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Streszczenie

Procesy galazkowe stanowia dynamicznie rozwijajacy sie obszar teorii praw-
dopodobieristwa. Poczatkowo wykorzystywane do opisu prostych proceséw naro-
dzin i $mierci, znalazly nastepnie szerokie zastosowania w fizyce oraz biologii, w
tym w modelowaniu reakcji nuklearnych czy dynamiki epidemii.

Klasyczny gatazkowy spacer losowy rozpoczyna sie od pojedynczej czastki umie-
szczonej w punkcie poczatkowym. W chwili 1 czastka ta znika, a jej miejsce zajmuje
losowa liczba nowych czastek, z ktorych kazda przyjmuje losowa pozycje. W kole-
jnych chwilach kazda czastka niezaleznie powtarza ten proces - jest zastepowana
przez losowa liczbe potomkow, ktorych pozycje powstaja w wyniku losowego prze-
suniecia pozycji rodzica. Proces ten jest kontynuowany w nieskonczono$é. W tej
rozprawie rozwazane sg dwie modyfikacje gatazkowych spaceréw losowych: modele
wielotypowe oraz modele z zaburzeniami.

Model wielotypowy stanowi naturalne uogoélnienie konstrukeji klasycznej, umozli-
wiajac analize czastek nalezacych do odmiennych klas, ktére determinuja zaréwno
rozktad pozycji, jak i liczebnos¢ potomstwa. Pozwala to na opis zjawisk o wickszym
stopniu zlozonosci, takich jak dynamika populacji komoérek o zréznicowanych feno-
typach. Uwzglednienie wielu typéw prowadzi do mozliwosci interakeji miedzy nimi,
co moze skutkowaé zaskakujacymi zachowaniami, takimi jak rozprzestrzenianie sie
populacji w znaczaco wyzszym tempie, niz ma to miejsce w modelu z ktérymkolwiek
z typow rozwazanym osobno.

Model z zaburzeniami wprowadza dodatkowa losowo$¢ do mechanizmu ustalania
pozycji czastki, co zwicksza elastycznosé w opisie proceséw stochastycznych. Dhu-
goterminowe wlasnosci takiego modelu moga wykazywaé istotne réznice wzgledem
klasycznego przypadku.

Analiza asymptotycznego zachowania ekstremalnej pozycji stanowi od wielu lat
przedmiot intensywnych badan w kontekscie klasycznych gatazkowych spaceréw
losowych, poniewaz dostarcza zasadniczych informacji o dtugoterminowej dynam-
ice procesu i umozliwia poglebione zrozumienie mechanizméw wystepujacych w
biologii, fizyce czy epidemiologii. Gléwnym celem niniejszej rozprawy jest opisanie
tego zachowania w obu wymienionych wyzej modyfikacjach w mozliwie najbardziej
ogblnym ujeciu.



Abstract

Branching processes are a rapidly developing area of probability theory. Initially
introduced to describe simple birth-and-death dynamics, they have subsequently
found numerous applications in physics and biology, including models of nuclear
reactions and epidemic spread.

The classical branching random walk starts with a single particle located at the
origin. At time 1, this particle dies and is replaced by a random number of randomly
placed offspring. At the next time step, every particle repeats the process and is
again replaced by a random number of descendants whose positions are determined
by a random displacement of the parent’s position. The process is then iterated
indefinitely. In this thesis, we investigate two modifications of branching random
walks: multi-type models and perturbed models.

The multi-type branching random walk is a natural generalization of the stan-
dard model, allowing for particles belonging to distinct classes. These classes de-
termine both the offspring distribution and the displacement law of each particle.
This framework enables the description of more complex phenomena, such as the
dynamics of cell populations with different phenotypes. The interaction between
different types may lead to surprising results, including propagation at significantly
higher speeds than in any of the corresponding single-type models.

The perturbed branching random walk introduces an additional source of ran-
domness in determining particle positions, providing greater flexibility in modeling
stochastic systems. The long-term behavior of such models can differ significantly
from that of the classical setting.

The asymptotic behavior of the maximal position has been a central topic of
research in the context of classical branching random walks, as it gives fundamental
insights into the long-term dynamics of the process and allows for a deeper under-
standing of complex mechanisms arising in biology, physics, and epidemiology. The
principal objective of this thesis is to provide as general as possible a description of
this behavior in both models mentioned above.
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1 Introduction

Branching processes are fundamental models in probability theory, with applications
in biology, physics, and computer science. In this setting, a population evolves
through both reproduction and random movement in space. Two central objects in
this theory are the Branching Brownian Motion (BBM) and the Branching Random
Walk (BRW).

We begin this chapter with the introduction of BBM, a continuous-time and
continuous-space model and its connection to the Fisher-Kolmogorov-Petrovskii-
Piskunov (F-KPP) equation. From there, we transition to the BRW, which is a
discrete analogue of BBM, and we finish this chapter with the introduction of two
modifications that are the focus of this thesis, namely multi-type and perturbed
BRWs. Our main results describe the asymptotic behavior of the extremal position
in both models mentioned above. In Chapters 2 and 3 we present the limit theorems
regarding multi-type processes. Chapter 4 is dedicated to the perturbed model,
and the results presented there have been published in ESAIM: Probability and
Statistics [38].

1.1 Branching Brownian Motion

Branching Brownian Motion is a stochastic process where particles move accord-
ing to independent Brownian motions and branch at exponential times. Formally,
starting with a single particle placed at the origin, it moves according to standard
Brownian motion, and after an exponential time with rate 1, splits into two parti-
cles, which continue the process independently. Let N(t) be the number of particles
in the system at time ¢, and X;(t), X(t), ..., Xn()(t) their positions. A connec-
tion arises between BBM and a nonlinear partial differential equation known as the
F-KPP equation:

ou 10%u
o " 2g2 Tu oW
u(0,2) = f(x)

This equation was introduced in the 1930s by Fisher [26] and Kolmogorov-Petrovskii-
Piskunov [39] to model gene propagation in a population. The equation can be
solved for a wide class of functions f, but within the probabilistic context the func-
tion of particular interest is

f(x) = 1,00 ().



McKean [42| showed that in this case the F-KPP equation describes the probability
that all particles in a BBM remain to the left of position x at time ¢:

N(t)

u(t,z) =FE H flx=X;t)| =P < max X;(t) < x) :

pale 1<i<N(t)
The F-KPP equation admits a traveling wave solution of the form
u(t,x) = ¢ (:1: — \/§t) :

By Bramson [14,|15|and Lalley and Selke [40], M; = max;<n) X;(t) satisfies the
law of large numbers,

M, as.
_t —> \/57
t n—o

and with centering m(t) = v/2t — 2% log t,
2

P(M, — m(t) < z) —— E [exp{—cDooe"/ﬁx} — $(z)
n—oo

where ¢ > ( is a constant and D, is a random variable depending on the branching

mechanism. These connections provide additional motivation for studying branch-

ing processes and the properties of the maximal position in particular.

1.2 Branching Random Walks

A natural discrete analog of BBM is the Branching Random Walk. BRWs found
many applications in physics and biology, including modeling nuclear chain reactions
[18] and the spread of epidemics [25|. Formally, a BRW is constructed as follows.
The process starts with a single particle placed at 0. Given a point process Z =
Zszl d¢, on R, where N, denoting the size of the offspring, is a random variable
on Ny, the original particle at time 1 dies and gives birth to N particles positioned
according to Z. These particles are called the first generation of the process. At
time 2, each of these particles reproduces independently and has offspring with
positions relative to their parents’ position given by an independent copy of Z.

The process continues infinitely. As a result, we obtain a marked tree (S, T),
where the tree T is the set of all particles equipped with the natural tree structure,
and 9, is the position of a given particle v € T.

We write |v| for the generation of v and m = E[N] for the mean number of
offspring. For a BRW with displacements given by &, let

R, = sup 5,

lv|=n



&+ &2 + €121 &1+ &12 + &122 &3 + €31 + €311

Figure 1: Branching random walk diagram.

denote the position of the most right particle at time n. The asymptotic behavior of
R, is most commonly studied under the following exponential moment assumption:

ie%‘] < o0. (1.1)

=1

there exists 6 > 0, such that E

Within this framework, we can define the log-Laplace transform of Z:

N
69& ’
>e]

v(f) =logE

and the critical parameter:
Op =inf {6 > 0:v(0) =060(0)}, (1.2)

where

V() =e "R

N
Z giee@-] :
=1

Note that v does not have to be differentiable at 6 for this quantity to exist, and

that in general 6y may be infinite.

Under (T.1)), Biggins [9] proved in 1976 the law of large numbers for R,, i.e. Z»

n
converges almost surely to %‘:}0).



Figure 2: Example plot of v with 6, highlighted.

The corresponding second order limit theorem was proved by Aidékon [1] in

v

2013, who showed that R,, — %O)n + % log n converges in distribution to a random
shift of the Gumbel distribution. We refer to Shi [43| for an extensive description
of recent results on branching random walks with finite exponential moments.

The assumption is critical to the linear growth of R,. Durrett |20] showed
in 1983 that if one assumes instead that the displacements have regularly varying
tails, R, grows exponentially fast. More specifically, assume that for some slowly

varying L and some r > 0, we have
P >z)~L(zx)z™" asz— o0 (1.3)
and
log(—z)P({ <x)—0, asxz— —oo. (1.4)

Then
P(R, < ayz) — Ele™* ]

n—o0

where ¢ > 0 is a constant, I is a random variable depending on the underlying
Galton-Watson process, and {a,, },en satisfies

m"P (& > a,) — 1. (1.5)

n—oo

Another model present in the literature considers displacements with semi-
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exponential tails. Assume that for some slowly varying a, L and r € (0, 1),

P& > x) = a(x)exp{—L(z)z"}.
Then, according to Gantert [28],

& BN (log m)% ,

b, n—oo

where b,, satisfies

L(b,)0:

n

— 1 (1.6)
n n—oo

This model was further explored in a series of papers by Dyszewski, Gantert, and
Hofelsauer in the context of large deviations [22], extremal point process [23] and
second-order fluctuations |24].

