
indefinitely. In this thesis, we investigate two modifications of branching random
walks: multi-type models and perturbed models.

The multi-type branching random walk is a natural generalization of the stan-
dard model, allowing for particles belonging to distinct classes. These classes de-
termine both the offspring distribution and the displacement law of each particle.
This framework enables the description of more complex phenomena, such as the
dynamics of cell populations with different phenotypes. The interaction between
different types may lead to surprising results, including propagation at significantly
higher speeds than in any of the corresponding single-type models.

The perturbed branching random walk introduces an additional source of ran-
domness in determining particle positions, providing greater flexibility in modeling
stochastic systems. The long-term behavior of such models can differ significantly
from that of the classical setting.

The asymptotic behavior of the maximal position has been a central topic of
research in the context of classical branching random walks, as it gives fundamental
insights into the long-term dynamics of the process and allows for a deeper under-
standing of complex mechanisms arising in biology, physics, and epidemiology. The
principal objective of this thesis is to provide as general as possible a description of
this behavior in both models mentioned above.
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1 Introduction

Branching processes are fundamental models in probability theory, with applications
in biology, physics, and computer science. In this setting, a population evolves
through both reproduction and random movement in space. Two central objects in
this theory are the Branching Brownian Motion (BBM) and the Branching Random
Walk (BRW).

We begin this chapter with the introduction of BBM, a continuous-time and
continuous-space model and its connection to the Fisher-Kolmogorov-Petrovskii-
Piskunov (F-KPP) equation. From there, we transition to the BRW, which is a
discrete analogue of BBM, and we finish this chapter with the introduction of two
modifications that are the focus of this thesis, namely multi-type and perturbed
BRWs. Our main results describe the asymptotic behavior of the extremal position
in both models mentioned above. In Chapters 2 and 3 we present the limit theorems
regarding multi-type processes. Chapter 4 is dedicated to the perturbed model,
and the results presented there have been published in ESAIM: Probability and
Statistics [38].

1.1 Branching Brownian Motion

Branching Brownian Motion is a stochastic process where particles move accord-
ing to independent Brownian motions and branch at exponential times. Formally,
starting with a single particle placed at the origin, it moves according to standard
Brownian motion, and after an exponential time with rate 1, splits into two parti-
cles, which continue the process independently. Let N(t) be the number of particles
in the system at time t, and X1(t), X2(t), . . . , XN(t)(t) their positions. A connec-
tion arises between BBM and a nonlinear partial differential equation known as the
F-KPP equation:

∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u),

u(0, x) = f(x).

This equation was introduced in the 1930s by Fisher [26] and Kolmogorov-Petrovskii-
Piskunov [39] to model gene propagation in a population. The equation can be
solved for a wide class of functions f , but within the probabilistic context the func-
tion of particular interest is

f(x) = 1[0,∞)(x).

7
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McKean [42] showed that in this case the F-KPP equation describes the probability
that all particles in a BBM remain to the left of position x at time t:

u(t, x) = E

N(t)∏
i=1

f (x−Xi(t))

 = P
(

max
1≤i≤N(t)

Xi(t) ≤ x

)
.

The F-KPP equation admits a traveling wave solution of the form

u(t, x) = ϕ
(
x−

√
2t
)
.

By Bramson [14, 15]and Lalley and Selke [40], Mt = maxi≤N(t)Xi(t) satisfies the
law of large numbers,

Mt

t

a.s.−−−→
n→∞

√
2,

and with centering m(t) =
√
2t− 3

2
3
2
log t,

P(Mt −m(t) ≤ x) −−−→
n→∞

E
[
exp{−cD∞e

−
√
2x}
]
= ϕ(x)

where c > 0 is a constant and D∞ is a random variable depending on the branching
mechanism. These connections provide additional motivation for studying branch-
ing processes and the properties of the maximal position in particular.

1.2 Branching Random Walks

A natural discrete analog of BBM is the Branching Random Walk. BRWs found
many applications in physics and biology, including modeling nuclear chain reactions
[18] and the spread of epidemics [25]. Formally, a BRW is constructed as follows.
The process starts with a single particle placed at 0. Given a point process Z =∑N

k=1 δξk on R, where N , denoting the size of the offspring, is a random variable
on N0, the original particle at time 1 dies and gives birth to N particles positioned
according to Z. These particles are called the first generation of the process. At
time 2, each of these particles reproduces independently and has offspring with
positions relative to their parents’ position given by an independent copy of Z.

The process continues infinitely. As a result, we obtain a marked tree (S,T),
where the tree T is the set of all particles equipped with the natural tree structure,
and Sv is the position of a given particle v ∈ T.

We write |v| for the generation of v and m = E[N ] for the mean number of
offspring. For a BRW with displacements given by ξ, let

Rn = sup
|v|=n

Sv

8
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0

ξ2 ξ3ξ1

ξ1 + ξ11 ξ1 + ξ12 ξ3 + ξ31

ξ1 + ξ12 + ξ121 ξ1 + ξ12 + ξ122 ξ3 + ξ31 + ξ311

Figure 1: Branching random walk diagram.

denote the position of the most right particle at time n. The asymptotic behavior of
Rn is most commonly studied under the following exponential moment assumption:

there exists θ > 0, such that E

[
n∑
i=1

eθξi

]
<∞. (1.1)

Within this framework, we can define the log-Laplace transform of Z:

ν(θ) = logE

[
N∑
i=1

eθξi

]
,

and the critical parameter:

θ0 = inf {θ > 0 : ν(θ) = θν ′(θ)} , (1.2)

where

ν ′(θ) = e−ν(θ)E

[
N∑
i=1

ξie
θξi

]
.

Note that ν does not have to be differentiable at θ for this quantity to exist, and
that in general θ0 may be infinite.

Under (1.1), Biggins [9] proved in 1976 the law of large numbers for Rn, i.e. Rn

n

converges almost surely to ν(θ0)
θ0

.

9
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Figure 2: Example plot of ν with θ0 highlighted.

The corresponding second order limit theorem was proved by Aïdékon [1] in
2013, who showed that Rn− ν(θ0)

θ0
n+ 3

2θ0
log n converges in distribution to a random

shift of the Gumbel distribution. We refer to Shi [43] for an extensive description
of recent results on branching random walks with finite exponential moments.

The assumption (1.1) is critical to the linear growth of Rn. Durrett [20] showed
in 1983 that if one assumes instead that the displacements have regularly varying
tails, Rn grows exponentially fast. More specifically, assume that for some slowly
varying L and some r > 0, we have

P (ξ > x) ∼ L(x)x−r as x→ ∞ (1.3)

and

log(−x)P (ξ ≤ x) → 0, as x→ −∞. (1.4)

Then
P(Rn ≤ anx) −−−→

n→∞
E[e−cWx−r

]

where c > 0 is a constant, W is a random variable depending on the underlying
Galton-Watson process, and {an}n∈N satisfies

mnP (ξ > an) −−−→
n→∞

1. (1.5)

Another model present in the literature considers displacements with semi-

10
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exponential tails. Assume that for some slowly varying a, L and r ∈ (0, 1),

P (ξ > x) = a(x) exp{−L(x)xr}.

Then, according to Gantert [28],

Rn

bn

a.s.−−−→
n→∞

(logm)
1
r ,

where bn satisfies
L(bn)b

r
n

n
−−−→
n→∞

1. (1.6)

This model was further explored in a series of papers by Dyszewski, Gantert, and
Höfelsauer in the context of large deviations [22], extremal point process [23] and
second-order fluctuations [24].

1.3 Multi-type branching random walk

Multi-type branching random walks extend the ideas of one-type branching pro-
cesses to a multidimensional setting, which is necessary to model various phenom-
ena, such as cell population dynamics with different phenotypes [34]. Formally,
a multi-type branching random walk is constructed analogously to the one-type
model. Take a set of types C = {1, 2, . . . , d} and a corresponding family of point pro-
cesses {Zij}i,j∈C, where Zij =

∑Ni,j

k=1 δξjk
, and for each j ∈ C, {ξjk}k∈N are marginally

identically distributed. We start with a single particle of any given type i placed
at the origin. For each j ∈ C, this particle gives birth to Ni,j children of type j,
positioned according to Zij, and subsequently dies. At time 2, each particle of type
j reproduces independently according to copies of {Zjk}k∈C, and subsequently dies.
The process continues infinitely.

In this case, the number of offspring depends on the type of parent, but the dis-
placement of a particle depends only on its own type. We write Zn = {Z1

n, Z
2
n, . . . , Z

d
n}

for the d-dimensional Galton-Watson process recording the number of particles of
each type in the n-th generation and define the mean matrix M = (E[Ni,j])i,j∈C.
Since all entries in M are nonnegative, it has the principal (although possibly not
unique) eigenvalue that we denote by ρ. We utilize the one-type notation and de-
fine σ(v) = i whenever v belongs to type i. Our main point of interest is again the
asymptotic behavior of the maximum position Rn.

In the multi-type model, one needs to distinguish between two significantly dif-
ferent regimes. We call the process irreducible if a particle of any given type can
appear in any line of descent with positive probability and reducible otherwise. In
terms of the mean matrix M , irreducibility translates to the following statement:
for any i, j ∈ C, there exists n ∈ N, such that Mn(i, j) > 0. The previous results
on the multi-type model under the exponential moment assumption go back to

11
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0

ξA1 ξA2 ξB3

ξA1 + ξA11 ξA1 + ξB12 ξB3 + ξB31 ξB3 + ξB32

Figure 3: Branching random walk with two types, A and B.

Biggins [9], who showed in 1976 that the irreducible model exhibits linear growth
and described the limiting constant. The reducible case proved to be more chal-
lenging. Weinberger et al.[44] in 2002 argued that the spreading speed should be
the maximum of speeds of the types considered separately, essentially ignoring the
interaction between types. A flaw in this argument was identified by Weinberger
et al. [45] in 2007, and the correct limiting constant was ultimately described by
Biggins [11] in 2012. As it turns out, the interplay between the types can signifi-
cantly increase the growth speed. This effect was called anomalous spreading
in Weinberger et al. [45] and makes the study of reducible models particularly
appealing.

Bhattacharya, Maulik, Palmowski and Roy [8] in 2019 considered an irreducible
model with displacements having regularly varying tails. They showed the conver-
gence of the extremal process to a randomly scaled scale-decorated Poisson point
process and, as a result, obtained a limit theorem for the maximum position. In this
case, it turns out that the behavior is analogous to the one-type model considered
in [20], with the largest eigenvalue of M replacing the mean number of offspring
and the heaviest tail dominating the lighter ones.

In this thesis, we aim to provide a corresponding result for the reducible case
and describe the complete asymptotics of the extremal position in the previously
unstudied multi-type model with semi-exponentially tailed displacements.

12
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1.4 Perturbed branching random walk

The perturbed branching random walk S∗ is a modification of a standard BRW S,
in which we add a random perturbation to the position of every particle, i.e.

S∗
v = Sv +Xv,

where {Xv}v∈T are i.i.d. random variables independent of S.

0

S2 S3S1

S11 S12 S31

S121 S122 S311

S∗
3S∗

2S∗
1

S∗
11 S∗

12 S∗
31

S∗
311S∗

122S∗
121

Figure 4: Perturbed branching random walk.

Note that the perturbation added to the position of a vertex v ∈ T does not
influence the positions of its offspring, which explains that the process is sometimes
called last progeny modified branching random walk. We are particlarly interested in
the model introduced by Bandyopadhyay and Ghosh in [5], where the perturbations
have the form

Xv(θ) =
1

θ
log

Yv
Ev

for a given positive real number θ, and {Yv}v∈T which are independent positive
random variables with distribution µ, and given T are independent of {Ev}v∈T,
which are independent with distribution Exp(1). The model was further studied
in the context of large deviations [29], and inhomogeneous time BRW [6]. A more
general situation was considered in a recent paper by Ghosh and Mallein[30], where
the specific form of Xn was replaced by some exponential bounds on tail behavior
and convergence of the extremal process in vague topology was obtained.

The main motivation for considering this model comes from the connection
between the supremum of the perturbed BRW R∗

n(θ) = sup|v|=n S
∗
v and random

13
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weighted sums. More precisely, Theorem 3.6 in [5] states, that

θR∗
n(θ)

d
= log Yn(θ)− logE

where Yn(θ) =
∑

|v|=n e
θSvYv and E is exponential with parameter 1, independent

of Yn(θ). The asymptotics of R∗
n(θ) will be related very closely to the behaviour

of Yn(θ), which is well described in the literature, see e.g. [13] and [17]. It turns
out that properties of R∗

n(θ) depend strongly on the parameter θ. More precisely,
one needs to control its position with respect to the critical parameter θ0 defined in
(1.2).

In [5] branching random walks with such perturbations were studied in the case
when µ has finite mean. In particular, the authors proved that

R∗
n(θ)

n

a.s.−−−→
n→∞

{
ν(θ)
θ

θ < θ0
ν(θ0)
θ0

θ ≥ θ0

and identified weak centered asymptotics for θ ≤ θ0. However, the result for θ > θ0
was only obtained for the degenerated perturbations with µ = δ1.

Complementing this result and extending the framework beyond the finite mean
assumption is another objective of this thesis.