1.3 Multi-type branching random walk

Multi-type branching random walks extend the ideas of one-type branching pro-
cesses to a multidimensional setting, which is necessary to model various phenom-
ena, such as cell population dynamics with different phenotypes [34]. Formally,
a multi-type branching random walk is constructed analogously to the one-type
model. Take a set of types C = {1,2,...,d} and a corresponding family of point pro-
cesses {Z;;}ijec, where Z;; = Zf:;{ (5%', and for each j € C, {€]} ey are marginally
identically distributed. We start with a single particle of any given type i placed
at the origin. For each j € C, this particle gives birth to N;; children of type j,
positioned according to Z;;, and subsequently dies. At time 2, each particle of type
j reproduces independently according to copies of { Zjx }rec, and subsequently dies.
The process continues infinitely.

In this case, the number of offspring depends on the type of parent, but the dis-
placement of a particle depends only on its own type. We write Z,, = {Z, Z2 ... Z%}
for the d-dimensional Galton-Watson process recording the number of particles of
each type in the n-th generation and define the mean matrix M = (E[N;,|)i jec-
Since all entries in M are nonnegative, it has the principal (although possibly not
unique) eigenvalue that we denote by p. We utilize the one-type notation and de-
fine o(v) = i whenever v belongs to type i. Our main point of interest is again the
asymptotic behavior of the maximum position R,,.

In the multi-type model, one needs to distinguish between two significantly dif-
ferent regimes. We call the process irreducible if a particle of any given type can
appear in any line of descent with positive probability and reducible otherwise. In
terms of the mean matrix M, irreducibility translates to the following statement:
for any 4,5 € C, there exists n € N, such that M"(i,j) > 0. The previous results
on the multi-type model under the exponential moment assumption go back to

11
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Figure 3: Branching random walk with two types, A and B.

Biggins [9], who showed in 1976 that the irreducible model exhibits linear growth
and described the limiting constant. The reducible case proved to be more chal-
lenging. Weinberger et al.[44] in 2002 argued that the spreading speed should be
the maximum of speeds of the types considered separately, essentially ignoring the
interaction between types. A flaw in this argument was identified by Weinberger
et al. [45] in 2007, and the correct limiting constant was ultimately described by
Biggins [11] in 2012. As it turns out, the interplay between the types can signifi-
cantly increase the growth speed. This effect was called anomalous spreading
in Weinberger et al. [45] and makes the study of reducible models particularly
appealing.

Bhattacharya, Maulik, Palmowski and Roy [8] in 2019 considered an irreducible
model with displacements having regularly varying tails. They showed the conver-
gence of the extremal process to a randomly scaled scale-decorated Poisson point
process and, as a result, obtained a limit theorem for the maximum position. In this
case, it turns out that the behavior is analogous to the one-type model considered
in 20|, with the largest eigenvalue of M replacing the mean number of offspring
and the heaviest tail dominating the lighter ones.

In this thesis, we aim to provide a corresponding result for the reducible case
and describe the complete asymptotics of the extremal position in the previously
unstudied multi-type model with semi-exponentially tailed displacements.

12



1.4 Perturbed branching random walk

The perturbed branching random walk S* is a modification of a standard BRW S,
in which we add a random perturbation to the position of every particle, i.e.

Sy =5, + Xy,

where { X, },er are i.i.d. random variables independent of S.

* g *
5121 5121 Sl22 51*22 8311

Figure 4: Perturbed branching random walk.

Note that the perturbation added to the position of a vertex v € T does not
influence the positions of its offspring, which explains that the process is sometimes
called last progeny modified branching random walk. We are particlarly interested in
the model introduced by Bandyopadhyay and Ghosh in [5], where the perturbations
have the form ) v

Xo(0) = 9 log EZ

for a given positive real number 0, and {Y,},er which are independent positive
random variables with distribution p, and given T are independent of {E,},er,
which are independent with distribution Exp(1). The model was further studied
in the context of large deviations [29], and inhomogeneous time BRW [6]. A more
general situation was considered in a recent paper by Ghosh and Mallein|30], where
the specific form of X, was replaced by some exponential bounds on tail behavior
and convergence of the extremal process in vague topology was obtained.

The main motivation for considering this model comes from the connection
between the supremum of the perturbed BRW R (0) = sup,_, S, and random

13



weighted sums. More precisely, Theorem 3.6 in [5] states, that
OR*(0) < log Y, (0) — log E

where Y,,(0) = szn e?5vY, and F is exponential with parameter 1, independent
of Y,,(0). The asymptotics of R’ () will be related very closely to the behaviour
of Y,,(0), which is well described in the literature, see e.g. [13] and [17]. It turns
out that properties of R (6) depend strongly on the parameter §. More precisely,
one needs to control its position with respect to the critical parameter 6y defined in
).

In [5] branching random walks with such perturbations were studied in the case
when g has finite mean. In particular, the authors proved that

n n—00

m@a&{ﬁle<%
v(6
AL

and identified weak centered asymptotics for 6 < 6,. However, the result for 6 > 6,
was only obtained for the degenerated perturbations with p = d;.

Complementing this result and extending the framework beyond the finite mean
assumption is another objective of this thesis.

14



2 Irreducible multi-type branching random walk

In this chapter, we present the results on the irreducible branching random walks.
We adopt the notation introduced in the previous chapter and denote

P;(-) = P (- | initial particle is of type i),

and E; for the expectation with respect to P;. Whenever the index is omitted, we
assume that the initial particle is of type 1. Throughout this chapter, we make
the following assumptions on the underlying Galton-Watson process. Firstly, there
exists [ € N such that

M'(i,j) > 0 for all 4,5 € C. (2.1)

This assumption guarantees irreducibility, and through the Perron-Frobenius theo-
rem, it asserts that p, the principal eigenvalue of M, is simple. We also assume

p>1, (2.2)

ensuring that the process survives with positive probability (see [31], Theorem 7.1).
Finally, we assume that the Kesten-Stigum condition,

E:[Z] log Z]] < oo, (2.3)

holds for all ¢, 5 € C. Under these assumptions, the well known Kesten and Stigum
theorem [36] asserts that for any i € C,

Zn
— = Wu P;-as., (2.4)
pn

where W is a non-degenerate random variable and w is the left eigenvector of M.
It is a straightforward conclusion that

Zy,
— v —>W P;-as. (2.5)
pn

If we write v for the right eigenvector of M, normalized so that u - v = 1, then we

also have
E;[W] = v;. (2.6)

To avoid conditioning on the survival set, we assume P(Z, — 0) = 0.

15



2.1 Displacements with regularly varying tails

Let Fy(z) = P(& < z). In this section, we assume that the displacements are
independent and there exist slowly varying functions {L;};c¢c and positive constants

{r:}iec, satisfying
1 —F(z) ~ Li(x)z™™ as z — oo,

(2.7)
log(—z)F;(x) - 0, asz— —o0.

These assumptions are a natural extension of the one-type case considered in [20].
For simplicity, we additionally assume the existence of a unique heaviest tail: There
exists I € C, satisfying r; < r; for all j # I. To simplify the notation, we write
r = r7. Our main result is the following theorem.

C=ur) p? ) Pi(Z>0).

§>0 lec

Theorem 2.1. Let

and choose the sequence {ay }nen so that

p (1= Fi(an)) — 1. (2.8)
Then
P(R, < a,z) — Ele=*"W*"

n—0o0

Remark 2.2. As in the one-type case, the existence of a,, satisfying ([2.8)) is guar-
anteed by the result of de Bruijn [16]. If L# is the de Bruijn conjugate of L, one

n

can take a, = L# (p%) +. In particular, this guarantees that for any € > 0,
pr178) < q, < prite (2.9)

for sufficiently large n.

Remark 2.3. The result partly overlaps with Corollary 3.4 from [8], however there
are several differences. We allow the existence of leaves in our tree, and we present
a direct argument, in contrast to the result being a conclusion from the convergence
of the extremal process. On the other hand, we assume independence of the dis-
placements, as opposed to the more general notion of point processes converging in
suitable topology.

Proof of Theorem[2.1l To begin, we present a lemma that characterizes the asymp-
totic behavior of the total population in an irreducible multi-type Galton-Watson
process. For i € C, let

Vi=|J{veTs : o) =i (3w e T,)(wy, = v)}

16



be the total number of particles of type ¢ that have offspring in the n-th generation.