14
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2 Irreducible multi-type branching random walk

In this chapter, we present the results on the irreducible branching random walks.
We adopt the notation introduced in the previous chapter and denote

Pi(·) = P (· | initial particle is of type i) ,

and Ei for the expectation with respect to Pi. Whenever the index is omitted, we
assume that the initial particle is of type 1. Throughout this chapter, we make
the following assumptions on the underlying Galton-Watson process. Firstly, there
exists l ∈ N+ such that

M l(i, j) > 0 for all i, j ∈ C. (2.1)

This assumption guarantees irreducibility, and through the Perron-Frobenius theo-
rem, it asserts that ρ, the principal eigenvalue of M , is simple. We also assume

ρ > 1, (2.2)

ensuring that the process survives with positive probability (see [31], Theorem 7.1).
Finally, we assume that the Kesten-Stigum condition,

Ei[Zj
1 logZ

j
1 ] <∞, (2.3)

holds for all i, j ∈ C. Under these assumptions, the well known Kesten and Stigum
theorem [36] asserts that for any i ∈ C,

Zn
ρn

→ Wu Pi -a.s., (2.4)

where W is a non-degenerate random variable and u is the left eigenvector of M .
It is a straightforward conclusion that

Zn
ρn

· v → W Pi -a.s. (2.5)

If we write v for the right eigenvector of M , normalized so that u · v = 1, then we
also have

Ei[W ] = vi. (2.6)

To avoid conditioning on the survival set, we assume P(Zn → 0) = 0.

15
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2.1 Displacements with regularly varying tails

Let Fi(x) = P (ξi ≤ x). In this section, we assume that the displacements are
independent and there exist slowly varying functions {Li}i∈C and positive constants
{ri}i∈C, satisfying

1− Fi(x) ∼ Li(x)x
−ri as x→ ∞,

log(−x)Fi(x) → 0, as x→ −∞.
(2.7)

These assumptions are a natural extension of the one-type case considered in [20].
For simplicity, we additionally assume the existence of a unique heaviest tail: There
exists I ∈ C, satisfying rI < rj for all j ̸= I. To simplify the notation, we write
r = rI . Our main result is the following theorem.

Theorem 2.1. Let
ζ = uI

∑
j>0

ρ−j
∑
l∈C

PI
(
Z l
j > 0

)
.

and choose the sequence {an}n∈N so that

ρn (1− FI(an)) −−−→
n→∞

1. (2.8)

Then
P(Rn ≤ anx) −−−→

n→∞
E[e−ζWx−q

]

Remark 2.2. As in the one-type case, the existence of an satisfying (2.8) is guar-
anteed by the result of de Bruijn [16]. If L# is the de Bruijn conjugate of L, one
can take an = L#

(
ρ

n
r

)
ρ

n
r . In particular, this guarantees that for any ε > 0,

ρ
n
r
(1−ε) < an < ρ

n
r
(1+ε) (2.9)

for sufficiently large n.

Remark 2.3. The result partly overlaps with Corollary 3.4 from [8], however there
are several differences. We allow the existence of leaves in our tree, and we present
a direct argument, in contrast to the result being a conclusion from the convergence
of the extremal process. On the other hand, we assume independence of the dis-
placements, as opposed to the more general notion of point processes converging in
suitable topology.

Proof of Theorem 2.1. To begin, we present a lemma that characterizes the asymp-
totic behavior of the total population in an irreducible multi-type Galton-Watson
process. For i ∈ C, let

Y i
n =

∣∣∣∣∣
n⋃
k=1

{v ∈ Tk : σ(v) = i, (∃w ∈ Tn)(wk = v)}

∣∣∣∣∣
16
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be the total number of particles of type i that have offspring in the n-th generation.

Lemma 2.4. Let
ζi = ui

∑
j>0

ρ−j
∑
l∈C

Pi
(
Z l
j > 0

)
.

Then for all i ∈ C,
Y i
n

ρn
a.s.−−−→
n→∞

ζiW.

Proof. Observe

Y i
n =

n−1∑
j=0

∑
l∈C

Zi
n−j∑
k=1

1{Zl
j(i,k)>0}

where for any j and l, {Z l
j(i, k)}k>0 are i.i.d. distributed as Z l

j under Pi, and for
i1 ̸= i2, {Z l

j(i1, k)}k>0 are independent of {Z l
j(i2, k)}k>0. Hence

Y i
n

ρn
=

n−1∑
j=0

ρ−j
∑
l∈C

Zi
n−j

ρn−j
1

Zi
n−j

Zi
n−j∑
k=1

1{Zl
j(i,k)>0}

Denote Dn−j =
Zi
n−j

ρn−j and El
n−j =

1
Zi
n−j

∑Zi
n−j

k=1 1{Zl
j(i,k)>0}. For any fixed j > 0, by the

strong law of large numbers, El
n−j

a.s.−−−→
n→∞

Pi(Z l
j > 0), and by (2.4), Dn−j

a.s.−−−→
n→∞

Wui.
Now fix N > 0. Then for n > N

Y i
n

ρn
≤

N∑
j=0

ρ−j
∑
l∈C

Dn−jE
l
n−j +

∑
l∈C

sup
k≥N+1

{Dk}
∞∑

j=N+1

ρ−j

=
N∑
j=0

ρ−j
∑
l∈C

Dn−jE
l
n−j + d

ρ−N

ρ− 1
sup

k≥N+1
{Dk}

So P-almost surely

lim sup
n

Y i
n

ρn
≤ Wui

N∑
j=0

ρ−j
∑
l∈C

Pi(Z l
j > 0) + d

ρ−N

ρ− 1
sup

k≥N+1
{Dk}

Letting N → ∞ we get

lim sup
n

Y i
n

ρn
≤ ζiW P− a.s.

For the bound from below, we note that

Y i
n

ρn
≥

N∑
j=0

ρ−j
∑
l∈C

Dn−jE
l
n−j

17
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so taking lim inf
n

and then letting N → ∞ we get

lim inf
n

Y i
n

ρn
≥ ζiW a.s.

which concludes the proof of the lemma.

Now let
Mn = max{ξvk : v ∈ Tn, k ≤ n}

Since up to the n-th generation, for any i ∈ C, there are Y i
n displacements with

distribution Fi, and all the displacements are independent of each other, we have

P (Mn ≤ anx) = E

[∏
i∈C

Fi(anx)
Y i
n

]

Note that

Fi(anx)
Y i
n = exp

{Y i
n

ρn
ρn logFi(anx)

}
(2.10)

Now, an was chosen so that ρn(1 − FI(an)) −−−→
n→∞

1. Furthermore, 1 − Fi(z) ∼
Li(z)z

−ri as z → ∞, where Li is slowly varying. Then, using the fact that for z
close to 0, log(1 + z) ∼ z, we have

ρn logFI(anx) ∼ −ρn(1− FI(anx)) = −ρn(1− FI(an))
(1− FI(anx))

(1− FI(an))
−−−→
n→∞

−x−r.

(2.11)

Applying Lemma 2.4 and (2.11) in (2.10) yields

FI(anx)
Y I
n

a.s.−−−→
n→∞

exp
{
− ζWx−r

}
.

Similarly, for i ̸= I,

ρn logFi(anx) ∼ ρn(1− Fi(anx))

= ρn(1− FI(anx))
(1− Fi(anx))

(1− FI(anx))
∼ x−r(anx)

r−ri Li(anx)

LI(anx)

(2.12)

which converges to 0, because r < ri and Li’s are slowly varying. Again, by Lemma
2.4 ρ−nY i

n has a finite limit, so (2.12) yields Fi(anx)Y
i
n

P−a.s.−−−→
n→∞

1 for i ̸= I. Hence,

∏
i∈C

Fi(anx)
Y i
n

a.s.−−−→
n→∞

exp
{
− ζWx−r

}

18

18:21164



and using the dominated convergence theorem, we have shown

P (Mn ≤ anx) −−−→
n→∞

E
[
exp

{
− ζWx−r

}]
(2.13)

To finish the proof, we need to show that P (Mn ≤ anx) ∼ P (Rn ≤ anx) as n→ ∞.
Observe that for any ε > 0

P (Rn > anx) ≤ P (Mn > an(x− ε)) + P (Rn > anx,Mn ≤ an(x− ε))

and

P(Rn > anx) ≥ P(Mn > an(x+ ε))− P(Rn ≤ anx,Mn > an(x+ ε)).

Hence, it suffices to show

P (Rn > anx,Mn ≤ an(x− ε)) −−−→
n→∞

0 (2.14)

and

P(Rn ≤ anx,Mn ≥ an(x+ ε)) −−−→
n→∞

0. (2.15)

We start by showing (2.14). First observe

P(Rn > anx,Mn ≤ an(x− ε)) ≤ E
[
Zn(anx,∞)1Mn≤an(x−ε)

]
where Zn(anx,∞) is the number particles in the n-th generation, that are positioned
above anx. We now need to introduce some new notation: Denote Fi,n for n-th
convolution of Fi (the distribution function of a sum of n independent random
variables distributed as Fi). Furthermore, for n⃗ = (n1, n2, . . . , nd), let

Fn⃗(x) = F1,n1 ∗ F2,n2 ∗ · · · ∗ Fd,nd
(x)

For a distribution function F and x, y ∈ R, let F y(x) = F (x) ∧ F (y) be the dis-
tribution function F trimmed at y. Note that if Sn is a random walk with step
distribution F , then

F y
n (x) = P(Sn < x, sup

1≤k≤n
Sk − Sk−1 < y) (2.16)

where F y
n is the n-th convolution of F y. Now, for a particle in the n-th generation,

which had ni ancestors of type i, with n =
∑

i∈C ni, the probability of it ending up
in (anx,∞), while all the displacements on the path are smaller than an(x− ε), is

F
(an(x−ε))
n⃗ (∞)− F

(an(x−ε))
n⃗ (anx).
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Let An⃗ be the expected number of particles in the n-th generation, that had ni
ancestors of type i for each respective i ∈ C. Then

E[Zn(anx,∞)1Mn≤an(x−ε)] ≤
∑
n⃗

An⃗

(
F

(an(x−ε))
n⃗ (∞)− F

(an(x−ε))
n⃗ (anx)

)
(2.17)

Here we want to apply inequality (1) from step 3 of the proof in [20]. It states that
for a regularly varying distribution function F with exponent r, all x, ε, δ > 0 and
s ∈ (0, r), and a constant C > 0, we have

F (an(x−ε))
n (∞)− F (an(x−ε))

n (anx) ≤ C

(
nCs

asn(x− ε)s

)x(1−δ)
(x−ε)

(2.18)

for all n. where Cs is a constant depending only on s. This is not immediately
applicable in our case, as Fn⃗ is a convolution consisting of a number of different
distributions. However, the statement can be easily generalized to our case as long
as all distributions satisfy the requirements. To see that this is true, first note
that the aforementioned result in [20] is based on a more general bound obtained
in the proof of Lemma 3 in [19]. To generalize the bound to the case with mixed
distributions, note that the proof relies on the observation that for h > 0, and
x > y,

F y
n (∞)− F y

n (x) ≤ R(h, y)n exp(−hx)

where
R(h, y) =

∫ y

−∞
ehuF y(du).

The conclusion is then the result of the bounds on R(h, y). In the case of mixed dis-
tributions, we can obtain a similar inequality. That is, let Ri(h, y) =

∫ y
−∞ ehuF y

i (du).
Then

F y
n⃗ (∞)− F y

n⃗ (x) =

∫ ∞

x

e−huehudF y
n⃗ (u) ≤ e−hx

∫ ∞

−∞
ehudF y

n⃗ (u) = e−hx
∫ ny

−∞
ehudF y

n⃗ (u).

(2.19)
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Now fix any i ∈ C. Integrating by parts and exchanging integrals, we get∫ ny

−∞
ehudF y

n⃗ (u) = ehny
d∏
j=1

Fj(y)
nj −

∫ ny

−∞
F y
n⃗ (u)de

hu

= ehny
d∏
j=1

Fj(y)
nj −

∫ ny

−∞

[∫ ∞

−∞
F y
i,ni

(u− z)dF y
n⃗/ni

(z)

]
dehu

= ehny
d∏
j=1

Fj(y)
nj −

∫ (n−ni)y

−∞

[∫ ny

−∞
F y
i,ni

(u− z)dehu
]
dF y

n⃗/ni
(z)

(2.20)

where
F y
n⃗/ni

(z) = F1,n1 ∗ · · · ∗ Fi−1,ni−1
∗ Fi+1,ni+1

∗ · · · ∗ Fd,nd
(x).

Integrating by parts again,∫ (n−ni)y

−∞

[∫ ny

−∞
F y
i,ni

(u− z)dehu
]
dF y

n⃗/ni
(z)

=

∫ (n−ni)y

−∞

[
ehnyF y

i,ni
(ny − z)−

∫ ny

−∞
ehudF y

i,ni
(u− z)

]
dF y

n⃗/ni
(z)

=

∫ (n−ni)y

−∞
ehnyF y

i,ni
(ny − z)dF y

n⃗/ni
(z)−

∫ (n−ni)y

−∞

∫ ny

−∞
ehudF y

i,ni
(u− z)dF y

n⃗/ni
(z)

= ehnyF y
i,ni

(niy)F
y
n⃗/ni

((n− ni)y)−
∫ (n−ni)y

−∞

∫ ny

−∞
ehudF y

i,ni
(u− z)dF y

n⃗/ni
(z)

= ehny
d∏
j=1

Fj(y)
nj −

∫ (n−ni)y

−∞
ehz
∫ ny−z

−∞
ehwdF y

i,ni
(w)dF y

n⃗/ni
(z)

(2.21)

The last two equalities are justified by the fact that if x > ny, then F y
n⃗ (x) =∏d

j=1 Fj(y)
nj (see (2.16)). Similarly, the inner integral in the last line only goes up

to niy, as z ≤ (n − ni)y and F y
i,ni

(w) is constant for w ≥ niy. Using an analogous
procedure of integrating by parts, expanding the convolution (this time with respect
to F y

i and F y
i,ni−1), interchanging the integrals, and integrating by parts again, we

similarly obtain the following equality.∫ niy

−∞
ehwdF y

i,ni
(w) =

∫ (ni−1)y

−∞
ehz
∫ y

−∞
ehwdF y

i (w)dF
y
i,ni−1(z)

=

∫ (ni−1)y

−∞
ehzRi(h, y)dF

y
i,ni−1(z)
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Repeating ni − 1 times, ∫ niy

−∞
ehwdF y

i,ni
(w) = Ri(h, y)

ni .