Ci:UiZP_jZPi (Zl >0

Lemma 2.4. Let

5>0 leC
Then for all i € C, .
_n a.s gZW
pn n—00

Proof. Observe
n—1 Zviz—j
=222 Yzamso
j=0 1eC k=1

where for any j and [, {Z!(i, k)} x>0 are i.i.d. distributed as Z! under P;, and for
i1 # i, {ZL(i1, k) x>0 are independent of {Z!(iz, k) }r>o. Hence

Vi «— _;
S A LN
j=0 leC n=j k=1
Denote D,,_; = Z,’j ~ndand B}, ; = #_J k1’ 1(zi(ik)>0p- For any ﬁxedj > 0, by the

strong law of large numbers, El —> P; (Zl > 0), and by 2.4), D,_; — Wu,.
n— o0 n—oo
Now fix N > 0. Then for n > N

i N
LS TN DB+ Y sw (D) R

=0 leC lec k=N+l J=N+1
N

Z ZD”J —i—dp — ,Sup {D}
s = k>N+1

So P-almost surely

hmsup— <WUZZ,0 ZIP’ 1> 0) +d sup {Dy}

7=0 leC —1 k=N+1

Letting N — oo we get

7

Y,
limsup — < W P —as.
no P

For the bound from below, we note that



so taking liminf and then letting N — oo we get

liminf = > W  as.
n pn

which concludes the proof of the lemma. n

Now let
M, = max{¢,, : ve T, k<n}

Since up to the n-th generation, for any i € C, there are Y, displacements with
distribution Fj, and all the displacements are independent of each other, we have

P (M, < a,z) HF an T ]
1eC
Note that
Y Y'n? n
Fi(a,x)™ = exp {—,0 log E(anx)} (2.10)
pn

Now, a, was chosen so that p"(1 — Fy(a,)) —— 1. Furthermore, 1 — Fj(z) ~
n—roo

Li(2)z"" as z — oo, where L; is slowly varying. Then, using the fact that for z
close to 0, log(1 + z) ~ z, we have

(1 — Fi(a,x))
(1= Fila) =
(2.11)

i

p"log Fr(apx) ~ —p"(1 — Fr(anx)) = —p"(1 — Fi(ay))

> —X

Applying Lemma 2.4 and (2.11)) in (2.10) yields
Fl(anx)YT{ =y exp{ —(Wz"}.
n—oo
Similarly, for ¢ # I,

p"log Fy(anz) ~ p"(1 — Fy(anz))
n (1 - E(anm)) —r r—r;
=p"(1— FI(anx))—(l ~Fi(a0)) ~ " (apx)

which converges to 0, because r < r; and L;’s are slowly varying. Again, by Lemma

p~"Y,! has a finite limit, so (2.12) yields F; (apx)¥n —s> 1 for i # I. Hence,

Li(a,x)

HFi(an —>exp{ (Wax™ }

n—oo

18



and using the dominated convergence theorem, we have shown
P (M, <a,x) — E[exp{ — (Waz™"}] (2.13)
n—oo

To finish the proof, we need to show that P (M,, < a,z) ~ P (R, < a,x) as n — oo.
Observe that for any € > 0

P(R, > apx) <P (M, > a,(z —¢)) + P(R, > apz, M, < a,(x —¢))
and
P(R, > apz) > P(M, > ap(x +¢)) — P(R, < apz, M), > a,(x + ¢€)).

Hence, it suffices to show

P(R, > apx, M, < ay(x —¢)) —— 0 (2.14)
n—oo
and
P(R, < ayx, M, > a,(x+¢)) — 0. (2.15)
n—oo

We start by showing (2.14). First observe
P(R, > apz, M, < a,(x—¢)) <E [Zn(anx, oo)angan(x_E)]

where Z,(a,x,00) is the number particles in the n-th generation, that are positioned
above a,r. We now need to introduce some new notation: Denote Fj, for n-th
convolution of F; (the distribution function of a sum of n independent random
variables distributed as F;). Furthermore, for 77 = (nq,na,...,ng), let

Fi(z) = Fip, % Fopy, %% Fyp ()

For a distribution function F' and z,y € R, let F¥(z) = F(z) A F(y) be the dis-
tribution function F' trimmed at y. Note that if S, is a random walk with step
distribution F', then

FY(xz) =P(S, < x, sup Sk — Sk-1 <Yy) (2.16)

1<k<n

where FY is the n-th convolution of F¥. Now, for a particle in the n-th generation,
which had n; ancestors of type i, with n = ), _. n;, the probability of it ending up
in (a,z,00), while all the displacements on the path are smaller than a,(z — ), is

Féan(x*s)) (00) — Féa”(zfg)) (a,z).
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Let Aj be the expected number of particles in the n-th generation, that had n;
ancestors of type i for each respective ¢ € C. Then

E[Z (007, 00) 10, <an(o-e)] < D An ( Flan= (o) — Féam_a))(anx)) 2.17)

Here we want to apply inequality (1) from step 3 of the proof in [20]. It states that
for a regularly varying distribution function F' with exponent r, all x,¢,6 > 0 and
€ (0,7), and a constant C' > 0, we have

z(1-9)

(z—¢)
Flan@=9) (o) — Flan@=9) (g, 7) < C (L
a;,(z —€)°

(2.18)

for all n. where C; is a constant depending only on s. This is not immediately
applicable in our case, as Fj is a convolution consisting of a number of different
distributions. However, the statement can be easily generalized to our case as long
as all distributions satisfy the requirements. To see that this is true, first note
that the aforementioned result in |20] is based on a more general bound obtained
in the proof of Lemma 3 in [19]. To generalize the bound to the case with mixed
distributions, note that the proof relies on the observation that for h > 0, and
x>y,

FY(00) — FY(z) < R(h,y)" exp(—hx)

where

R(h,y) = / ’ "™ FY(du).

The conclusion is then the result of the bounds on R(h,y). In the case of mixed dis-

tributions, we can obtain a similar inequality. That is, let R;(h,y) f Y e Y (du).
Then
ny

Fl(oc0) — Fi(z) = / e_h“eh“ng(u) < e‘hx/ eh“de{(u) = e_hx/ eh“ng(u).

(2.19)
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Now fix any ¢ € C. Integrating by parts and exchanging integrals, we get

ny ny
/ hudFy _ 6hnyHF n; _/ Fﬁy(u>dehu
ny [e%S)
= e - ][ s, 0] a
. d ' (n—n;)y ny
— nyHFj(y)n] _/ [/ FYL (u— 2)de™ } ng/m(Z)
i=1 e -
(2.20)
where
FY i (2) = Fipy sk By By %00k Fyy (7).
Integrating by parts again,
(n—nq)y ny
/ {/ EY, (u— z)de h"} ng/nl(z)
(n—ni)y ny
_ / |:€hnyF1;,/ni<ny _ Z) / hudFy (u — z)} ng/n (Z)
(n—n)y n—ni)y
_ / ehnngm (ny — 2z dFﬁ/n / / h“dFy (u— z)ng/n (2)
_ ehnyﬂ%nl<nzy)Fg/ n— nz / / hudFy u — Z)dF_y/n (Z)
(n—ns)y ny—z
_ ehnyHF ) _/ ehz/ ehwdFiJ (w )ng/n (2)
(2.21)

The last two equalities are justified by the fact that if x > ny, then Fi(x) =
H;lzl Fj(y)" (see (2.16)). Similarly, the inner integral in the last line only goes up
to ngy, as z < (n —n;)y and FY, (w) is constant for w > n;y. Using an analogous
procedure of integrating by parts, expanding the convolution (this time with respect
to FY and Ff’n _,), interchanging the integrals, and integrating by parts again, we
similarly obtain the following equality.

niy (ni—1)y Yy
/ " dF}, (w) :/ €hz/ MUAFY (w)dFY,, _y(2)

—00 o] —00

(ni—1)y
B / " Ri(h,y)dFY, _(2)

o
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Repeating n; — 1 times,

n;y
[ et w) = Ry

—00

Plugging this into (2.21]), we obtain

(n—n;)y ny
/ [/ E%w—wﬂﬁﬂdﬂm@)

[e.e] —00

(n—n;)y

d
:wWHﬂ@W—/ " Ri(h,y)"dFY, (2)
j=1 -

o0

and together with (2.20)), this yields

ny (n—ny)y
/ eh"ng(u) - / ethi(hvy)mng/m(Z)‘

—00 o0

Iterating the whole procedure d — 1 times to cycle through all types and applying
the result in (2.19), we obtain the following result.

d
FY(00) — Fy(z) < exp(—ha) [ [ Ri(h,y)™,

=1

Letting R(h,y) = max R;i(h,y), we can write
1€

F(00) — Fy(z) < exp(—ha)R(h, y)".

Applying to R(h,y) the same bounds as in the proof of Lemma 3 in [19], and then
the truncation argument from Step 3 of the proof in |20] to adapt the result to
regularly varying distributions (and noting that » = minr;, s < r implies s < r; for
all i), we see that indeed holds for mixed distril;utions. Hence,

z(1-96)

(an(z—¢)) _ plan(z—e)) < nCl @2
(Fn (00) — F5 (anx)> <C (—ag(x - €)s> (2.22)

Now and choose ¢ small enough so that ¢ ::”ig_é)

> 1, and take p € (7, s) satisfying

—o)

26 > 1. The for some C" > 0 (see Remark [2.2]),

nCl f _sg nC' o
< ! » n S
C(@@—@J =Cp (@—@J
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Then for p’ € (1, 20) and suitable C” > 0, we have for all n > 0

0
1 —20n nCs 1" _—np’
p < np
“r (@—@J =

Ultimately we get

n

(P& (00) = D (0,0)) < €7

Hence,

E[Z(an, 00)1at, <a,(a—0)] < C"0 ™ Y Az = C"p "V E[| Za]] = C"p ™" | M Zo|.

Since p~"M™ has a finite limit, and p’ > 1, we get

C"p~ "' | M, Zy) —— 0.
n—oo

Thus, we have proved (2.14)).
Denote by 1™ one of the nth generation particles that descend from a path

on which M, was attained, by @, its position, and by 7'(i,n) the number of its
ancestors of type i, excluding the particle attaining M,,. Note that Zle T(i,n) =
n—1, and let T(n) = (T'(1,n),T(2,n),...,T(d,n)). For a distribution function F
and y € R, let F¥(x) = @) and denote FY the n-th convolution of F¥. Note that

~ Fly)
if S,, is a random walk with step distribution F', then

F
L =5, < S Sy — Sk_1 < ).
Flyy Do <ol sup S = S <)

With this notation @), — M,, has the following distribution function.
P(Q, — M, <z)=E [FM (:1:)] ,

T(n)

That is, it is distributed as a sum of T'(i,n) steps from the distributions F}, respec-
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tively, conditioned on the fact that they are all smaller from M,,. Now,

P(R, < ayz, M, > a,(x+¢)) <P(Q, < apx, M, > a,(z+¢))
=P(Qn — M, < apr — My, My, > an(z +€))
< P(Qn — M, < apz — ap(z +€), My, > ay(z +¢))
<P(Q, — M, < —a,e)

_E [Fzgv(f;)(—ang)]

.. .
—E [Ff(n)(_anf‘:)l{Mngo}] +E [Ff(n)(_ang) 131,50}

<P(M, <0)+E |F) (—an)] .

Since P(M,, < 0) — 0, we only need to take care of the second term. To do this,
write

o0

E P2, (~ae)| =E { / S it (—n€ = y)Fg(ljn)(dy)l . (2.23)

—00

Now choose 0 < §; < € and split the integral at the point —a,d;. Then

—and1
=0 =0 =0
E |:/_ Ff(n)/T(l,n)(_ang - y>FT(1,n)(dy):| < E [FT(l,n)(_anél)] (224)
E

[ _r?<_an51)}

and

R 0 0

E { / Py (e - y)FT(Ln)(dy)} SE [P jra(—ad)| . (225)
—an01

Note that the last expression in (2.25)) is of the same form as the term we started

with in (2.23)), except we exchanged ¢ for §; and eliminated type 1. Therefore,

applying (2.24)) and (2.25)) d times with d; < --- < §; < €, we get

E[F,, (=ane)] <D E[F)(—a,d:)]

1eC

To see that F(—a,,d) — 0 asn — oo, we refer to Step 4 of the proof in [20]. We note
that the arguments provided there are based only on the condition log(x)F(—z) — 0
as x — oo, and the fact that a, grows exponentially fast, so they are also applicable
here. This holds for all ¢ € C, so by the bounded convergence theorem, the whole
expression converges to 0.

This concludes the proof of (2.15]), and thus of the theorem. H
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2.2 Displacements with semi-exponential tails

In this section we assume that the displacements are independent and admit semi-
exponential tails:

P (& > t) = a;(t) exp{—L;(t)t"7}, (2.26)
L;(t)
tlfrj
ing, and 7; € (0,1). We also assume that they have finite moments. These as-
sumptions are analogous to the one-type model studied by Gantert in [28]. In this

where L, a; are slowly varying functions such that are eventually nonincreas-

section, we show an analogous limit theorem for irreducible multi-type branching
random walk.
Our result is as follows.

Theorem 2.5. Let r = min{r; : i € C}, L(t) = min{L,(t) : r = r;}, and choose
¥(n) to be a positive function satisfying

L((n))(n)"

n

1. (2.27)

Then
R,

W (n)
Remark 2.6. As in the one type case, the existence of ¥(n) satisfying (2.27) is
guaranteed by the result of de Bruijn [16]. Indeed, if K(z) is the de Bruijn conjugate
of x — L (x%), then we can take )(n) = K (n)rnr. In particular, this implies that
for any € > 0,

1
T

= (log p).

n%(l—é‘) < w(n) S n%(1+e)

for large enough n.

We will also show the following lemmas, which describe the asymptotic behavior
of the underlying multi-type Galton-Watson process.

Lemma 2.7. Let |Z,| = Y .o Z;, be the sum of all particles in the n-th generation
of the process. Then for any e > 0 there is 0 < § < € satisfying

]P’('f—:‘<(1—5)") <(1-0)"

for all n large enough.

Lemma 2.8. There exist § > 0 and $ € (0,1), such that for all i € C and all n
large enough

P(Z), < 8|Z,]) < B,
where | € N is as in (2.1]).
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Proof of the lemma[2.7. First note that if p(1—¢) < 1, then P <‘f—§‘ <(1- 5)”) =0
and the statement is trivial. Assume p(1 —¢) > 1. The key tool to proving the
lemma is the result of Athreya and Vidyashankar (|4], Theorem 2.6), which we state
below.

Lemma 2.9. Additionally to our standing assumptions, assume
there exists 6y > 0, such that E; [exp{@oZ{}] < oo foralli,jeC. (2.28)

Then there are constants C > 0, X > 0 such that for any € > 0
Zn 2 n 3
P ‘—-U—W‘Zé‘ < Cexp{—A(2")} (2.29)
pn

for all n.

Although its stated in [4] for two types, it is clear from the proof that the same
argument holds for an arbitrary number of types. Another important inequality
we will use is a straightforward consequence of results from Jones [35] describing
the small-value probabilities of W: there exists a > 0, such that for small enough
e >0,

P(W <¢) <e”. (2.30)

Since we do not assume the existence of exponential moments , some addi-
tional steps are required to use Lemma [2.9) Consider a trimmed Galton-Watson
process Z, (L) generated by random variables N; ;(L) = N; j1n, <Ly for some L > 0
and denote by M (L) its mean matrix, by p(L) its largest eigenvalue, and by v(L)
its left eigenvector. Since p(L) — p as L — oo, we choose L large enough so that
p(L) > (1 —¢)p. Clearly,

(2 caoor) sp (B cagr).

p" p"

Now choose § > 0 satisfying
(1= 8)p(L) > (1—2)p, (1-8)p(L) > 1

so that

(B2 <) s (542 <o)

Since Z,(L) satisfies the same assumptions we make on Z, in this chapter, then
(2.4) holds for some W(L) and (2.30) holds for appropriate choice of constants.

26



Note that |Z,(L)| > ——Z,(L) - v(L), and observe

vl

| Zn(L)] n Zn(L) -v(L) n
]P( (L) <(1-=9) > <P (W < ||Jo(L)]]oo(1 = 9) )

—p (2B oy -, w2 A=)
w2 (2D oo, wiy < L= gye)
SP( Z"(,f()];)i(” )| » 1Bl 5)“)

By (2.30), the second term is bounded by (%)a (1 —0)* for a > 0 and n

large enough. The bound for the first term follows from Lemma [2.9 Since Z,(L)
satisfies ([2.28]) as well as our standing assumptions on Z,, we conclude from ,
that for appropriate C' > 0, A > 0

> [l 6)“) < Cexp {=A((1-070(L))

|3

b

and for large enough n,
Coxp {=A((1=070(L)) ¥} < (1 - 9)

Since <1 + (%)CM) (1 —=6)*" < (1 —dp)" for some 0y < ¢ and large enough n,

the lemma is proven. O

Proof of the Lemma[2.8. Fix i € C and denote by Z/ 7" a generic random variable
distributed as Z; under P,.. Recall that [ is a natural number for which M’ has only
strictly positive entries (see assumption (2.1])). Consequently, ¢,; = P(Z] 7" = 0) <

1 for all r € C. Let guax = max{q.; : r € C} and Guin = min{g,; : » € C}. Then

P (Zi < 6|Zp]) = ZZZ[—” )< 8| Zp| | = E[®(Z,)]

reC m=1

where for fixed r, {Z/7"(m)},,>1 are independent copies of Z/ %, and for ry # r,
{Z]"7(m)};m>1 are independent of {Z]*7"(m)},n>1, and

(Z S Zrim) < w)

reC m=1
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for k = (ky,...,kq) € N¢. For a vector j = (j1,...,jq) € N satisfying j, < k, for
all r € C, define

AGugo = {[{m < e 2771 m) > 0} | = 5.}

reC
Observe
ke\ kg , 3
P(A(]d ,,,,, jd)) = H ( >QTZ J 1 - QT’Z J < H ( )q]g:axjr (]min)J

reC ‘7 reC

kr . 11— Gmin r
ST (5 et (P2 ) = e TL ()
rec Ir Gmax rec

where C' = 1;;’%“‘. By the generalized Vandermonde’s identity, for any j € N,

2 G =0)

where the sum goes over all partitions of j, and we put (:1) = 0 if

m > n. Hence

:Z > P(ZZZ’"—” ) < 8|k|, Aj . )

Jit+ia=j

Jj=1 ji+-+ja=j reC m=1
0 Lo]k(]
< Z Z P(] < 5‘k|7 Ajl ~~~~~ jz) = Z Z ]P)(Ajl ----- j2>
J=1 j1it+ja=j J=1 jit+-+ja=j
LS]%(] L6]%(] ]k|
<y ¥ aell(f)=mxe(])
i=1 jittja=j rec \Jr
Lo]%(] LS]%(]
k! C\’ (d]k[)
\k\ oIt | _ Ikl ~ .
= masz; maxg;(d) J!

Choosing 0 so that % > 1, we have

[3]kl) j ; [8]k|] LolkI] ; 8|k
C\’ (d]k]) c Okl c
|k| E = < ok (= E |kl [ = S|k
max — <5> ]‘ = Gmax (5 — ]‘ = qmax (5 e
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Since (%)6 — 1l as d = 0 and guax < 1, choosing 0 small enough we have
(k) < By
for By < 1. Hence
P (Z} < 0| Zuil) = E[®(Z,1)] < E[5""] < B +P(Znt < n)

Since for any ¢ satisfying p(1 — ) > 1 we have n < p"(1 — )" for large enough n,
the bound
P(Zn,l < Tl) < Clﬁg

is a straightforward conclusion from Lemma Hence
P (ZZL < 5\Zn,l\) <(1+Cy)py < p"

for some § < 1 and all large enough n. m

Proof of the Theorem. We start with the upper bound. Let n be a random variable
with the distribution function

0 r <0

By choice of r and L, there exists a constant ¢ > 0 such that for all ¢ > cand i € C
P(n >t) > P(¢' > t).

Hence, n° = nlf~c + clfy<cy dominates stochastically £ = €i1{§i>c} + cligi<ey for
all 7 € C. Since stochastic dominance is preserved under convolution, we have that
forany r >0,n € Nandv € T,

n |v]
P(Znizx)zﬁb Y gz,
k=1 k=1
where {nf}r>o are i.i.d. distributed as n°. Then
|v] n
B(S, > (n)r) <P |3 € > hin)s | <P (Z > w<n>x> .
k=1

Note that

Amin(z) exp{—L(z)2"} <1 — F(2) < ayae(z) exp{—L(z)x"}
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where

amzn(x> = min {CLZ(ZL‘) 1€ C,T’Z‘ = T},

Umaz () = max{a;(x) : i €C,r; =r1}.