Plugging this into (2.21), we obtain∫ (n−ni)y

−∞

[∫ ny

−∞
F y
i,ni

(u− z)dehu
]
dF y

n⃗/ni
(z)

= ehny
d∏
j=1

Fj(y)
nj −

∫ (n−ni)y

−∞
ehzRi(h, y)

nidF y
n⃗/ni

(z)

and together with (2.20), this yields∫ ny

−∞
ehudF y

n⃗ (u) =

∫ (n−ni)y

−∞
ehzRi(h, y)

nidF y
n⃗/ni

(z).

Iterating the whole procedure d − 1 times to cycle through all types and applying
the result in (2.19), we obtain the following result.

F y
n⃗ (∞)− Fn⃗(x) ≤ exp(−hx)

d∏
i=1

Ri(h, y)
ni ,

Letting R(h, y) = max
i∈C

Ri(h, y), we can write

F y
n⃗ (∞)− Fn⃗(x) ≤ exp(−hx)R(h, y)n.

Applying to R(h, y) the same bounds as in the proof of Lemma 3 in [19], and then
the truncation argument from Step 3 of the proof in [20] to adapt the result to
regularly varying distributions (and noting that r = min

i
ri, s < r implies s < ri for

all i), we see that (2.19) indeed holds for mixed distributions. Hence,

(
F

(an(x−ε))
n⃗ (∞)− F

(an(x−ε))
n⃗ (anx)

)
≤ C

(
nCs

asn(x− ε)s

)x(1−δ)
(x−ε)

(2.22)

Now and choose δ small enough so that θ = x(1−δ)
(x−ε) > 1, and take p ∈ (r, s) satisfying

s
p
θ > 1. The for some C ′ > 0 (see Remark 2.2),

C

(
nCs

asn(x− ε)s

)θ
≤ C ′ρ−

s
p
θn

(
nCs

(x− ε)s

)θ
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Then for p′ ∈ (1, s
p
θ) and suitable C ′′ > 0, we have for all n > 0

C ′ρ−
s
p
θn

(
nCs

(x− ε)s

)θ
≤ C ′′ρ−np

′

Ultimately we get (
F

(an(x−ε))
n⃗ (∞)− F

(an(x−ε))
n⃗ (anx)

)
≤ C ′′ρ−np

′
.

Hence,

E[Zn(anx,∞)1Mn≤an(x−ε)] ≤ C ′′ρ−np
′∑

n⃗

An⃗ = C ′′ρ−np
′E[|Zn|] = C ′′ρ−np

′|MnZ0|.

Since ρ−nMn has a finite limit, and p′ > 1, we get

C ′′ρ−np
′ |MnZ0| −−−→

n→∞
0.

Thus, we have proved (2.14).
Denote by ηn one of the nth generation particles that descend from a path

on which Mn was attained, by Qn its position, and by T (i, n) the number of its
ancestors of type i, excluding the particle attaining Mn. Note that

∑d
i=1 T (i, n) =

n− 1, and let T⃗ (n) = (T (1, n), T (2, n), . . . , T (d, n)). For a distribution function F

and y ∈ R, let F̄ y(x) = F y(x)
F (y)

and denote F̄ y
n the n-th convolution of F̄ y. Note that

if Sn is a random walk with step distribution F , then

F̄ y
n (x) =

F y
n (x)

F (y)n
= P(Sn < x| sup

1≤k≤n
Sk − Sk−1 < y).

With this notation Qn −Mn has the following distribution function.

P(Qn −Mn ≤ x) = E
[
F̄Mn

T⃗ (n)
(x)
]
,

That is, it is distributed as a sum of T (i, n) steps from the distributions Fi, respec-
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tively, conditioned on the fact that they are all smaller from Mn. Now,

P(Rn ≤ anx,Mn ≥ an(x+ ε)) ≤ P(Qn ≤ anx,Mn ≥ an(x+ ε))

= P(Qn −Mn ≤ anx−Mn,Mn ≥ an(x+ ε))

≤ P(Qn −Mn ≤ anx− an(x+ ε),Mn ≥ an(x+ ε))

≤ P(Qn −Mn ≤ −anε)

= E
[
F̄Mn

T⃗ (n)
(−anε)

]
= E

[
F̄Mn

T⃗ (n)
(−anε)1{Mn≤0}

]
+ E

[
F̄Mn

T⃗ (n)
(−anε)1{Mn>0}

]
≤ P(Mn ≤ 0) + E

[
F̄ 0
T⃗ (n)

(−anε)
]
.

Since P(Mn ≤ 0) → 0, we only need to take care of the second term. To do this,
write

E
[
F̄ 0
T⃗ (n)

(−anε)
]
= E

[∫ ∞

−∞
F̄ 0
T⃗ (n)/T (1,n)

(−anε− y)F̄ 0
T (1,n)(dy)

]
. (2.23)

Now choose 0 < δ1 < ε and split the integral at the point −anδ1. Then

E
[∫ −anδ1

−∞
F̄ 0
T⃗ (n)/T (1,n)

(−anε− y)F̄ 0
T (1,n)(dy)

]
≤ E

[
F̄ 0
T (1,n)(−anδ1)

]
≤ E

[
F̄ 0
n(−anδ1)

] (2.24)

and

E
[∫ ∞

−anδ1
F̄ 0
T⃗ (n)/T (1,n)

(−anε− y)F̄ 0
T (1,n)(dy)

]
≤ E

[
F̄ 0
T⃗ (n)/T (1,n)

(−anδ1)
]
. (2.25)

Note that the last expression in (2.25) is of the same form as the term we started
with in (2.23), except we exchanged ε for δ1 and eliminated type 1. Therefore,
applying (2.24) and (2.25) d times with δd < · · · < δ1 < ε, we get

E
[
F̄ 0
T⃗ (n)

(−anε)
]
≤
∑
i∈C

E
[
F̄ 0
n(−anδi)

]
To see that F̄ 0

n(−anδ) → 0 as n→ ∞, we refer to Step 4 of the proof in [20]. We note
that the arguments provided there are based only on the condition log(x)F (−x) → 0

as x→ ∞, and the fact that an grows exponentially fast, so they are also applicable
here. This holds for all i ∈ C, so by the bounded convergence theorem, the whole
expression converges to 0.

This concludes the proof of (2.15), and thus of the theorem.
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2.2 Displacements with semi-exponential tails

In this section we assume that the displacements are independent and admit semi-
exponential tails:

P
(
ξj ≥ t

)
= aj(t) exp{−Lj(t)trj}, (2.26)

where Lj, aj are slowly varying functions such that Lj(t)

t1−rj
are eventually nonincreas-

ing, and rj ∈ (0, 1). We also assume that they have finite moments. These as-
sumptions are analogous to the one-type model studied by Gantert in [28]. In this
section, we show an analogous limit theorem for irreducible multi-type branching
random walk.

Our result is as follows.

Theorem 2.5. Let r = min{ri : i ∈ C}, L(t) = min{Li(t) : r = ri}, and choose
ψ(n) to be a positive function satisfying

L(ψ(n))ψ(n)r

n
→ 1. (2.27)

Then
Rn

ψ(n)

a.s.−−→ (log ρ)
1
r .

Remark 2.6. As in the one type case, the existence of ψ(n) satisfying (2.27) is
guaranteed by the result of de Bruijn [16]. Indeed, if K(x) is the de Bruijn conjugate
of x 7→ L

(
x

1
r

)
, then we can take ψ(n) = K(n)

1
rn

1
r . In particular, this implies that

for any ε > 0,
n

1
r
(1−ε) ≤ ψ(n) ≤ n

1
r
(1+ε)

for large enough n.

We will also show the following lemmas, which describe the asymptotic behavior
of the underlying multi-type Galton-Watson process.

Lemma 2.7. Let |Zn| =
∑

r∈C Z
r
n be the sum of all particles in the n-th generation

of the process. Then for any ε > 0 there is 0 < δ ≤ ε satisfying

P
(
|Zn|
ρn

< (1− ε)n
)
< (1− δ)n

for all n large enough.

Lemma 2.8. There exist δ > 0 and β ∈ (0, 1), such that for all i ∈ C and all n
large enough

P(Zi
n < δ|Zn−l|) ≤ βn,

where l ∈ N is as in (2.1).
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Proof of the lemma 2.7. First note that if ρ(1−ε) ≤ 1, then P
(

|Zn|
ρn

< (1− ε)n
)
= 0

and the statement is trivial. Assume ρ(1 − ε) > 1. The key tool to proving the
lemma is the result of Athreya and Vidyashankar ([4], Theorem 2.6), which we state
below.

Lemma 2.9. Additionally to our standing assumptions, assume

there exists θ0 > 0, such that Ei
[
exp{θ0Zj

1}
]
<∞ for all i, j ∈ C. (2.28)

Then there are constants C > 0, λ > 0 such that for any ε > 0

P
(∣∣∣Zn
ρn

· v −W
∣∣∣ ≥ ε

)
< C exp{−λ

(
ε2ρn

) 1
3} (2.29)

for all n.

Although its stated in [4] for two types, it is clear from the proof that the same
argument holds for an arbitrary number of types. Another important inequality
we will use is a straightforward consequence of results from Jones [35] describing
the small-value probabilities of W : there exists α > 0, such that for small enough
ε > 0,

P(W ≤ ε) ≤ εα. (2.30)

Since we do not assume the existence of exponential moments (2.28), some addi-
tional steps are required to use Lemma 2.9. Consider a trimmed Galton-Watson
process Zn(L) generated by random variables Ni,j(L) = Ni,j1{Ni,j<L} for some L > 0

and denote by M(L) its mean matrix, by ρ(L) its largest eigenvalue, and by v(L)
its left eigenvector. Since ρ(L) → ρ as L → ∞, we choose L large enough so that
ρ(L) > (1− ε)ρ. Clearly,

P
(
|Zn|
ρn

< (1− ε)n
)

≤ P
(
|Zn(L)|
ρn

< (1− ε)n
)
.

Now choose δ > 0 satisfying

(1− δ)ρ(L) ≥ (1− ε)ρ, (1− δ)2ρ(L) > 1

so that
P
(
|Zn(L)|
ρn

< (1− ε)n
)

≤ P
(
|Zn(L)|
ρ(L)n

< (1− δ)n
)

Since Zn(L) satisfies the same assumptions we make on Zn in this chapter, then
(2.4) holds for some W (L) and (2.30) holds for appropriate choice of constants.
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Note that |Zn(L)| ≥ 1
||v||∞Zn(L) · v(L), and observe

P
(
|Zn(L)|
ρ(L)n

< (1− δ)n
)

≤ P
(
Zn(L) · v(L)

ρ(L)n
< ||v(L)||∞(1− δ)n

)
= P

(
Zn(L) · v(L)

ρ(L)n
< ||v(L)||∞(1− δ)n, W (L) ≥ 3||v(L)||∞

2
(1− δ)n

)
+ P

(
Zn(L) · v(L)

ρ(L)n
< ||v(L)||∞(1− δ)n, W (L) <

3||v(L)||∞
2

(1− δ)n
)

≤ P

(∣∣∣∣∣Zn(L) · v(L)ρ(L)n
−W (L)

∣∣∣∣∣ ≥ ||v(L)||∞
2

(1− δ)n

)

+ P
(
W (L) <

3||v(L)||∞
2

(1− δ)n
)

By (2.30), the second term is bounded by
(

3||v(L)||∞
2

)α
(1 − δ)αn for α > 0 and n

large enough. The bound for the first term follows from Lemma 2.9. Since Zn(L)
satisfies (2.28) as well as our standing assumptions on Zn, we conclude from 2.9,
that for appropriate C > 0, λ > 0

P

(∣∣∣∣∣Zn(L) · v(L)ρ(L)n
−W (L)

∣∣∣∣∣ ≥ ||v(L)||∞
2

(1− δ)n

)
≤ C exp

{
−λ
(
(1− δ)2ρ(L)

)n
3

}
,

and for large enough n,

C exp
{
−λ
(
(1− δ)2ρ(L)

)n
3

}
≤ (1− δ)αn.

Since
(
1 +

(
3||v(L)||∞

2

)α)
(1− δ)αn < (1− δ0)

n for some δ0 < δ and large enough n,
the lemma is proven.

Proof of the Lemma 2.8. Fix i ∈ C and denote by Zr→i
l a generic random variable

distributed as Zi
l under Pr. Recall that l is a natural number for which M l has only

strictly positive entries (see assumption (2.1)). Consequently, qr,i = P (Zr→i
l = 0) <

1 for all r ∈ C. Let qmax = max{qr,i : r ∈ C} and qmin = min{qr,i : r ∈ C}. Then

P
(
Zi
n < δ|Zn−l|

)
= P

∑
r∈C

Zr
n−l∑
m=1

Zr→i
l (m) < δ|Zn−l|

 = E [Φ(Zn−l)]

where for fixed r, {Zr→i
l (m)}m≥1 are independent copies of Zr→i

l , and for r1 ̸= r2,
{Zr1→i

l (m)}m≥1 are independent of {Zr2→i
l (m)}m≥1, and

Φ(k) = P

(∑
r∈C

kr∑
m=1

Zr→i
l (m) < δ|k|

)
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for k = (k1, . . . , kd) ∈ Nd. For a vector j = (j1, . . . , jd) ∈ Nd satisfying jr ≤ kr for
all r ∈ C, define

A(j1,...,jd) =
⋂
r∈C

{∣∣∣ {m ≤ kr : Z
r→i
l (m) > 0

} ∣∣∣ = jr

}
.

Observe

P(A(j1,...,jd)) =
∏
r∈C

(
kr
jr

)
qkr−jrr,i (1− qr,i)

jr ≤
∏
r∈C

(
kr
jr

)
qkr−jrmax (1− qmin)

jr

=
∏
r∈C

(
kr
jr

)
qkrmax

(
1− qmin

qmax

)jr
= q|k|maxC

|j|
∏
r∈C

(
kr
jr

)

where C = 1−qmin

qmax
. By the generalized Vandermonde’s identity, for any j ∈ N+

∑
j1+···+jd=j

∏
r∈C

(
kr
jr

)
=

(
|k|
j

)

where the sum
∑

j1+···+jd=j goes over all partitions of j, and we put
(
n
m

)
= 0 if

m > n. Hence

Φ(k) =
∞∑
j=1

∑
j1+···+jd=j

P

(∑
r∈C

kr∑
m=1

Zr→i
l (m) < δ|k|, Aj1,...,j2

)

≤
∞∑
j=1

∑
j1+···+jd=j

P (j < δ|k|, Aj1,...,j2) =
⌊δ|k|⌋∑
j=1

∑
j1+···+jd=j

P (Aj1,...,j2)

≤
⌊δ|k|⌋∑
j=1

∑
j1+···+jd=j

q|k|maxC
j
∏
r∈C

(
kr
jr

)
= q|k|max

⌊δ|k|⌋∑
j=1

Cj

(
|k|
j

)

≤ q|k|max

⌊δ|k|⌋∑
j=1

Cj |k|j

j!
= q|k|max

⌊δ|k|⌋∑
j=1

(
C

δ

)j
(δ|k|)j

j!
.

Choosing δ so that C
δ
> 1, we have

q|k|max

⌊δ|k|⌋∑
j=1

(
C

δ

)j
(δ|k|)j

j!
≤ q|k|max

(
C

δ

)⌊δ|k|⌋ ⌊δ|k|⌋∑
j=1

(δ|k|)j

j!
≤ q|k|max

(
C

δ

)δ|k|
eδ|k|

=

(
qmax

(
Ce

δ

)δ)|k|

28

28:38962



Since
(
Ce
δ

)δ → 1 as δ → 0 and qmax < 1, choosing δ small enough we have

Φ(k) ≤ β
|k|
0

for β0 < 1. Hence

P
(
Zi
n < δ|Zn−l|

)
= E[Φ(Zn−l)] ≤ E[βZn−l

0 ] ≤ βn0 + P(Zn−l < n)

Since for any ε satisfying ρ(1− ε) > 1 we have n < ρn(1− ε)n for large enough n,
the bound

P(Zn−l < n) < C1β
n
0

is a straightforward conclusion from Lemma 2.7. Hence

P
(
Zi
n < δ|Zn−l|

)
≤ (1 + C1)β

n
0 ≤ βn

for some β < 1 and all large enough n.

Proof of the Theorem. We start with the upper bound. Let η be a random variable
with the distribution function

F (x) =

{
1−max {ai(x) exp{−Li(x)xr} : i ∈ C, ri = r} x > 0

0 x ≤ 0

By choice of r and L, there exists a constant c > 0 such that for all t > c and i ∈ C

P(η ≥ t) ≥ P(ξi ≥ t).

Hence, ηc = η1{η>c} + c1{η≤c} dominates stochastically ξi,c = ξi1{ξi>c} + c1{ξi≤c} for
all i ∈ C. Since stochastic dominance is preserved under convolution, we have that
for any x > 0, n ∈ N and v ∈ Tn

P

(
n∑
k=1

ηck ≥ x

)
≥ P

 |v|∑
k=1

ξcvk ≥ x

 ,

where {ηck}k≥0 are i.i.d. distributed as ηc. Then

P(Sv ≥ ψ(n)x) ≤ P

 |v|∑
k=1

ξcvk ≥ ψ(n)x

 ≤ P

(
n∑
k=1

ηck ≥ ψ(n)x

)
.

Note that

amin(x) exp{−L(x)xr} ≤ 1− F (x) ≤ amax(x) exp{−L(x)xr}
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where

amin(x) = min {ai(x) : i ∈ C, ri = r} ,
amax(x) = max {ai(x) : i ∈ C, ri = r} .

Since amin, amax, and L are all slowly varying, Theorem 3 along with the remark
(see the equation (29)) from [28] asserts that for all x > 0

lim
1

n
logP

(
n∑
k=1

ηck ≥ ψ(n)x

)
= −xr. (2.31)

In particular, for any ε > 0, there is δ > 0 such that for all large enough n,

P
(
Sv ≥ ψ(n)(log ρ+ ε)

1
r

)
≤ exp {−n(log ρ+ δ)} = ρ−ne−nδ (2.32)

for any v ∈ Tn. Having this bound, we proceed as in [28]. We have

P
(
∃v ∈ Tn : Sv ≥ ψ(n)(log ρ+ ε)

1
r

)
=

∞∑
k=1

P
(
∃v ∈ Tn : Sv ≥ ψ(n)(log ρ+ ε)

1
r

∣∣∣|Zn| = k
)
P(|Zn| = k)

≤
∞∑
k=1

kρ−ne−nδP(|Zn| = k) = E[|Zn|]ρ−ne−nδ,

(2.33)

where |Zn| =
∑

i∈C Z
i
n. It is easily verifiable by induction, that

E[Zn] =MnE[Z0],

where M is the mean matrix. Hence, E[Zn]ρ−n has a limit, and by linearity so does
E[|Zn|]ρ−n. Applying the Borel-Cantelli lemma to (2.33) and letting ε → 0 entails
the upper bound in Theorem 2.5.

The lower bound requires more delicate approach. For K > 0, let

TK = {v ∈ T : ∀k≤|v|ξvk ≥ −K},

and MK
n = max{ξv : |v| = n, v ∈ TK}, and denote by ρK the Perron-Frobenius

eigenvalue of the matrix {E[Ni,j]P(ξj > −K)}i,j∈C. Since ρK → ρ > 1 as K → ∞,
choose K large enough so that ρK > 1. Note that

Rn = max
|v|=n

Sv ≥ max
|v|=n,v∈TK

Sv ≥MK
n − (n− 1)K. (2.34)
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By Remark 2.6, n−1
ψ(n)

→ 0, hence dividing by ψ(n) and taking limits yields

lim inf
n→∞

Rn

ψ(n)
≥ lim inf

n→∞

MK
n

ψ(n)
. (2.35)

Hence, it suffices to show

lim inf
n→∞

MK
n

ψ(n)
≥ (log ρK)

1
r (2.36)

By the Borell-Cantelli lemma, to show (2.36) it is enough to show that for any ε > 0

∞∑
n=0

P
(
MK

n

ψ(n)
< [log {ρK(1− ε)}]

1
r

)
<∞. (2.37)

To that end, take any ε > 0 small enoguh to satisfy ρK(1− ε) > 1 and let

ZK,i
n = #{v ∈ TK : σ(v) = i, |v| = n},

and ZK
n =

∑
i∈C Z

K,i
n . To simplify the notation, denote

bn = ψ(n) [log {ρK(1− ε)}]
1
r

and let
I(n) = argmax

i∈C,ri=r
Li (bn) .

Then

P
(
MK

n

ψ(n)
< [log {ρK(1− ε)}]

1
r

)
= E

[∏
i∈C

P
(
ξi < bn

)ZK,i
n

]

= E

[∏
i∈C

(
1− P

(
ξi ≥ bn

))ZK,i
n

]
≤ E

[∏
i∈C

exp
{
−ZK,i

n P
(
ξi ≥ bn

)}]
≤ E

[
exp

{
−ZK,I(n)

n P
(
ξI(n) ≥ bn

)}]
Using our assumption 2.26, we have

E
[
exp

{
−ZK,I(n)

n P
(
ξI(n) ≥ bn

)}]
= E

[
exp

{
−ZK,I(n)

n aI(n) (bn) (ρK(1− ε))−LI(n)(bn)ψ(n)
r
}]

Note that LI(n) (bn) = L (bn), hence by choice of L (see (2.27)),

LI(n) (bn)ψ(n)
r

n
→ 1,
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and recall that all ai are slowly varying. Hence we have

aI(n) (bn) (ρK(1− ε))−LI(bn)ψ(n)
r

≥ (ρK(1− ε1))
−n

for some ε1 ∈ (0, ε) and all sufficiently large n. Hence, by Borel-Cantelli lemma,
(2.37) will follow from the convergence of the series

∞∑
n=1

E
[
exp

{
− ZK,I

n

(ρK(1− ε1))
n

}]
.

Using the formula

E
[
exp

{
− ZK,I

n

(ρK(1− ε1))
n

}]
≤ exp

{
−
(
1− ε1

2

)n
(1− ε1)

n

}
+ P

(
ZK,I
n

ρnK
≤
(
1− ε1

2

)n)
we see that it is sufficient to show

∞∑
n=1

P
(
ZK,I
n

ρnK
≤
(
1− ε1

2

)n)
<∞.

and this is a straightforward consequence of applying Lemmas 2.8 and 2.7.
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3 Reducible multi-type branching random walk

In this chapter, we consider the case where the mean matrix M is reducible. We
divide C by the following equivalence relation: i ∼ j if there are l1, l2 such that
M l1(i, j) > 0 and M l2(j, i) > 0. We denote C∼ = {C1, C2, . . . , Cm} and introduce
a partial ordering of C through the following relation: i ⪯ j if there exists n ∈ N
such that Mn(i, j) > 0. This induces a partial ordering of C∼. We will abuse the
notation and write a ⪯ b when there exist i ∈ Ca and j ∈ Cb such that i ⪯ j, and
a ⪯ i if i ∈ Cb and a ⪯ b. By renumbering the types, we may and will assume that
M is of form 

M [1] M [1, 2] . . . M [1,m]

0 M [2] . . . M [2,m]
...

...
... · · ·

0 . . . 0 M [m]

 . (3.1)

That is, it has cages {M [a]}a∈C∼ on the diagonal and zeros below. Throughout the
chapter, we make the following assumptions.

M [a] is positively regular in the sense of (2.1) for all a ≤ m. (3.2)

For any a ≤ m, denote by ρ(a) the largest eigenvalue of M [a] and assume

ρ(1) > 1 (3.3)

It is easy to see that the spectrum of M is just a union of spectrums of M [a]’s.
It is clear that when the starting particle comes from Ca the problem is reduced

to the analysis of the types of classes following (and including) a, hence without
loss of generality we may assume that the starting particle’s type belongs to class
1. Since the specific type will be of little significance, we will assume for simplicity
that the starting particle is of type 1. Similarly, if some class does not follow the
first class, it will never appear in the process, so we assume 1 ⪯ a for all a ≤ m.
To avoid conditioning on the survival set, we assume that type 1 (or equivalently
class 1) survives with probability 1.

Analogously to the previous section, we assume the following Kesten-Stigum
condition:

for all a ≤ m and all pairs i, j ∈ Ca, E[Ni,j logNi,j] <∞. (3.4)

By the result of Kesten and Stigum [37], under this assumptions, if

ρj = max {ρa : a ∈ C∼, a ⪯ j}
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then for some k > 0,

Zj
n

nkρnj

P−a.s.−−−→ W (j), (3.5)

and W (j) is positive if uαj is positive, where uα is the left eigenvector of M [α].
In other words, the asymptotic number of particles of any given type is driven by
the number of particles preceding it. More explicit expressions can be provided
for W (j) in certain examples, but a general formula seems difficult to obtain. One
can show that the randomness in W (j) is contained in the preceding classes that
have the highest number of offspring, that is, if for some classes α and β we have
ρβ < ρα = max {ργ : γ ⪯ β}, then W (β) = (W (j))j∈Cβ is a deterministic linear
transformation of W (α). We refer to [37] for a more detailed exploration of the
properties of W .
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3.1 Displacements with regularly varying tails

Let Fi(x) = P (ξi ≤ x). In this section, analogously to the irreducible case, we
assume that the displacements are independent and there exist slowly varying func-
tions {Li}i∈C and positive constants {ri}i∈C, satisfying

1− Fi(x) ∼ Li(x)x
−ri as x→ ∞,

log(−x)Fi(x) → 0, as x→ −∞.
(3.6)

In contrast to the assumptions of Theorem 2.1, this time we assume that there
is a unique pair (α, I) satisfying

ρ
1
rI
α = max {ρ

1
ri
a : a ⪯ i}

It is perhaps worth noting that unlike in the irreducible model, rI is not necessarily
the minimum of all ri’s, nor is ρ the principal eigenvalue of M . This is due to the
fact that the growth speed of a single cage a, just as we have seen in Theorem 2.1,
is exponential at the rate ρ

1
ra
a , where ra is the minimal exponent among the types

from this cage. In other words, the speed depends on the interplay between the
tails of the displacements and the asymptotic expected number of particles. Since
in the reducible case the latter may be different for different classes, choosing the
"dominant" type, and therefore the correct normalization, requires us to look at
both of these quantities.