Since amin, Umaz, and L are all slowly varying, Theorem 3 along with the remark
(see the equation (29)) from [28| asserts that for all x > 0

1 n
limﬁ log P <Z e > w(n)x> = -z (2.31)

k=1

In particular, for any € > 0, there is 0 > 0 such that for all large enough n,
P <S@ > (n)(logp + 5)%> <exp{-n(logp+8)}=p e ™ (2.32)
for any v € T,. Having this bound, we proceed as in |28]. We have
P (Elv €T, : S, >¥(n)(logp+ 5)%>

=Y'P (Elv €T,: 8, >wn)(logp+e)||Z,| = k) P(|Z,| = k)

k=1

(2.33)

<D kp e P(|Z,] = k) = E[| Z[]p e,

k=1

where |Z,| = Y ,cc Z1,. It is easily verifiable by induction, that
E[Z,] = M"E[Zy],

where M is the mean matrix. Hence, E[Z,]p™" has a limit, and by linearity so does
E[|Z.|]Jp~™. Applying the Borel-Cantelli lemma to and letting € — 0 entails
the upper bound in Theorem [2.5]

The lower bound requires more delicate approach. For K > 0, let

T = {v € T : Vj<oéo, > —K},

and ME = max{¢, : |v| = n,v € TX}, and denote by px the Perron-Frobenius
eigenvalue of the matrix {E[N;;|P(¢&7 > —K)},i jec. Since px — p > 1 as K — oo,
choose K large enough so that px > 1. Note that

R, =maxS, > max S,> MK —(n-1)K. (2.34)

[vl=n jol=n,vETH
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By Remark [2 . y 0, hence dividing by ¥ (n) and taking limits yields

K

hrrlglorgf ¢( ) > hr{rigf;\? 7 (2.35)

Hence, it suffices to show

K

n—00 @Z)( )
By the Borell-Cantelli lemma, to show ([2.36]) it is enough to show that for any ¢ > 0

> (i

To that end, take any € > 0 small enoguh to satisfy px(1 —e) > 1 and let

> (log px)* (2.36)

=S =

< [log {px(1 —¢e)}] ) < 00. (2.37)

Z5i = {0 € T 0(v) = i, Jv] =},

and ZK =%, . ZF'. To simplify the notation, denote

N

by =¥ (n) [log {px (1 —€)}]

and let
I(n) = argmax L; (b,) .

ieC,ri=r

Then

P (2 < log o1 - ) —E

[[B(c <0 )ZKl]

1eC

<E|[Jexp {-ZJP (¢ > bn)}]

ieC

—E([[(-P(E=0))"

1eC

<E [exp {—Zf’](”)ﬁ” (fl(”) > bn) H

Using our assumption [2.26], we have

B [exp {21 OP (1) 2 0,) )]
=K [exp {—Zf’l(n)al(n) (by) (prc (1 — 6))_L1(n)(bn)¢(n)7‘}i|

Note that Ly, (b,) = L (by), hence by choice of L (see (2.27))),

Ll(n) (bn) ¢(n)r

n

— 1,
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and recall that all a; are slowly varying. Hence we have

ar) (bn) (pic (1 =€) TH1 0P > (pe(1 = 24)) ™"

for some €; € (0,¢) and all sufficiently large n. Hence, by Borel-Cantelli lemma,
(2.37) will follow from the convergence of the series

ZE{GXP{ )|

Using the formula

oo (-Gt <o { -G o r (B0 < (-3))

we see that it is sufficient to show

;P( <(1-3)) <

and this is a straightforward consequence of applying Lemmas [2.8] and 2.7] O
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3 Reducible multi-type branching random walk

In this chapter, we consider the case where the mean matrix M is reducible. We
divide C by the following equivalence relation: ¢ ~ j if there are [y, Iy such that
M"(i,5) > 0 and M™(j,i) > 0. We denote C. = {C,Cs,...,Cp} and introduce
a partial ordering of C through the following relation: ¢ < j if there exists n € N
such that M"(i,7) > 0. This induces a partial ordering of C.. We will abuse the
notation and write a < b when there exist ¢ € C, and j € C, such that ¢ < 7, and
a <1 if 1 € C, and a < b. By renumbering the types, we may and will assume that
M is of form

M[1] M[1,2] ... M[1,m)
0 M2 ... M2,m]
: : : . (3'1)
0 0 M[m)]

That is, it has cages {M[a]}qec.. on the diagonal and zeros below. Throughout the
chapter, we make the following assumptions.

M |a] is positively regular in the sense of (2.1)) for all a < m. (3.2)

For any a < m, denote by p(a) the largest eigenvalue of M[a] and assume
p(l) >1 (3.3)

It is easy to see that the spectrum of M is just a union of spectrums of M|a|’s.

It is clear that when the starting particle comes from C, the problem is reduced
to the analysis of the types of classes following (and including) a, hence without
loss of generality we may assume that the starting particle’s type belongs to class
1. Since the specific type will be of little significance, we will assume for simplicity
that the starting particle is of type 1. Similarly, if some class does not follow the
first class, it will never appear in the process, so we assume 1 < a for all a < m.
To avoid conditioning on the survival set, we assume that type 1 (or equivalently
class 1) survives with probability 1.

Analogously to the previous section, we assume the following Kesten-Stigum
condition:

for all « < m and all pairs i, j € C,, E[N; ;log N; ;] < cc. (3.4)
By the result of Kesten and Stigum [37], under this assumptions, if

pj:max{pa : &GCN,ajj}
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then for some k& > 0,

P—a.s. .
o —— W 3.5
" (). (35)

and W(j) is positive if u§ is positive, where u® is the left eigenvector of M|al].
In other words, the asymptotic number of particles of any given type is driven by
the number of particles preceding it. More explicit expressions can be provided
for W (j) in certain examples, but a general formula seems difficult to obtain. One
can show that the randomness in W (j) is contained in the preceding classes that
have the highest number of offspring, that is, if for some classes a and  we have
pg < pa = max{p, : v = B}, then W(B) = (W(j))jec, is a deterministic linear
transformation of W(«). We refer to [37] for a more detailed exploration of the
properties of W.
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3.1 Displacements with regularly varying tails

Let Fij(r) = P (¢ <x). In this section, analogously to the irreducible case, we
assume that the displacements are independent and there exist slowly varying func-
tions {L; };ec and positive constants {r; }icc, satisfying

1 — Fij(x) ~ Li(x)x™™ as z — o0, (3.6)
log(—z)F;(x) - 0, asz— —o0. '

In contrast to the assumptions of Theorem [2.1] this time we assume that there
is a unique pair («, I') satisfying

1 1

po’ =max{ps’ : a =i}
It is perhaps worth noting that unlike in the irreducible model, r; is not necessarily
the minimum of all r;’s, nor is p the principal eigenvalue of M. This is due to the

fact that the growth speed of a single cage a, just as we have seen in Theorem [2.1]
1

is exponential at the rate pi®, where r, is the minimal exponent among the types
from this cage. In other words, the speed depends on the interplay between the
tails of the displacements and the asymptotic expected number of particles. Since
in the reducible case the latter may be different for different classes, choosing the
"dominant" type, and therefore the correct normalization, requires us to look at
both of these quantities.

We denote p = p, and r = r;. Furthermore, let £ > 0 be the constant satisfying

1

n P—a.s.
e W)

Our result is as follows.

Theorem 3.1. Let

C=> p?) P (Z>0).

7>0 lec
and choose the sequence {a, }nen so that

nFp" (1 — Fr(ay,)) — 1.

n—oQ

Then
P(R, < apz) — E[e~ W™

n—oo

Remark 3.2. As in the irreducible case, the existence of a,, satisfying (2.8) is
guaranteed by the result of de Bruijn [16]. Here if L# is the de Bruijn conjugate of

L, we can take a, = L% nép%) nép%. In particular, this guarantees that for any
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e >0,
pr178) < q, < prite (3.7)

for sufficiently large n.

Proof of the Theorem[3.1]. Similarly to the irreducible case, we begin with a lemma
on the total population. Recall that for ¢ € C,

n

Y = U {veTy : o) =1, (Fwe T, (w, =v)}
k=1

is the total number of particles of type i that have offspring in the n-th generation.

Lemma 3.3. Assume . ) and . and let
=> "> P (2 >0
3>0 lec

Then for all i € C,

i

= GW ().

pi e
where p;, ki, W (i) are as in (3.5)).

Proof. The Lemma is proven with analogous arguments as in Lemma but we
provide full argument for convenience of the reader. First decompose

n—1 . N\ K Z
:Zp_JZ<nn]) P j( k Zz Zl{Zl(zk )>0}
=0

leC n—j k=1

where for any j and [, {Z!(i, k)}r>0 are i.i.d. distributed as Z! under P;, and for
i1 # i, {ZL(i1, k) }r>o are independent of {Z!(iz, k) }x>0. Now we denote

n—j — i Nk
n P (n — j)k

and

1{Zl (i,k)>0}
Zn- J k=1

By the strong law of large numbers, for any fixed j > 0,

1 a.s. 1
Bl " By(Z > 0)

n
n—o0
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We also know from ({3.5)), that for any fixed j > 0,

D,_j —= W(i)

n—oo

Now fix N > 0. Then for n > N

Yi N
. g Dn_;E,_;+ sup{D} P
N
:Z ZDTLJ Sup{Dz}
leC

p — 1li>N+1

T
o)

So, P-almost surely,

hmsup - <W( Zp_JZ]P) L>0) —i—Z sup {D,} Z p~’
n =0 leC 1ec IZN+1 j=N+1
Letting N — oo we get
hmsup - < W(i) P—as.
prn
For the bound from below, we note that
: N
Y’L
_Z = Zpij D”—JELJ
P 7=0 leC
so taking lim inf and then letting N — oo we get
linilinf pn;ki > W(i) as.
concluding the proof of the lemma. O]
Now define for i € C
M} =max{¢,, : v €T, vp~i, k<n}
We will show that
I'< — o :
P (M, < anw) —— Elexp { = (W(l)z"}] (3.8)
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and if 1 #£ 1