We denote ρ = ρα and r = rI . Furthermore, let k > 0 be the constant satisfying

ZI
n

nkρn
P−a.s.−−−→ W (I)

Our result is as follows.

Theorem 3.1. Let
ζ =

∑
j>0

ρ−j
∑
l∈C

PI
(
Z l
j > 0

)
.

and choose the sequence {an}n∈N so that

nkρn (1− FI(an)) −−−→
n→∞

1.

Then
P(Rn ≤ anx) −−−→

n→∞
E[e−ζW (I)x−q

]

Remark 3.2. As in the irreducible case, the existence of an satisfying (2.8) is
guaranteed by the result of de Bruijn [16]. Here if L# is the de Bruijn conjugate of
L, we can take an = L#

(
n

k
r ρ

n
r

)
n

k
r ρ

n
r . In particular, this guarantees that for any
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ε > 0,
ρ

n
r
(1−ε) < an < ρ

n
r
(1+ε) (3.7)

for sufficiently large n.

Proof of the Theorem 3.1. Similarly to the irreducible case, we begin with a lemma
on the total population. Recall that for i ∈ C,

Y i
n =

∣∣∣∣∣
n⋃
k=1

{v ∈ Tk : σ(v) = i, (∃w ∈ Tn)(wk = v)}

∣∣∣∣∣
is the total number of particles of type i that have offspring in the n-th generation.

Lemma 3.3. Assume (3.2) and (3.3) and let

ζi =
∑
j>0

ρ−j
∑
l∈C

Pi
(
Z l
j > 0

)
.

Then for all i ∈ C,
Y i
n

ρni n
ki

→ ζiW (i).

where ρi, ki,W (i) are as in (3.5).

Proof. The Lemma is proven with analogous arguments as in Lemma 2.4, but we
provide full argument for convenience of the reader. First decompose

Y i
n

ρnnki
=

n−1∑
j=0

ρ−j
∑
l∈C

(
n− j

n

)ki Zi
n−j

ρn−j(n− j)ki
1

Zi
n−j

Zi
n−j∑
k=1

1{Zl
j(i,k)>0}

where for any j and l, {Z l
j(i, k)}k>0 are i.i.d. distributed as Z l

j under Pi, and for
i1 ̸= i2, {Z l

j(i1, k)}k>0 are independent of {Z l
j(i2, k)}k>0. Now we denote

Dn−j =

(
n− j

n

)ki Zi
n−j

ρn−j(n− j)ki

and

El
n−j =

1

Zi
n−j

Zi
n−j∑
k=1

1{Zl
j(i,k)>0}

By the strong law of large numbers, for any fixed j > 0,

El
n−j

a.s.−−−→
n→∞

Pi(Z l
j > 0)
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We also know from (3.5), that for any fixed j > 0,

Dn−j
a.s.−−−→
n→∞

W (i)

Now fix N > 0. Then for n > N

Y i
n

ρnnki
≤

N∑
j=0

ρ−j
∑
l∈C

Dn−jE
l
n−j +

∑
l∈C

sup
i≥N+1

{Di}
∞∑

i=N+1

ρ−i

=
N∑
j=0

ρ−j
∑
l∈C

Dn−jE
l
n−j + d

ρ−N

ρ− 1
sup
i≥N+1

{Di}

So, P-almost surely,

lim sup
n

Y i
n

ρnnki
≤ W (i)

N∑
j=0

ρ−j
∑
l∈C

Pi(Z l
j > 0) +

∑
l∈C

sup
j≥N+1

{Dj}
∞∑

j=N+1

ρ−j

Letting N → ∞ we get

lim sup
n

Y i
n

ρnnki
≤ ζiW (i) P− a.s.

For the bound from below, we note that

Y i
n

ρn
≥

N∑
j=0

ρ−j
∑
l∈C

Dn−jE
l
n−j

so taking lim inf
n

and then letting N → ∞ we get

lim inf
n

Y i
n

ρnnki
≥ ζiW (i) a.s.

concluding the proof of the lemma.

Now define for i ∈ C

M i
n = max{ξvk : v ∈ Tn, vk ∼ i, k ≤ n}

We will show that

P
(
M I

n ≤ anx
)
−−−→
n→∞

E
[
exp

{
− ζW (I)x−r

}]
(3.8)
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and if i ̸= I

P
(
M i

n ≤ anx
)
−−−→
n→∞

1. (3.9)

As a consequence, of course

P (Mn ≤ anx) −−−→
n→∞

E
[
exp

{
− ζW (I)x−r

}]
(3.10)

where Mn = max
i∈C

{M i
n}. We readily calculate

P
(
M i

n ≤ anx
)
= E

[
Fi(anx)

Y i
n

]
= exp

{
Y i
n

ρnnk
ρnnk logFi(anx)

}
.

Now, an was chosen so that ρnnk(1− FI(an)) −−−→
n→∞

1, so we proceed to

ρnnk logFI(anx) ∼ −ρnnk(1−FI(anx)) = −nkρn(1−FI(an))
(1− FI(anx))

(1− FI(an))
−−−→
n→∞

−x−r.

Hence by Lemma 3.3,

FI(anx)
Y I
n

a.s.−−−→
n→∞

exp
{
− ζW (I)x−r

}
.

Using the dominated convergence theorem, this proves (3.8). Similarly, for i ̸= I,

Y i
n

ρni n
ki

ρni n
ki

ρnnk
ρnnk (1− Fi(anx)) =

Y i
n

ρni n
ki

ρni n
ki

ρnnk
ρnnk(1− FI(anx))

(1− Fi(anx))

(1− FI(anx))
(3.11)

Note again that ρnnk(1−FI(an)) −−−→
n→∞

1, and by Lemma 3.3 ρ−ni n−kiY i
n has a finite

limit. To take care of the remaining terms, we note that

ρni n
ki

ρnnk
(1− Fi(anx))

(1− FI(anx))
∼
(
ρi
ρ

)n (
ρ1−

ri
r

)n
h(n) (3.12)

where (see Remark 3.2)

h(n) =
Li

(
L#
(
ρ

n
r n

k
r

)
ρ

n
r n

k
r

)
L#
(
ρ

n
r n

k
r

)ri
n

k
r
ri

L
(
L#
(
ρ

n
r n

k
r

)
ρ

n
r n

k
r

)
L#
(
ρ

n
r n

k
r

)r
nk

.

Observe (
ρi
ρ

)n (
ρ1−

ri
r

)n
= ρni ρ

−n ri
r
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and since ρ and r were chosen to satisfy

ρ
1
r = max {ρ

1
ri
a : a ⪯ i}

we have for some ε > 0

ρ
1−ε
r > ρ

1
ri .

Hence,

ρni ρ
−n ri

r =

(
ρ

1
ri
i

)nri
ρ−n

ri
r ≤

(
ρ

1−ε
r

)nri
ρ−n

ri
r =

(
ρ

riε

r

)−n
.

As h(n) satisfies h(n)
ρδn

→ 0 for any δ > 0, the right-hand side in (3.12) goes to 0 as
n→ ∞. Using the dominated convergence theorem again, (3.9) is proven.

Remark 3.4. As we see from the proof, we can in fact make even stronger state-
ment than (3.9). That is, for i ̸= I and small enough ε > 0,

P
(
M i

n ≤ ρεnanx
)
−−−→
n→∞

1.

From here we proceed by induction. If m = 1, the theorem reduces to Theorem
2.1, so the base case is proven. Assume now that the theorem holds for processes
with m− 1 classes for m > 1. Then we can write

Rn = max(R1
n, R

2
n) (3.13)

where

R1
n = max{Sv : |v| = n, σ(v) = i, i ∈

⋃
i≤m−1

Ci}

R2
n = max{Sv : |v| = n, σ(v) = i, i ∈ Cm}.

Let (β, J) be a pair of a class and a type attaining

max {ρ
1
ri
a : a ⪯ i, a ≤ m− 1},

and denote γ = ρβ and q = rJ . First consider the case when γ
1
q = ρ

1
r > ρ

1
r(m)
m ,

where r(m) = min
i∈Cm

ri. By induction assumption

lim sup
n→∞

P
(
Rn

an
≤ x

)
≤ lim sup

n→∞
P
(
R1
n

an
≤ x

)
= E[e−ζW (I)x−q

]. (3.14)

For the lower bound, consider a modified process S̃v =
∑n

k=1 max (ξvi , 0) where the
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displacements are nonnegative. Define analogously

R̃1
n = max{S̃v : |v| = n, σ(v) ∈

⋃
i≤m−1

Ci}

R̃2
n = max{S̃v : |v| = n, σ(v) ∈ Cm}

R̃n = max(R̃1
n, R̃

2
n).

Note that S̃ satisfies the same assumptions we made on S, so all previous results
hold. Now for a particle v ∈ Tn, σ(v) ∈ Cm, we have

Sv = Sv − Sv∗ + Sv∗ ≤ Sv − Sv∗ +R1
k∗ ≤ nmax

i∈Cm
M̃ i

n + R̃1
n (3.15)

where v∗ is the last ancestor of v from the first m − 1 classes, k∗ = |v∗| is its
generation, and

M̃ i
n = max{ξvk : v ∈ Tn, vk ∼ i, i ∈ Cm k ≤ n}.

Taking the supremum over v in (3.15), we have

R2
n ≤ nmax

i∈Cm
M̃ i

n + R̃1
n,

and trivially,
R1
n ≤ nmax

i∈Cm
M̃ i

n + R̃1
n.

Since I /∈ Cm, by Remark 3.4,

nmaxi∈Cm M̃
i
n

an

d−−−→
n→∞

0.

Hence,

lim inf
n→∞

P
(
Rn

an
≤ x

)
≥ lim inf

n→∞
P
(
nmax
i∈Cm

M̃ i
n + R̃1

n ≤ anx

)
= lim inf

n→∞
P

(
R̃1
n

an
≤ x

)
= E[e−ζW (I)x−q

]

Together with (3.14), we conclude

lim
n→∞

P
(
Rn

an
≤ x

)
= E[e−ζW (I)x−q

].

Now consider the case when γ
1
q < ρ

1
r . Then by induction assumption we know

that R1
n

a1n
converges in distribution, where for any ε > 0, a1n < γ

n
q
(1+ε) for sufficiently
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large n. Since an > ρ
n
r
(1−ε) for any ε > 0 and sufficiently large n, we have a1n

an
→ 0,

therefore R1
n

an
converges in distribution to 0. Hence, we only need to examine

lim
n→∞

P
(
R2
n

an
≤ x

)
. (3.16)

We begin by showing that for any ε > 0,

lim sup
n→∞

P
(
R2
n > anx

)
≤ 1− E[e−ζW (I)x−q

] (3.17)

Take v ∈ Tn, σ(v) ∈ Cm. Then

Sv = Sv − Sv∗ + Sv∗ ≤
n∑

k=k∗(v)+1

max {ξvk , 0}+ nmax
i ̸=I

M i
n.

Where v∗ is the last ancestor of v from the preceding m − 1 classes and k∗ = |v∗|.
Note that Xv :=

∑n
k=k∗+1 max {ξvk , 0} is a random sum of independent random

variables with regularly varying tails, where the heaviest tail is of the order rI
(since now I ∈ Cm). Taking maximum over v, we have

R2
n ≤ R∗

n + nmax
i ̸=I

M i
n

where
R∗
n = max

σ(v)∈Cm
Xv.

Again by Remark 3.4,
nmax

i ̸=I
M i

n

an

d−−−→
n→∞

0.

Hence, we have reduced (3.17) to showing

lim sup
n→∞

P (R∗
n > anx) ≤ 1− E[e−ζW (I)x−q

]. (3.18)

Let
M∗

n = max
i∈CM

M i
n.

By (3.8) and (3.9),

lim
n→∞

P (M∗
n ≥ anx) = E[e−ζW (I)x−q

]. (3.19)

From here we proceed similarly to the irreducible case. Since

lim sup
n→∞

P (R∗
n > anx) ≤ lim

n→∞
P (M∗

n ≥ anx) + P (R∗
n > anx,M

∗
n ≤ an(x− ε)) ,
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by (3.19) we only need to show

lim
n→∞

P (R∗
n > anx,M

∗
n ≤ an(x− ε)) = 0

Let Xn(anx,∞) = # {v : |v| = n, σ(v) ∈ Cm, Xv > anx}. Then

P (R∗
n > anx,M

∗
n ≤ an(x− ε)) ≤ E

[
Xn(anx,∞)1{M∗

n≤an(x−ε)}
]

≤
n∑
l=1

∑
l⃗ : |⃗l|1=l

Al⃗

(
F

(an(x−ε))
l⃗

(∞)− F
(an(x−ε))
l⃗

(anx)
)

where the inner sum goes over all vectors l⃗ = (l1, . . . l|Cm|) satisfying |⃗l|1 =
∑|Cm|

j=1 lj =

l, Al⃗(n) is the expected number of class Cm particles in the n-th generation, that
had lj ancestors of each respective type in Cm, and

F y

l⃗
(x) = F y

d−m+1,l1
∗ F y

d−m,l2 ∗ · · · ∗ F
y
d,lm

(x)

Since the step distributions in Fl⃗ now only involve distributions with tails not heavier
than rI = r, we can follow the argument from the proof of (2.22), which yields for
x, ε, δ > 0, s ∈ (0, r) and C > 0,

(
F

(an(x−ε))
l⃗

(∞)− F
(an(x−ε))
l⃗

(anx)
)
≤ C

(
lCs

asn(x− ε)s

)x(1−δ)
(x−ε)

and as a consequence, for some C ′ > 0 and p′ > 1,

n∑
l=1

∑
l⃗ : |⃗l|1=l

Al⃗

(
F

(an(x−ε))
l⃗

(∞)− F
(an(x−ε))
l⃗

(anx)
)

≤ C ′ρ−np
′E[|Zn(m)|] =≤ C ′ρ−np

′
m∑
j=1

(MnZ0)(d−m+ j)

By Jordan decomposition, for some k > 0 and all j = 1, . . . ,m, ρ−nn−k(MnZ0)(d−
m+ j) converges to a finite limit, hence

lim
n→∞

P (R∗
n > anx,M

∗
n ≤ an(x− ε)) = 0

This concludes the proof of (3.18), and in result (3.17). To finish the proof of the
Theorem we are left to show

lim inf
n→∞

P(Rn > anx) ≥ 1− E[e−ζW (I)x−q

].
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Since

P(Rn > anx) ≥ P(Mn > an(x+ ε))− P(Rn ≤ anx,Mn > an(x+ ε)).

and, by (3.10),

lim
n→∞

P (Mn ≥ anx) = E[e−ζW (I)x−q

], (3.20)

the proof is reduced to showing

P(Rn ≤ anx,Mn ≥ an(x+ ε)) −−−→
n→∞

0. (3.21)

Here we note that the arguments used to show (2.14) in the proof of Theorem 2.1
were based solely on the logarithmic bound on the lower tails of the distributions
and the exponential growth of an. Since these conditions are still satisfied, the
calculations can be repeated with no significant modifications, concluding the proof
of the Theorem.
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3.2 Displacements with semi-exponential tails

Analogously to the irreducible case, throughout this section we assume that the
displacements are independent and admit semi-exponential tails:

P
(
ξj ≥ t

)
= aj(t) exp{−Lj(t)trj}, (3.22)

where Lj, aj are slowly varying functions such that Lj(t)

t1−rj
are eventually nonincreas-

ing, and rj ∈ (0, 1). We also assume that the displacements have finite moments.
Let

r = min{rj | j ∈ C},
B = {j ∈ C | rj = r},
A = {a ⪯ j | j ∈ B}

so that A is the set of classes preceding types that attain r. Our result is as follows.

Theorem 3.5. Let L(x) = min{Lj(x) | j ∈ B}, ρ = max
a∈A

ρ(a), and choose ψ(n) to
be a positive function satisfying

L(ψ(n))ψ(n)r

n
→ 1. (3.23)

Then
Rn

ψ(n)

a.s.−−→ (log ρ)
1
r .

Remark 3.6. As in the irreducible case, the existence of ψ(n) satisfying (3.23) is
guaranteed by the result of de Bruijn [16]. Indeed, if K(x) is the de Bruijn conjugate
of x 7→ L

(
x

1
r

)
, then we can takeψ(n) = K(n)

1
rn

1
r . In particular, this implies that

for any ε > 0,
n

1
r
(1−ε) ≤ ψ(n) ≤ n

1
r
(1+ε)

for large enough n.

The main difference between this Theorem and Theorem 2.5 is that ρ is not
necessarily the principal eigenvalue of M . This is because the limit behavior is
driven by the heaviest tail and the asymptotic number of particles attaining it. In
the irreducible case, all types share the same growth rate, but as seen in [37], the
growth rate of particles of any given type is also driven by the types preceding
it. To illustrate the issue, consider the following heuristic argument: start with an
irreducible process as class 1, and append to it another process as class 2, which
follows class 1. Denote by r1 and r2 the heaviest tails that appear in classes 1 and
2, respectively. Then there are 3 cases to consider:
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1. r2 < r1. Then the normalization factor ψ(n) should adhere to class 2, as
it has a heavier maximum tail. As the number of class 2 particles grows as
max{ρ(1), ρ(2)}n, ρ in Theorem 3.5 is, in fact, the principal eigenvalue of M .
It is perhaps worth noting that the number of class 2 particles can even grow
as nkρn for some k > 0 if ρ1 = ρ2 (see [37] for details), but this is of no
consequence here, since the bounds used in our proof work on exponential
scale.

2. r2 = r1. Since both classes attain the heaviest tail in the process, this is in
essence the same as case 1. The only difference lies in ψ(n), but it is limited
to a slowly varying function.

3. r2 > r1. Since the normalizing factor ψ(n) grows as n
1
r1 , class 2 is essentially

irrelevant. In this case ρ = ρ(1) even if ρ(2) is greater.

This argument can be iterated by adding more classes. This should provide some
intuition useful for understanding the rationale behind the structure of the proof.
The key ingredient will be the following lemma.

Lemma 3.7. Denote the number of particles of class a in the n-th generation as
Zn(a). If a ⪯ j, then, for any ε > 0, there exist k ∈ N, δ > 0 and β, γ ∈ (0, 1),
such that for all n large enough

P
(
Zj
n ≤ δZn−k(a)

)
≤ βn. (3.24)

and
P
(

Zj
n

ρ(a)n
< (1− ε)n

)
≤ γn (3.25)

Proof of the Lemma 3.7. We prove the lemma by induction. First observe that if
m = 1, the model reduces to the irreducible one considered in previous section
and the statement of the lemma is an immediate consequence of Lemmas 2.7 and
2.8. Now assume that it holds for processes with m classes and consider one with
m+ 1 classes. Observe that the statement follows immediately from the induction
assumption if j ∈ Cl for some l ≤ m, as the last type does not contribute to the
previous ones, hence we only consider the case when j ∈ Cm+1. We start by showing
(3.24). First note that it is trivially true if a = m+1, so assume a ≤ m. Fix i ∈ Ca
and k ∈ N such that Mk(i, j) > 0 (recall that a ⪯ j means that such k exists for
all i ∈ Ca). Since (3.24) holds for first m classes, the problem can be reduced to
showing existence of β ∈ (0, 1) satisfying

P
(
Zj
n < δZi

n−k
)
≤ βn. (3.26)

The proof is again similar to that of Lemma 2.8. We denote by Zi→j
k a random
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variable distributed as Zj
k under Pi. Consequently, q = P

(
Zi→j
k = 0

)
< 1. Observe

P
(
Zj
n < δZi

n−k
)
= P

∑
r∈C

Zr
n−k∑
l=1

Zi→j
k (l) < δZi

n−k


≤ P

Zi
n−k∑
l=1

Zi→j
k (l) < δZi

n−k

 = E
[
Φ
(
Zi
n−k
)]

where

Φ(s) = P

(
s∑
l=1

Zi→j
k (l) < δs

)
.

and {Zi→j
k (l)}l>0 are indpendent copies of Zi→j

k . If q = 0, the statement of the
Lemma is trivially true with δ = 1. Hence, we only consider the case where q ∈
(0, 1). Denote Kn = #{l ≤ s : Zi→j

k (l) > 0}. Then

Φ(s) =P

(
s∑
l=1

Zi→j
k (l) < δs

)
=

∞∑
t=0

P

(
s∑
l=1

Zi→j
k (l) < δs , Kn = t

)

≤
∞∑
t=0

P(t < δs,Kn = t) =

⌊δs⌋∑
t=0

(
s

t

)
(1− q)tqs−t ≤ qs

⌊δs⌋∑
t=0

(δs)t

t!

(
1− q

δq

)t
Choosing δ > 0 small enough so that

1− q

δq
> 1,

and

β0 = q

(
1− q

δq

)δ
< 1.

we get the bound
Φ(s) ≤ βs0.

Then

E
[
Φ
(
Zi
n−k
)]

≤ E
[
β
Zi
n−k

0

]
≤ βn0 + P

(
Zi
n−k < n

)
.

Since i ∈ Ca for a ≤ m, P
(
Zi
n−k < n

)
decays exponentially fast by induction as-

sumption, which ends the proof of (3.24). Having proved that, (3.25) follows easily:

P
(
Zj
n

ρ(a)
< (1− ε)n

)
≤ βn + P

(
δZi

n

ρ(a)
< (1− ε)n

)
≤ βn + γ

n
δ
0 ≤ γn

for appropriate choice of γ ∈ (0, 1) and large enough n.
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Proof of the Theorem 3.5. We start with the upper bound. For this part, we can
assume without loss of generality (replacing ξi with max{ξi, 0}) that all ξi’s are
nonnegative. Denote

θ = max{α | Cα ⊂ B}.

Note that we may assume that if α is not comparable (with respect to relation ⪯)
with any class contained in B, then α > θ. This is achieved by simple renumbering
of some classes and is consistent with the ordering we assumed in (3.1). Let

Rθ
n = max{Sv | |v| = n, σ(v) ∈ Cα, α ≤ θ}

Denote by Mθ the minor of M that includes only the subset of classes Cθ∼ =

{C1, C2, . . . , Cθ}, so

Mθ =


M [1] M [1, 2] . . . M [1, θ]

0 M [2] . . . M [2, θ]
...

...
... · · ·

0 . . . 0 M [θ]

 . (3.27)

Since the subsequent classes do not contribute to the previous ones, the sub-process
consisting only of particles of these types is a multi-type Galton-Watson process
with mean matrix Mθ. We now repeat the construction from the first part of the
proof of Theorem 2.5. Recall that we bounded the tails of Sv by a tail of an i.i.d.
sum of random variables with the heaviest tails. When applied to the considered
subprocess, this yields the following inequality. For any ε > 0, there is δ > 0 such
that for all large enough n,

P
(
Sv ≥ ψ(n)(log ρ+ ε)

1
r

)
≤ exp {−n(log ρ+ δ)} = ρ−ne−nδ (3.28)

for any v ∈ Tθn = {v ∈ Tn | σ(v) ∈ Cα, α ≤ θ }. Calculation analogous to (2.33)
yields the inequality

P
(
∃v ∈ Tn : Sv ≥ ψ(n)(log ρ+ ε)

1
r

)
≤ E[|Zθ

n|]ρ−ne−nδ, (3.29)

where |Zθ
n| is the number of particles in our sub-process. Now observe that

E[|Zθ
n|] = E [|Mn

θ (Z0)|] = |Mn
θ (Z0)| .

As ρ is the largest eigenvalue of Mθ, by bringing Mθ to its Jordan form we see that
for some k ≤ d, n−kρ−nMn

θ has a finite limit, hence

E[|Zθ
n|]ρ−ne−nδ ≤ Ce−nδ

′
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for some C > 0, δ′ > 0, which by the Borel-Cantelli lemma proves

lim sup
n→∞

Rθ
n

ψ(n)
≤ (log ρ)

1
r (3.30)

Now we consider

Mc =


M [θ + 1] M [θ + 1, θ + 2] . . . M [θ + 1,m]

0 M [θ + 2] . . . M [θ + 2,m]
...

...
... · · ·

0 . . . 0 M [m]

 (3.31)

Observe that if v ∈ Tn/Tθn, then it necessarily has the last ancestor from Tθkv (as
the initial particle comes from the first class) for some kv. We denote this ancestor
vθ. Hence

Sv
ψ(n)

=
Sv − Svθ + Svθ

ψ(n)
≤
∑n

i=kv+1 ξvi +Rθ
kv

ψ(n)
≤ Xv

ψ(n)
+

Rθ
n

ψ(n)
(3.32)

where
∑n

i=kv+1 ξvi . Taking maximum over v ∈ Tn/Tθn and letting n→ ∞ in (3.32),
we see that with (3.30), we only need to show

R∗
n

ψ(n)

a.s.−−−→
n→∞

0, (3.33)

where
R∗
n = max

v∈Tn/Tθ
n

Xv.

From here we again deploy the strategy used in the proof of (2.33). Let

r′ = min{ri | i ∈
⋃
α>θ

Cα} > r

L′(x) = min{Li(x) | i ∈
⋃
α>θ

Cα, ri = r′}

ρ′ = max{ρ(α) | α > θ}.

furthermore, let Ψ be a function satisfying

L′(Ψ(n))Ψ(n)r
′

n
→ 1. (3.34)

Analogously to (2.33), we bound

P (Xv > x) ≤ P
(
X̃n > x

)
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where

X̃n =
n∑
i=1

ξ̃i

is a sum of independent nonnegative random variables with cumulative distribution
function F , satisfying

a1(x) exp{−L′(x)xr
′} ≤ 1− F (x) ≤ a2(x) exp{−L′(x)xr

′}

for some slowly varying a1, a2. As a consequence, by Theorem 3 from [28], for any
ε > 0, there is δ > 0 such that for all large enough n,

P
(
Xv ≥ {Ψ(n)(log ρ′ + ε)

1
r′
)
≤ exp {−n(log ρ′ + δ)} = (ρ′)−ne−nδ. (3.35)

As a consequence,

P
(
∃v ∈ Tn : Xv ≥ {Ψ(n)(log ρ′ + ε)

1
r′
)
≤ E

[∑
α>θ

Zn(α)

]
(ρ′)−ne−nδ.

Since

E

[∑
α>θ

Zn(α)

]
=

∑
i∈

⋃
α>θ Cα

Mn(i)

Again by Jordan decomposition, for all

i ∈
⋃
α>θ

Cα,

and some k > 0, n−k(ρ′)−nMn(i) converges to a finite limit. We conclude

lim sup
n→∞

R∗n
Ψ(n)

≤ (log ρ′)
1
r′ a.s.