P (M, < apz) — 1. (3.9)
n—oo
As a consequence, of course
P (M, < ayz) — E [exp { — (W (I)z"}] (3.10)
n—oo

where M,, = maCX{Mfl} We readily calculate
S

7

P (Mﬁ < anx) =E [F,-(anx)y*i] = exp{ Y p"n*log Fi(anx)}.

pnnk

Now, a, was chosen so that p"n*(1 — Fy(a,)) — 1, so we proceed to
n—oo

1 — Fr(ayz))
(1= Fian) o

-r

> —X

p"n* log Fi(anz) ~ —p"n*(1—Fi(anz)) = —nkp”(l—FI(an))(
Hence by Lemma [3.3]

FI(anx)Y*{ % exp{ —(W()z""}.
Using the dominated convergence theorem, this proves . Similarly, for ¢ # I,

Y
n, k n

(1 - Fianz))

(1 = Fr(ayz))
(3.11)

Note again that p"n*(1— Fy(a,)) — 1, and by Lemma p; "n"Y has a finite
n—o0

Yy pinh pint

Pt (1 = Fi(an))

pinki prnk

limit. To take care of the remaining terms, we note that

pin® (1 F(a,r)) <&)n (p —%)" h(n) (3.12)

prok (1= Fi(anz))

where (see Remark

Observe
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and since p and r were chosen to satisfy
1 -
pr =max{ps’ : a=<i}

we have for some € > 0
l1—e 1

pr >pr

n _—nit % " —nli L N rie\ T
Pi P Tz(m”) P T§<pr) P r=<pr> :

As h(n) satisfies };(5? — 0 for any § > 0, the right-hand side in (3.12)) goes to 0 as
n — oo. Using the dominated convergence theorem again, (3.9) is proven.

Hence,

Remark 3.4. As we see from the proof, we can in fact make even stronger state-
ment than (3.9). That is, for i # I and small enough ¢ > 0,

P (M, < p"a,z) — 1.

n—oo

From here we proceed by induction. If m = 1, the theorem reduces to Theorem
2.1, so the base case is proven. Assume now that the theorem holds for processes
with m — 1 classes for m > 1. Then we can write

R, = max(R}, R?) (3.13)
where

Rl =max{S, : |[v|=n, ov) =1,i € U Ci}

i<m—1

R?2 =max{S, : |[v|=n, o(v) =4,i € Cp}.

n —

Let (8, J) be a pair of a class and a type attaining

1
max{ps" : a=<i,a <m—1},

1

r(m)

1
and denote v = pg and ¢ = r;. First consider the case when y¢ = ,0% > P
where r(m) = mcin r;. By induction assumption
1€Cm

R, R, ~
lim sup P (— < a:) < limsupP (—" < a:) = R[e~¢W ™1, (3.14)
n—00 (079 n—00 (7%

For the lower bound, consider a modified process S, = Y p; max (&,,,0) where the

39



displacements are nonnegative. Define analogously

R} =max{S, : |[v|=n, o(v) € U Ci}

i<m—1
R2 =max{S, : |v|=n, o(v) €Cp}
R, = max(R., R?).
Note that S satisfies the same assumptions we made on S, so all previous results
hold. Now for a particle v € T,,, o(v) € C,,, we have

Sy =S, — Syr + Spr < Sy — Spe + R < nmax M + R} (3.15)
1€Cm
where v* is the last ancestor of v from the first m — 1 classes, k* = |v*| is its

generation, and
M;L =max{{,, : vET,, v~ii€Cy,k<n}
Taking the supremum over v in (3.15)), we have

R? < nmaXMfl + R}l,

i€Cm
and trivially,

R} < nmax M’ + R

’iEC7rL

Since I ¢ C,,, by Remark [3.4]

nmaxec, M. 4

> 0.

an, n—00

Hence,

liminf P (& < a:> > liminf P (n max Z\;[fl + R}l < anx>

n—00 an, n—00 i€Com
0 o
=liminfP | 2 <z :E[(;*C (D= ]
n—00 a,

Together with (3.14]), we conclude

lim P <& < x) = E[e~W D™,

n—00 an,

Now consider the case when 7% < p%. Then by induction assumption we know

that be converges in distribution, where for any € > 0, a! < 'y%(Hg) for sufficiently

Ay
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large n. Since a, > p+179 for any ¢ > 0 and sufficiently large n, we have RN 0,

an

Rl . . . . .
therefore —= converges in distribution to 0. Hence, we only need to examine
n

2
lim P <& < :v) : (3.16)
n— 00 an,

We begin by showing that for any ¢ > 0,

limsupP (R > a,z) <1-— E[e~¢W @™ (3.17)

n—oo

Take v € T, o(v) € Cp,. Then

n

S, =Sy, — Sy + Gy < Z max {&,,,0} + nrg?;(MfL

k=k*(v)+1

Where v* is the last ancestor of v from the preceding m — 1 classes and k* = |v*].
Note that X, := > .., max{{, 0} is a random sum of independent random
variables with regularly varying tails, where the heaviest tail is of the order r;
(since now I € C,,). Taking maximum over v, we have

R? < R* + nmax M}
=

where
R, = max X,.

o(v)ECm
Again by Remark [3.4] ,
nmax M},

i#l d

> 0.
an n—o0

Hence, we have reduced (3.17)) to showing

limsupP (R > apz) < 1 — E[e~ W™, (3.18)
n—oo
Let
M} = max M.
i€Chr

By () and (339),

lim P (M’ > a,z) = E[e"W =™, (3.19)

n—o0

From here we proceed similarly to the irreducible case. Since

limsupP (R; > a,z) < lim P (M) > a,z) + P (R;, > a,x, M, < a,(x —¢)),

n—oo n—oo
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by (3.19) we only need to show

lim P(R; > apz, M < ap(x—¢)) =0

n—o0

Let X, (apz,00) =#{v : |v|=n, o(v) € Cp, X, > apz}. Then

]P’(R* > a,x, My < ap(z —¢)) < E [ X, (anz,00) {0 <an(@—e)}]

< Z Z A < prlan(e= 5)( )_F}San(x—a))<anl‘)>

=10 0=t

where the inner sum goes over all vectors | = (I, .. Ajc,,|) satisfying i, = Z‘ m| ¥
[, A{n) is the expected number of class C,, particles in the n-th generation, that
had [; ancestors of each respective type in C,,, and

F?( ) Fczl/ m+1l1*F(Zi/fm,lg*.”*Fa?l{lm(x)

Since the step distributions in F;-now only involve distributions with tails not heavier
than r; = r, we can follow the argument from the proof of (2.22]), which yields for
x,e,0 >0,s€(0,r) and C > 0,

z(1-6)

(an(z—¢)) _ plan(z—e)) < 1C, (@=2)
(o) = ) < © (e 5

nx—g)s

and as a consequence, for some C’ > 0 and p’ > 1,

Z Z Az ( prlan(z— 5)( )_F}San(zfs))<anx))

=17 0=t

< C'p "E(|Zy(m)]] =< C'p™ > (M™Zo)(d — m + j)

j=1

By Jordan decomposition, for some k > 0 and all j = 1,...,m, p"n % (M"Z,)(d —
m + j) converges to a finite limit, hence

lim P(R; > apx, M < a,(z—¢))=0

n—o0

This concludes the proof of (3.18)), and in result (3.17). To finish the proof of the

Theorem we are left to show

liminf P(R,, > a,z) > 1 — E[e= W™,

n—oo
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Since
P(R, > ap,z) > P(M,, > a,(z +¢)) — P(R, < ayx, M,, > a,(z + ¢)).

and, by (3.10),

lim P (M, > a,x) = E[e~ W=, (3.20)

n—o0

the proof is reduced to showing

P(R, < anz, M, > a,(z +¢€)) — 0. (3.21)
Here we note that the arguments used to show in the proof of Theorem
were based solely on the logarithmic bound on the lower tails of the distributions
and the exponential growth of a,. Since these conditions are still satisfied, the
calculations can be repeated with no significant modifications, concluding the proof
of the Theorem. O
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3.2 Displacements with semi-exponential tails

Analogously to the irreducible case, throughout this section we assume that the
displacements are independent and admit semi-exponential tails:

P (& > t) = a;(t) exp{—L;(t)t"}, (3.22)

where L, a; are slowly varying functions such that fl{—(f]) are eventually nonincreas-

ing, and r; € (0,1). We also assume that the displacements have finite moments.
Let

r=min{r; | j € C},
B={jeC|r =r},
A={a=j|jeB}

so that A is the set of classes preceding types that attain r. Our result is as follows.

Theorem 3.5. Let L(x) = min{L;(z) | j € B}, p= max p(a), and choose ¥(n) to
ac

be a positive function satisfying

L((n))(n)"

1. 3.23
D, (323)

Then
R,

(n)
Remark 3.6. As in the irreducible case, the existence of ¥(n) satisfying (3.23)) is
guaranteed by the result of de Bruijn [16]. Indeed, if K (z) is the de Bruijn conjugate
of x+— L (x%>, then we can takey(n) = K (n)nr. In particular, this implies that
for any € > 0,

1
-

= (log ).

nr (179 < (n) < nrO+)
for large enough n.

The main difference between this Theorem and Theorem is that p is not
necessarily the principal eigenvalue of M. This is because the limit behavior is
driven by the heaviest tail and the asymptotic number of particles attaining it. In
the irreducible case, all types share the same growth rate, but as seen in [37], the
growth rate of particles of any given type is also driven by the types preceding
it. To illustrate the issue, consider the following heuristic argument: start with an
irreducible process as class 1, and append to it another process as class 2, which
follows class 1. Denote by r; and 7y the heaviest tails that appear in classes 1 and
2, respectively. Then there are 3 cases to consider:
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1. r9 < r;. Then the normalization factor ¢(n) should adhere to class 2, as
it has a heavier maximum tail. As the number of class 2 particles grows as
max{p(1), p(2)}", p in Theorem |3.5|is, in fact, the principal eigenvalue of M.
It is perhaps worth noting that the number of class 2 particles can even grow
as n*p" for some k > 0 if p; = py (see [37] for details), but this is of no
consequence here, since the bounds used in our proof work on exponential
scale.