By Remark 3.6, since r < r′, we have

Ψ(n)

ψ(n)
−−−→
n→∞

0

therefore
lim sup
n→∞

R∗
n

ψ(n)
≤ 0 a.s. (3.36)

Thus we have proved

lim sup
n→∞

Rn

ψ(n)
≤ (log ρ)

1
r a.s.

For the lower bound we again apply the trimming procedure used in the proof
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of Theorem 2.5 and reduce the problem to the convergence of the series

∞∑
n=1

P
(
ZI
n

ρn
≤
(
1− ε1

2

)n)
where I ∈ B. Recall that ρ was the maximum eigenvalue among the classes followed
by the types in B, so applying Lemma 3.7 (more specifically (3.25)) ends the proof.
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4 Perturbed branching random walk

In this chapter, which is based on the article [38], we consider a one-dimensional
perturbed branching random walk

S∗
v = Sv +Xv,

where {Xv}v∈T are i.i.d. random variables independent of S. We study the model
introduced by Bandyopadhyay and Ghosh in [5], where the perturbations have the
form

Xv(θ) =
1

θ
log

Yv
Ev

for a given positive real number θ, and {Yv}v∈T which are independent positive
random variables with distribution µ, and given T are independent of {Ev}v∈T,
which are independent with distribution Exp(1). We denote

θ0 = inf {θ > 0 : ν(θ) = θν ′(θ)}

where

ν(θ) = logE

[
N∑
i=1

eθξi

]

is the log-Laplace transform of Z, and ν ′(θ) = e−ν(θ)E
[∑N

i=1 ξie
θξi

]
. Note that ν

does not have to be differentiable at θ for this quantity to exist, and that in general
θ0 may be infinite.

In [5] branching random walks with such perturbations where studied in the
case when µ has finite mean. In particular, the authors proved that

R∗
n(θ)

n

a.s.−−−→
n→∞

{
ν(θ)
θ

θ < θ0
ν(θ0)
θ0

θ ≥ θ0

and identified weak centered asymptotics for θ ≤ θ0. However, the result for θ > θ0
was only obtained for the degenerated perturbations with µ = δ1. In this chapter
we present a series of Theorems, that complete the results from [5] by providing
the missing weak centered asymptotics for the so called above the boundary case,
and extend them to µ with infinite mean, with special focus on distributions with
regularly varying tails.

Let γ ∈ (0, 1). Our main assumption for µ is that

xγ (1− F (x)) −−−−→
x→+∞

c+ > 0, (H)

where F is the probability distribution function of µ.
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This assumption tells us that µ belongs to the domain of attraction of a stable
law with characteristic function

g̃ (t) = e−k|t|
γ(1−i tan (πγ

2 )signt) (4.1)

where
k =

πc+
2Γ (γ) sin (πγ/2)

> 0

and Γ(γ) =
∫∞
0
tγ−1e−tdt is the Gamma function.

Furthermore, it yields that if Y has a distribution µ, then E [Y γ] = ∞, but
E [Y r] < ∞ for any r ∈ (0, γ). (H) will be assumed in majority of the Theorems,
however the result for the above the boundary case will be stated under a more
general assumption.

We assume throughout this chapter that supp (µ) ⊂ R+, the system survives
with probability 1 (P(N = 0) = 0) and EN ∈ (1,∞]. The first assumption P(N =

0) = 0 is only made to simplify the notation, it can be easily avoided through
conditioning on the survival set, whereas the second one in particular entails that
the branching mechanism is not degenerated (P(N > 1) > 0). We also assume
that ν is finite on some open interval I containing 0. Since θ0 is finite, the last
assumption guarantees, by convexity of ν, that ν is differentiable on (−s, θ0) for
some s > 0, and has a left derivative at θ0. One can also characterize θ0 as the
unique argument minimizing ν(θ)

θ
over θ > 0. Throughout this chapter, existence of

finite θ0 will only be assumed when necessary.
As proved in [9], if θ0 is finite, then

Rn

n
−−−→
n→∞

ν(θ0)

θ0
, a.s. (4.2)

For θ such that ν(θ) <∞, let

Wn(θ) = e−nν(θ)
∑
|v|=n

eθSv . (4.3)

Wn(θ) is called the additive martingale associated with S. We denote Wn = Wn(θ0).
Note that as a positive martingale Wn(θ) converges almost surely to some finite
limit. If ν ′(θ) < ∞, then Biggins martingale convergence theorem [10] states, that
the almost sure limit of Wn(θ) is non-degenerate if and only if ν ′(θ) < ν(θ)/θ and

E
[
W1(θ) log+W1(θ)

]
<∞. (4.4)

Furthermore, the limit is then positive almost surely. The first condition is equiva-
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lent to θ < θ0, thus

Wn(θ)
a.s.−−−→
n→∞

{
W∞
θ if θ < θ0 and (4.4) is satisfied,

0 otherwise.
(4.5)

where W∞
θ is finite and positive almost surely. We also define the derivative

martingale associated with S as

Dn = −
∑
|v|=n

(θ0Sv − nν(θ0)) e
θ0Sv−nν(θ0)

As seen in Proposition A.3 from [1], under assumptions

(L1) θ0 <∞ and

E

[
N∑
i=1

eθ0ξiξ2i

]
<∞.

(L2) θ0 <∞, and for X̃ =
∑N

i=1 e
θ0ξiξ+i , X =

∑N
i=1 e

θ0ξi

E
[
X̃ log+ X̃

]
<∞,

E
[
X log2+X

]
<∞,

where log+ x = max{0, log x}, we have

Dn
a.s.−−−→
n→∞

D∞ (4.6)

for some random variable D∞ that is finite and positive almost surely.
These two martingales are connected through Theorem 1.1 from [2], which states

that under (L1) and (L2)

n
1
2Wn(θ0)

P−−−→
n→∞

c∞D∞ (4.7)

where

c∞ =

(
2

πσ2

) 1
2

and σ2 = E

[
N∑
i=1

(θ0ξi − ν(θ0))
2 eθ0ξi−ν(θ0)

]
.

For more results on these martingales and their limits see for example Chapter 3 in
[43].
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4.1 Main results

In this section we present our main results.

Theorem 4.1 (Almost sure convergence below the boundary). Assume that θ < θ0
γ
,

condition (H) is satisfied and

E
[
W1(γθ) log+W1(γθ)

]
<∞.

Then

R∗
n

n

a.s.−−−→
n→∞

ν (γθ)

γθ
.

Theorem 4.2 (Almost sure convergence above and at the boundary). If θ0 ≤ θ

and µ has finite r-th moments for all r < θ0
θ
, then

R∗
n

n

a.s.−−−→
n→∞

ν(θ0)

θ0
.

In particular, the conditions of Theorem 4.2 hold if µ satisfies (H) and θ ≥ θ0
γ
.

The results concerning convergence in distribution we split into three cases.

Theorem 4.3 (Convergence in distribution below the boundary). Assume that
θ < θ0

γ
, condition (H) is satisfied and

E
[
W1(γθ) log+W1(γθ)

]
<∞.

Then
R∗
n − n

ν (γθ)

γθ

d−−−→
n→∞

1

θ
(logHθ − logE) ,

where Hθ is finite and positive almost surely, and E is exponential with intensity 1,
independent of Hθ. Furthermore, Hθ has the characteristic function E

[
g̃
(
t
(
W∞
γθ

)γ)]
where W∞

γθ is the limit from (4.5) and g̃ is defined in (4.1).

Theorem 4.4 (Convergence in distribution at the boundary). Assume (L1) and
(L2). If µ satisfies (H) and θ = θ0

γ
, then

R∗
n − n

ν (θ0)

θ0
+

1

2θ0
log n

d−−−→
n→∞

1

θ
(logHθ0 − logE)

where Hθ0 is finite and positive almost surely and E is exponential with intensity 1,
independent of Hθ0. Furthermore, Hθ0 has the characteristic function E [g̃ (t(c∞D∞)γ)],
where g̃ is defined in (4.1).

It is a natural question to ask whether assumption (H) in Theorems 2.1, 2.3
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and 2.4 can be weakened by adding a slowly varying function. This is addressed in
Remark 4.7.

Theorem 4.5 (Convergence in distribution above the boundary). Assume (L1),
(L2) and that for all s ∈ R,

P (ξ1, ξ2, . . . ,∈ sZ) < 1.

If θ > θ0 and µ has a finite r-th moment for some r > θ0
θ

and is not concentrated
on a single point, then

R∗
n − n

ν(θ0)

θ0
+

3 log n

2θ0

d−−−→
n→∞

1

θ

(
logZ θ0

θ

− logE
)

where Z θ0
θ

is finite and positive almost surely and E is exponential with intensity

1, independent of Z θ0
θ

. Furthermore, Z θ0
θ

d
= (D∞)

θ
θ0U θ0

θ

, where D∞ is the almost

sure limit of the derivative martingale defined in (4.6) and U θ0
θ

is strictly θ0
θ
-stable

independent of D∞.

In particular, if µ has finite mean and θ > θ0, or if µ satisfies (H) and θ > θ0
γ
, then

the assumption in the last theorem is satisfied. This result is also more extensive
than Theorem 2.6 in [5], where the asymptotics were only given for the case µ = δ1.
It is worth noting that the logarithmic correction term in Theorems 4.4 and 4.5 or
its absence in Theorem 4.3 correspond to corrections in classical settings, see e.g.
[1, 7])
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4.2 Proofs of Theorems 4.3, 4.4, and 4.5

We start with a short proof of the following identity.

θR∗
n(θ)

d
= log Yn(θ)− logE (4.8)

where Yn(θ) =
∑

|v|=n e
θSvYv and E is exponential with parameter 1, independent

of Yn(θ). The equation is proven in [5] as Theorem 3.6, but we include it here for
completeness.

Proof of (4.8). Take f ∈ Cb(R) and let Fn = σ (Sv, Yv : |v| = n) be the σ-algebra
generated by {Sv}|v|=n and {Yv}|v|=n. Then

E [f (θR∗
n(θ))]] = E

[
f

(
sup
|v|=n

θSv + log
Yv
Ev

)]
= E

[
E
[
f

(
− log inf

|v|=n

Ev
eθSvYv

)∣∣∣∣Fn

]]

= E

[
E

[
f

(
− log

E1∑
|v|=n e

θSvYv

)∣∣∣∣∣Fn

]]
= E [f (log Yn − logE1)]

where the penultimate equality follows from the fact, that the minimum of inde-
pendent exponential random variables with parameters λi, i = 1 . . . n, is again an
exponential random variable, with parameter

∑n
i=1 λi.

Now we recall Lemma 4.1 from [13] (presented here in a slightly more accessible
form for our use), that will be useful to understand behaviour of the asymptotics
of Yn.

Lemma 4.6. Let {Yv}v∈T be i.i.d. random variables with distribution µ satisfy-
ing (H), and {Av}v∈T be a sequence of positive random variables, independent of
{Yv}v∈T, such that ∑

|v|=n

Aγv
P−−−→

n→∞
A and sup

|v|=n
Av

P−−−→
n→∞

0

for some positive random variable A. Then∑
|v|=n

AvYv
d−−−→

n→∞
H

where H has the characteristic function φH (t) = E
[
g̃(tA

1
γ )
]
.

Proof of Theorem 4.3. First we will prove that

Yn(θ)e
−n ν(γθ)

γ
d−−−→

n→∞
Hθ (4.9)
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where Hθ has the characteristic function Eg̃
(
t(W∞

γθ )
1
γ
)

and moreover Hθ is positive

almost surely. For this purpose we will use Lemma 4.6 for Av = eθSv−|v| ν(θγ)
γ . To

check its hypotheses observe

sup
|v|=n

Av = sup
|v|=n

enθ(
Sv
n

− ν(θγ)
θγ ) = enθ(

Rn
n

− ν(θγ)
θγ ).

As Rn

n

a.s.−−−→
n→∞

ν(θ0)
θ0

and θ0 is the unique argument minimizing ν(t)
t

, then nθ
(
Rn

n
− ν(θγ)

θγ

)
a.s.−−−→
n→∞

−∞ and so sup|v|=nAv
a.s.−−−→
n→∞

0. Furthermore, in view of (4.5),

∑
|v|=n

Aγv = Wn (θγ)

converges to W∞
γθ , which is positive almost surely, because γθ < θ0. Summarizing,

Lemma 4.6 entails (4.9).
To see that Hθ is positive almost surely, choose any ε > 0. Then using Exercise

3.3.2 from [21]

P (Hθ = 0) = lim
T→∞

1

2T

∫ T

−T
E
[
g̃
(
t(W∞

γθ )
1
γ
)]
dt

≤ lim
T→∞

1

2T

∫ T

−T
E
[
e−k|t|

γW∞
γθ

]
dt

= lim
T→∞

1

2T

∫ T

−T

(
E
[
e−k|t|

γ |W∞
γθ |;W∞

γθ ≤ ε
]
+ E

[
e−k|t|

γW∞
γθ ;W∞

γθ > ε
])
dt

≤ P
(
W∞
γθ ≤ ε

)
+ lim

T→∞

1

2T

∫ T

−T
e−k|t|

γεdt

Now the function t → e−kε|t|
γ is integrable, hence the limit of the second term is

0 for any ε. The first term can be made arbitrarily small through the choice of ε.
Since we know that W∞

γθ is positive almost surely for γθ < θ0, we conclude positivity
of Hθ.

Next, recalling (4.8)

R∗
n − n

ν (γθ)

γθ
d
=

1

θ
(log Yn(θ)− logE)− n

ν (γθ)

γθ
=

1

θ

(
log Yn(θ)e

−n ν(γθ)
γ − logE

)
with E ∼ Exp (1) independent of Yn. Finally, by (4.9) and the continuous mapping
theorem

log
(
Yn(θ)e

−n ν(γθ)
γ

)
d−−−→

n→∞
logHθ

where the distribution of Hθ is as specified in the statement.