2. r9 = ry. Since both classes attain the heaviest tail in the process, this is in
essence the same as case 1. The only difference lies in ¥ (n), but it is limited
to a slowly varying function.

3. 19 > ry. Since the normalizing factor ¢(n) grows as nﬁ, class 2 is essentially
irrelevant. In this case p = p(1) even if p(2) is greater.

This argument can be iterated by adding more classes. This should provide some
intuition useful for understanding the rationale behind the structure of the proof.
The key ingredient will be the following lemma.

Lemma 3.7. Denote the number of particles of class a in the n-th generation as
Zn(a). If a = j, then, for any € > 0, there exist k € N, § > 0 and 3,7 € (0,1),
such that for all n large enough

P(Z) < 6Z,k(a)) < 5™ (3.24)
and i
P (W <(1- 8)”) <A (3.25)

Proof of the Lemma[3.7]. We prove the lemma by induction. First observe that if
m = 1, the model reduces to the irreducible one considered in previous section
and the statement of the lemma is an immediate consequence of Lemmas and
2.8l Now assume that it holds for processes with m classes and consider one with
m + 1 classes. Observe that the statement follows immediately from the induction
assumption if 7 € C; for some [ < m, as the last type does not contribute to the
previous ones, hence we only consider the case when j € C,,,.1. We start by showing
. First note that it is trivially true if a = m + 1, so assume a < m. Fix i € C,
and k € N such that M*(i,5) > 0 (recall that @ < j means that such k exists for
all i € C,). Since holds for first m classes, the problem can be reduced to
showing existence of 5 € (0,1) satisfying

P(Z) <oz,_,) < B (3.26)

The proof is again similar to that of Lemma We denote by Z,i_)j a random
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variable distributed as Z,z under P;. Consequently, ¢ =P (Z,i_)j = ()) < 1. Observe

VAR
P(zi <oz ,)=P Y >z <oz,

reC =1

2k
<p (3 20 <oz, | ~E[o(z)
1=1
where
B(s) =P (Z Z7(1) < 5s> :
1=1
and {Z,i_’j (I)}1>0 are indpendent copies of Z,i_” . If ¢ = 0, the statement of the

Lemma is trivially true with 6 = 1. Hence, we only consider the case where ¢ €
(0,1). Denote K,, = #{l < s:Z, ’(l) > 0}. Then

d(s) =P (Z Z70) < 5s> = iIP’ (Z Z7) < 6s , Ky = t)

o0 [9s] s [os] (5$)t 1 — q t
< P(t < d0s, K, =t) = Z (t> (1—q)¢ " < g’ Z ) (Tq)

Choosing ¢ > 0 small enough so that

l—gq
—>1
dq ’
and
1—g¢q 0
Bo=q S <1
q
we get the bound
P(s) < 55

Then

7
ank:

E[®(Z,)] SE|8| <8 +P(Zii<n).

Since © € C, for a < m, P (thk < n) decays exponentially fast by induction as-
sumption, which ends the proof of (3.24). Having proved that, (3.25]) follows easily:
ZJ VA n

(<=9 ola) <179 °

for appropriate choice of v € (0,1) and large enough n. O
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Proof of the Theorem[3.5. We start with the upper bound. For this part, we can
assume without loss of generality (replacing & with max{¢’,0}) that all £s are
nonnegative. Denote

0 = max{a | C, C B}.

Note that we may assume that if « is not comparable (with respect to relation <)
with any class contained in B, then o > . This is achieved by simple renumbering
of some classes and is consistent with the ordering we assumed in (3.1)). Let

R% = max{S, | [v]| =n, o) €C,s, a <0}

Denote by My the minor of M that includes only the subset of classes C? =
{Cl,CQ, . ,Cg}, SO

M[1] MIL,2] MI1,9
0 M2 ... M[],

My=| : N (3.27)
0 0 Mg

Since the subsequent classes do not contribute to the previous ones, the sub-process
consisting only of particles of these types is a multi-type Galton-Watson process
with mean matrix My. We now repeat the construction from the first part of the
proof of Theorem Recall that we bounded the tails of .S, by a tail of an i.i.d.
sum of random variables with the heaviest tails. When applied to the considered
subprocess, this yields the following inequality. For any € > 0, there is 6 > 0 such
that for all large enough n,

P <SU > (n)(logp + 5)%) <exp{-n(logp+08)} =p e ™ (3.28)

for any v € T = {v € T,, | o(v) € Co,a < @ }. Calculation analogous to (2.33)
yields the inequality

P (Elv €T, : S, > ¢n)(logp+ g)%) < E[|Z°[]p "™, (3.20)
where | Z9| is the number of particles in our sub-process. Now observe that
E(|Zn]] = E[|M; (Zo)l] = [M' (Zo)] -

As p is the largest eigenvalue of Mpy, by bringing Mj to its Jordan form we see that
for some k < d, n=¥p~" M} has a finite limit, hence

E[|Zy|]p"e ™ < Ce™™
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for some C' > 0,6’ > 0, which by the Borel-Cantelli lemma proves

RY 1
lim su "< (lo T 3.30
msup o < (logp) (3.30)
Now we consider

MO+1] MO+1,0+2] ... M[0+1,m]

0 M6 + 2] oo MO+ 2,m]
M. = . . . (3.31)

0 0 M[m]

Observe that if v € T, /T%, then it necessarily has the last ancestor from T (as
the initial particle comes from the first class) for some k,. We denote this ancestor
v?. Hence

Sv Sv - SU9 + Svg Z?:ku+1 gvi + sz Xv Rz

O R ORI

(3.32)

where 31, &, Taking maximum over v € T,/T% and letting n — oo in (3.32)),
we see that with (3.30]), we only need to show

R, s
T o O (3.33)

where
R’ = max X,.

" v€Ty /TY

From here we again deploy the strategy used in the proof of (2.33)). Let

" =min{r; | i € UCQ}>T
a>0
L'(z) =min{L;(z) | i € U Coyri =1}
a>0
p = max{p(a) | a > 6}.
furthermore, let ¥ be a function satisfying
L'(¥(n))¥(n)”

n

— 1. (3.34)
Analogously to (2.33)), we bound

P(Xv>x)§19>(f(n>x)
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where

is a sum of independent nonnegative random variables with cumulative distribution
function F', satisfying

ar(x) exp{—L'(z)z"} <1 — F(z) < ay(z) exp{—L'(z)z"}

for some slowly varying a;, as. As a consequence, by Theorem 3 from [28|, for any
g > 0, there is 6 > 0 such that for all large enough n,

P (X, > {¥(n)(log s +2)7) < exp{-n(logs +6)} = () "e ™. (3.35)

As a consequence,

P (EI"U €T, : X, >{¥(n)(logp + 5)%> <E (p)) e,

Z Zn(@)

a>0

Since

E

Z Zn(ar)

a>0

1€Ug> g Ca

Again by Jordan decomposition, for all

iel]ca,

a>0

and some k > 0, n~*(p') "M, (i) converges to a finite limit. We conclude

Rx,, 1
lim sup —*) < (logp)™ as.
n

n—00 (

By Remark [3.6] since r < r’, we have

therefore

%

R
limsup — <0 a.s. 3.36

Thus we have proved

S|

lim sup R—n) < (logp)r as.
n

n—00 (

For the lower bound we again apply the trimming procedure used in the proof
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of Theorem and reduce the problem to the convergence of the series

[e.9] I n
Se(Zs<(-3)
n=1 pn 2

where I € B. Recall that p was the maximum eigenvalue among the classes followed

by the types in B, so applying Lemma (more specifically ((3.25])) ends the proof.
[
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4 Perturbed branching random walk

In this chapter, which is based on the article 38|, we consider a one-dimensional
perturbed branching random walk

Sy =S, + Xy,

where { X, },er are i.i.d. random variables independent of S. We study the model
introduced by Bandyopadhyay and Ghosh in [5], where the perturbations have the
form

1Y,

for a given positive real number 0, and {Y,},cr which are independent positive
random variables with distribution u, and given T are independent of {E,},er,
which are independent with distribution Exp(1). We denote

Op =inf {0 >0:v(0) =60U(0)}

where

v(f) =logE

N
0&;
>

is the log-Laplace transform of Z, and v/(f) = e VE [Zfil fie%‘]. Note that v
does not have to be differentiable at 6 for this quantity to exist, and that in general
0y may be infinite.

In [5] branching random walks with such perturbations where studied in the
case when p has finite mean. In particular, the authors proved that

R(0) as. {% 6 < 6,
e
nommee %000) 0 > 0o
and identified weak centered asymptotics for 6 < 6,. However, the result for 6 > 6,
was only obtained for the degenerated perturbations with p = d;. In this chapter
we present a series of Theorems, that complete the results from [5| by providing
the missing weak centered asymptotics for the so called above the boundary case,
and extend them to p with infinite mean, with special focus on distributions with
regularly varying tails.
Let v € (0,1). Our main assumption for y is that

27 (1= F(z)) —— ¢y >0, (H)

r—+-+00

where F' is the probability distribution function of u.
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This assumption tells us that p belongs to the domain of attraction of a stable
law with characteristic function

i) = kIt (1—itan (%5 )signt) (4.1)

where
7TC+

2T (7) sin (77/2)
and ['(v) = fooo t7"te~tdt is the Gamma function.

Furthermore, it yields that if Y has a distribution g, then E[Y7] = oo, but
E[Y"] < oo for any r € (0,7). (H) will be assumed in majority of the Theorems,

k >0

however the result for the above the boundary case will be stated under a more
general assumption.