Proof of Theorem 4.4(the boundary case). Define Av = e
θSv−n ν(θ0)θ

θ0
+ θ

2θ0
logn. Then,
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by (4.7), we have

∑
|v|=n

Aγv = n
1
2Wn

P−−−→
n→∞

(
2

πσ2

) 1
2

D∞ = c∞D∞

The second condition of Lemma 4.6, sup|v|=nAv
P−−−→

n→∞
0, follows by applying

Proposition A.3. in [33] to Vu = θ0Su − |u|ν(θ0). Then once again by Lemma 4.6

Yn(θ)n
θ

2θ0 e
−n θν(θ0)

θ0 =
∑
|v|=n

AvYv
d−−−→

n→∞
Hθ0 . (4.10)

Next, by (4.8)

R∗
n − n

ν (θ0)

θ0
+

1

2θ0
log n

d
=

1

θ
(log Yn(θ)− logE)− n

ν (θ0)

θ0
+

1

2θ0
log n

=
1

θ

(
log
(
n

θ
2θ0 Yn(θ)e

−n θν(θ0)
θ0

)
− logE

)
and by (4.10) and the continuous mapping theorem

log
(
n

θ
2θ0 Yn(θ)e

−n θν(θ0)
θ0

) d−−−→
n→∞

logHθ0

where distribution of Hθ0 is as specified in the statement.

Remark 4.7. It is clear that proofs of Theorems 4.3 and 4.4 rely on Lemma
4.6. If one were to allow a slowly varying function L(x) in the assumption (H),
then a close examination of the proof available in [13] reveals that the assumption∑

|v|=nA
γ
v

P−−−→
n→∞

A needs to be replaced with
∑

|v|=n L(A
−1
v )γAγv

P−−−→
n→∞

A and we have
no tools to study convergence of such sequences without the martingale property.

Proof of Theorem 4.5 (above the boundary case). The proof relies on Proposition
3.2 in [17]. The assumptions for Theorem 4.5 with condition θ0ν ′(θ0) = ν(θ0) for S
are equivalent to assumptions (A1) through (A3) from [17] for a BRW

Vu = −θ
(
Su − |u|ν(θ0)

θ0

)
with critical parameter ϑ = θ0

θ
. Proposition 3.2 in [17] entails

n
3
2
ϑ
∑
|u|=n

e−VuYu
d−−−→

n→∞
Z θ0

θ

where Z θ0
θ

is positive almost surely. Furthermore, by equation (1.13) in [17], we

have Z θ0
θ

d
= D

1
ϑUϑ, where D is the limit of the derivative martingale associated
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with −ϑV , and Uϑ is strictly ϑ-stable independent of D. If we let ψ be the log-
Laplace transform of −ϑV , then it satisfies the equation ψ(1) = 0 = ψ′(1), so the
derivative martingale associated with −ϑV is∑

|u|=n

ϑVue
−ϑVu = −

∑
|v|=n

(θ0Sv − nν(θ0)) e
θ0Sv−nν(θ0) = Dn

so D
1
ϑ = (D∞)

θ
θ0 . Therefore

n
3θ
2θ0 Yn(θ)e

−n θν(θ0)
θ0 = n

3
2
ϑ
∑
|u|=n

e−VuYu
d−−−→

n→∞
Z θ0

θ

where the distribution of Z θ0
θ

is as in the statement. By (4.8) we have

R∗
n − n

ν(θ0)

θ0
+

3 log n

2θ0

d
=

1

θ
(log Yn(θ)− logE)− n

ν(θ0)

θ0
+

3 log n

2θ0

=
1

θ

(
log n

3θ
2θ0 Yn(θ)e

−n θν(θ0)
θ0 − logE

)

and by the continuous mapping theorem

log n
3θ
2θ0 Yn(θ)e

−n θν(θ0)
θ0

d−−−→
n→∞

logZ θ0
θ

which completes the proof.
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4.3 Proof of Theorems 4.1 and 4.2

We start with the following Lemma, which gives the convergence in probability. It
is an essential step in the proof of Theorems 4.1 and 4.2, as it provides the bound
in (4.15).

Lemma 4.8.

(a) If conditions of Theorem 4.1 hold, then

R∗
n

n

P−−−→
n→∞

ν (γθ)

γθ

(b) If conditions of Theorem 4.2 hold, then

R∗
n

n

P−−−→
n→∞

ν(θ0)

θ0

Proof. Let β = γθ in case (a) and β = θ0 in case (b). We will prove first that

1

nθ
log
(
Yn(θ)e

−n θν(β)
β
) P−−−→

n→∞
0. (4.11)

We consider first the case (b). Fix an arbitrary ε > 0 and choose δ < θ0
θ

satisfying
ν(θ0)

θ0
− ν (δθ)

δθ
+ ε > 0.

Such δ always exists, since ν is continuous and θ0 is the unique argument minimizing
ν(t)
t

over t > 0. The Markov inequality yields

P
(

1

nθ
log
(
Yn(θ)e

−n θν(θ0)
θ0

)
> ε

)
= P

(
δ log

(
Yn(θ)e

−n θν(θ0)
θ0

)
> nθδε

)
= P

(
Yn(θ)

δe
−nδ θν(θ0)

θ0 > enθδε
)

≤ E[Yn (θ)δ]e
−δnθ

(
ν(θ0)
θ0

+ε
)
.

Applying the well-known inequality (a + b)δ ≤ aδ + bδ, valid for any positive a, b
and δ < 1 and the fact that for any v the random variable Yv is independent of Sv,
we obtain

E[Yn(θ)δ] = E
[( ∑

|v|=n

eθSvYv

)δ]
≤ E

[ ∑
|v|=n

eθδSvY δ
v

]
= enν(θδ)E[Y δ], (4.12)
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where the last expectation is finite. Summarizing

P
(

1

nθ
log
(
Yn(θ)e

−n θν(θ0)
θ0

)
> ε

)
≤ E[Y δ]e

−δnθ
(

ν(θ0)
θ0

− ν(δθ)
δθ

+ε
)

and thanks to our choice of δ the above expression converges to 0 as n tends to
+∞. To prove the remaining bound, denote vn = argmax|v|=n Sv . Since

1

nθ
log
(
Yn(θ)e

−n θν(θ0)
θ0

)
≥ 1

nθ
log
(
e
nθ

(
Svn
n

− ν(θ0)
θ0

)
Yvn
)
=
Rn

n
− ν(θ0)

θ0
+

1

nθ
log Yvn ,

for any parameters 0 < δ < ε we obtain

P
(

1

nθ
log
(
Yn(θ)e

−n θν(θ0)
θ0

)
< −ε

)
≤ P

(
Rn

n
− ν(θ0)

θ0
+

1

nθ
log Yvn < −ε

)
= P

(
e
nθ

(
Rn
n

− ν(θ0)
θ0

)
Yvn < e−εnθ

)
= P

(
e
nθ

(
Rn
n

− ν(θ0)
θ0

+ε
)
Yvn < 1

)
≤ P

(
enθδYvn < 1

)
+ P

(
Rn

n
− ν(θ0)

θ0
+ ε < δ

)
.

Now, since Rn

n
converges almost surely to ν(θ0)

θ0
and δ < ε, the second term converges

to 0. For the first term we have

P
(
enθδYvn < 1

)
= P

(
Y < e−nθδ

)
→ 0.

Thus, we conclude the proof of (4.11) for case (b).
For case (a), by Theorem 4.3, log Yn(θ)e−n

ν(γθ)
γ converges in distribution to logHθ

and this limit is finite almost surely. Therefore 1
nθ

log
(
Yn(θ)e

−n ν(γθ)
γ ) converges in

distribution to 0, and hence the convergence holds in probability as well. Thus, the
proof of (4.11) is completed.

To prove Lemma 4.8 notice that using (4.8) we can write

R∗
n(θ)

n
d
=

log Yn(θ)

nθ
− logE

nθ
=

1

nθ
log
(
Yn(θ)e

−n θν(β)
β
)
+
ν (β)

β
− logE

nθ
.

Now logE
nθ

converges to 0 almost surely and by (4.11), 1
nθ

log Yn(θ)e
−n θν(β)

β converges
to 0 in probability. That completes the proof of the Lemma.

Proof of Theorems 4.1 and 4.2 (almost sure convergence). To prove the almost sure
convergence we utilize here the arguments given in the proof of Theorem 2.1 in [5].
For the sake of completeness, we present a complete proof. We note that the main
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difference is that, due to Lemma 4.8, there is no need to treat separately the cases
below and above the boundary. Again, let β = γθ if conditions of Theorem 4.1 are
satisfied and β = θ0 if conditions of Theorem 4.2 are satisfied. We start with the
upper bound

lim sup
n→∞

R∗
n(θ)

n
≤ ν (β)

β
a.s. (4.13)

Fix any ε > 0. By (4.8) and the Markov inequality we get that for any δ < min( θ0
θ
, 1)

P
(
R∗
n(θ)

n
− ν (β)

β
> ε

)
= P

(
θδR∗

n(θ)−
θδnν (β)

β
> nδθε

)
= P

(
log

Yn(θ)
δ

Eδ
− θδnν (β)

β
> nδθε

)
≤ e−δnθ(

ν(β)
β

+ε)E
[
E−δ]E [Yn(θ)δ]

≤ e−δnθ(
ν(β)
β

− ν(θδ)
θδ

+ε)Γ (1− δ)E
[
Y δ
]
,

where the last inequality follows from (4.12).
Since ν is continuous, we can choose δ so that

ν (β)

β
− ν (δθ)

δθ
+ ε > 0.

Therefore the series
∞∑
n=1

P
(
R∗
n(θ)

n
− ν (β)

β
> ε

)
converges. The Borel-Cantelli lemma and arbitrariness of ε entails (4.13).

Finally our goal is to prove the lower bound

lim inf
n→∞

R∗
n (θ)

n
≥ ν (β)

β
a.s. (4.14)

For u such that |u| = m ≤ n, we define

R
∗(u)
n−m (θ) := max

v>u,|v|=n

(
S (v) +

1

θ
log (Yv/Ev)

)
− S (u) ,

where v > u means that v is a descendant of u. Note that, due to the branching
property of S, {R∗(u)

n−m (θ)}|u|=m are i.i.d. and have the same distribution as R∗
n−m (θ).
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Now,

R∗
n (θ) = max

|u|=m
max

v>u,|v|=n

(
S (v) +

1

θ
log (Yv/Ev)

)
= max

|u|=m

(
S (u) +R

∗(u)
n−m (θ)

)
≥ S (ũm) + max

|u|=m

(
R

∗(u)
n−m (θ)

)
,

where
ũm := arg max

|u|=m

(
R

∗(u)
n−m (θ)

)
.

Now, for any ε ∈ (0, 1) and small s such that ν(−s/2) is finite,

P
(
R∗
n (θ)

n
− ν (β)

β
< −ε

)
≤ P

(
S
(
ũ[√n]

)
+ max

|u|=[
√
n]

(
R

∗(u)
n−[

√
n]
(θ)
)
< n

(
ν (β)

β
− ε

))
≤ P

(
max

|u|=[
√
n]

(
R

∗(u)
n−[

√
n]
(θ)
)
< n

(
ν (β)

β
− ε

2

))
+ P

(
S
(
ũ[√n]

)
< −nε

2

)
≤ E

[
P
(
R∗
n−[

√
n] (θ) < n

(
ν (β)

β
− ε

2

))N[
√
n]

]
+ e−nεs/4 · E

[
e−sS(ũ[

√
n])/2

]
,

where Nk is the number of offspring in k-th generation. Recalling Lemma 4.8, for
all large enough n,

P
(
R∗
n−[

√
n] (θ) < n

(
ν (β)

β
− ε

2

))
< ε. (4.15)

We have

E

[
P
(
R∗
n−[

√
n] (θ) < n

(
ν (β)

β
− ε

2

))N[
√
n]

]
≤ E[εN[

√
n] ] ≤ E

[
εn;N[

√
n] ≥ n

]
+ P

(
N[

√
n] < n

)
≤ εn + P

(
N[

√
n] < n

)
If P (N = 1) = 0, then N[

√
n] ≥ 2[

√
n], so P

(
N[

√
n] < n

)
obviously disappears. Oth-

erwise, if P[N = 1] > 0, then as seen in [27] (Corollary 5 with equations (29) and
(4b)) , there are positive constants C > 0 and α > 0, such that for all large enough
k ∈ N,

P
(
Nk < k2

)
≤ Cm−αk,

where m = E[N ]. Therefore

εn + P
(
N[

√
n] < n

)
≤ ε

⌈
√
n⌉

1
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for some ε1 < 1. To estimate the second term, we bound supremum by the sum
and we have

E
[
e−sS(ũ[

√
n])/2

]
≤ E

 ∑
|v|=⌈

√
n⌉

e−
s
2
Sv

 = e[
√
n]ν(−s/2).

Therefore we have for all large enough n,

P
(
R∗
n (θ)

n
− ν(β)

β
< −ε

)
≤ ε

⌈
√
n⌉

1 + e−nεs/4+[
√
n]ν(−s/2).

Since for every ε ∈ (0, 1),

∞∑
n=1

P
(
R∗
n (θ)

n
− ν(β)

β
< −ε

)
<∞,

using the Borel-Cantelli Lemma once again we deduce (4.14), completing the proof.
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