We assume throughout this chapter that supp () C R,, the system survives
with probability 1 (P(V =0) = 0) and EN € (1, 00]. The first assumption P(N =
0) = 0 is only made to simplify the notation, it can be easily avoided through
conditioning on the survival set, whereas the second one in particular entails that
the branching mechanism is not degenerated (P(N > 1) > 0). We also assume
that v is finite on some open interval I containing 0. Since 6, is finite, the last
assumption guarantees, by convexity of v, that v is differentiable on (—s,6,) for
some s > 0, and has a left derivative at #y. One can also characterize 6, as the
unique argument minimizing @ over 6 > 0. Throughout this chapter, existence of
finite 6y will only be assumed when necessary.

As proved in [9], if 0, is finite, then

n )
B v(6o)

P 0—0, a.S. (42)
For 6 such that v(0) < oo, let
W,(0) = e ™) Z e (4.3)
|v|=n

W, (0) is called the additive martingale associated with S. We denote W,, = W,,(6).
Note that as a positive martingale W, (0) converges almost surely to some finite
limit. If v/(0) < oo, then Biggins martingale convergence theorem [10] states, that
the almost sure limit of W,,(#) is non-degenerate if and only if v/(0) < v(0)/6 and

E [W1(0)log, W1(0)] < co. (4.4)

Furthermore, the limit is then positive almost surely. The first condition is equiva-
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lent to 6 < 6y, thus

{Wgo if 6 < 6, and (I.4) is satisfied, (45)

0 otherwise.

where Wg* is finite and positive almost surely. We also define the derivative
martingale associated with S as

Dy=—) (65, — nw(fy)) e %)

|lv|=n
As seen in Proposition A.3 from [1], under assumptions

(L1) 6y < oo and

N
E 2600€i§?] < 00.
i=1

(L2) 6y < oo, and for X = SN efobigt X = SN efoli
E [X’longf(] < 00,
E [X log? X] < oo,
where log, = max{0,logz}, we have
D, %% D, (4.6)
n—oo

for some random variable D, that is finite and positive almost surely.

These two martingales are connected through Theorem 1.1 from [2|, which states
that under (L1) and (L2)

n%Wn(eo) SN Coo Do (4.7)

n—oo
9\ 3
(o = | = and o? =
o

For more results on these martingales and their limits see for example Chapter 3 in
[43].

where

N|—=

N
Z 90& _ V 2 90&*1’(90)
i=1
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4.1 Main results

In this section we present our main results.

Theorem 4.1 (Almost sure convergence below the boundary). Assume that 6 < (’;—0,
condition (H) is satisfied and

E [W1(~0)log, Wi(v0)] < ooc.

Then
]Z* a.s. Ye
n . v ( )

n  n—oo 70

Theorem 4.2 (Almost sure convergence above and at the boundary). If 6y < 6
and p has finite r-th moments for all r < %0, then

R_ a.s. V(QO)

n

n n-ooo by ’

In particular, the conditions of Theorem hold if p satisfies (H) and 6 > %.
The results concerning convergence in distribution we split into three cases.

Theorem 4.3 (Convergence in distribution below the boundary). Assume that
6 < 97_07 condition (H) is satisfied and

E [Wi(~0)log, Wi(v0)] < oc.

Then
v(hd) 4 1

B === "2 9

n

(log Hy — log E) ,

where Hy 1s finite and positive almost surely, and E is exponential with intensity 1,
independent of Hy. Furthermore, Hy has the characteristic function [g (t (Wﬁg)v)}

where W25 is the limit from and g is defined in (4.1)).
Theorem 4.4 (Convergence in distribution at the boundary). Assume (L1) and
(L2). If u satisfies (H) and 6 = %0, then

1 1
R; — nZ (6) +—logn —2 = (log Hy, — log E)
00 200 n—oo @

where Hy, is finite and positive almost surely and E is exponential with intensity 1,
independent of Hg,. Furthermore, Hy, has the characteristic function E [ (t(cooDoo)?)],
where § is defined in (4.1).

It is a natural question to ask whether assumption (H) in Theorems 2.1, 2.3

o4



and 2.4 can be weakened by adding a slowly varying function. This is addressed in

Remark [4.7

Theorem 4.5 (Convergence in distribution above the boundary). Assume (L1),
(L2) and that for all s € R,

P(fl,fg,...,ESZ) < 1.

If 0 > 0y and p has a finite r-th moment for some r > %0 and is not concentrated
on a single point, then

R _ny(Go) N 3logn 4 1

n %o ST — <log Ze, — log E)

6

where Zo, 15 finite and positive almost surely and E is exponential with intensity
2

6
1, independent of Ze,. Furthermore, Zo, 2 (Do) Usy, where Dy, is the almost
2 [ [
sure limit of the derivative martingale defined in (4.6) and U % 18 strictly %O—stable
independent of D..

In particular, if i has finite mean and 6 > 6y, or if y satisfies (H) and 6 > %0, then
the assumption in the last theorem is satisfied. This result is also more extensive
than Theorem 2.6 in [5|, where the asymptotics were only given for the case u = d;.
It is worth noting that the logarithmic correction term in Theorems [4.4] and or
its absence in Theorem correspond to corrections in classical settings, see e.g.
1)
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4.2 Proofs of Theorems [4.3], 4.4, and

We start with a short proof of the following identity.
OR*(0) < log Y, (0) — log E (4.8)
where Y,,(0) = szn e?5vY, and F is exponential with parameter 1, independent

of Y,,(0). The equation is proven in [5] as Theorem 3.6, but we include it here for
completeness.

generated by {Sy}juj=n and {Y,}jyj=,. Then
[ E
=FE|E —log inf ——— N
[v|=n v [ _f < o “1’|n:” eeSva> ‘ d :H

B, |
—log — | F,
! ( D 695%) ‘ d

where the penultimate equality follows from the fact, that the minimum of inde-

Proof of ([4.8). Take f € Cy(R) and let F,, = 0 (S,,Y, : |[v| = n) be the o-algebra
: ' Y,
E[f (OR,(0)] =E |f (SUP 6S, + log E)

=E|E

=E[f (logY, — log E)]

pendent exponential random variables with parameters A;, ¢ = 1...n, is again an
exponential random variable, with parameter > 7" | \;. O

Now we recall Lemma 4.1 from [13] (presented here in a slightly more accessible

form for our use), that will be useful to understand behaviour of the asymptotics
of Y,

Lemma 4.6. Let {Y,}er be i.i.d. random variables with distribution u satisfy-
ing (H), and {Ay}ver be a sequence of positive random variables, independent of
{Y,}ver, such that

ZAZLA and  sup A, —— 0

— n—oo ‘U|=7L n—o0
|v|=n

for some positive random variable A. Then

ST AY, % H
|v|=n

where H has the characteristic function g (t) = E [g(tA%)} .

Proof of Theorem[].3 First we will prove that

_pr09 g
Y, (0)e " —1 Hy (4.9)

n—oo
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where Hy has the characteristic function Eg (t(Wig )%) and moreover Hy is positive

|20
almost surely. For this purpose we will use Lemma for A, = %Il . To
check its hypotheses observe
sup A, = sup eng(sﬁ_wﬁ)) = 6”9(%—“@?))
lv|=n lv|=n
Ag Bn 22 ”(990) and 6y is the unique argument minimizing =~ ) then nd ( ”(097)>
" n—oo 0 Y

—oc and S0 sup|,_, Ay 224 0. Furthermore, in view of ( -,
n—oo

Z AZ =W (97>

|v|=n

converges to W7y, Wthh is positive almost surely, because 70 < 6y. Summarizing,

Lemma [4.6] entails

To see that Hy is positive almost surely, choose any € > 0. Then using Exercise
3.3.2 from [21]

P01 o [ s ] a

< i gy [ Bl

1 T v ¥ oo
:Thmﬁ/ <E[—k|t\ |wes. Woo<€:|+E|:—k|t| WWO;W$§>€])dt
—00 _T

1 /T
<P( o < e) + lim —/ e ke g

T—o0 2 _T

—kelt|Y

Now the function t — e is integrable, hence the limit of the second term is

0 for any €. The first term can be made arbitrarily small through the choice of .
Since we know that W7 is positive almost surely for 78 < 6, we conclude positivity
of Hg.

Next, recalling (4.8))

R*_nﬂg

1 v(v6)
" ~0 0

(log Y,,(0) —log E) — n% = % (log Y, (0)e

— log E)

with F ~ Ezp (1) independent of Y,,. Finally, by (4.9) and the continuous mapping
theorem o
log <Yn(0)e*”%> —% 5 log Hy

n—oo
where the distribution of Hy is as specified in the statement. O

V(90)9

+ 54— logn
205 108" Then,

Proof of Theorem[4.4)(the boundary case). Define A, = v

o7

a.s.
T

n—o0



by (4.7)), we have

n—+00 To2

9\ 2
ZA’Y_TLQW —>( ) Doo:CooDoo

lv|=n

The second condition of Lemma , SUP|y (=, Av SN 0, follows by applying
n—o0
Proposition A.3. in [33] to Vi, = 605, — |u|v(6p). Then once again by Lemma

0 9v(90)

Yn(g)nzeoe = ||Z AY, m} Hy,. (4.10)

Next, by (4.8)
1 1 1
R, — nM +—logn < i (logY,(0) —log E) — nM + —1logn

" 9() 200 90 200
) log E)

L (log (n#fe v, (0)e 5"
= 5 0og (n 0 n( )
and by (4.10) and the continuous mapping theorem

0 _0v(80) d
log (n2% Y, (6)e™" % ) —— log Hy,

n—oo

where distribution of Hy, is as specified in the statement. O

Remark 4.7. It is clear that proofs of Theorems [4.3 and [{.4 rely on Lemma
4.0, If one were to allow a slowly varying function L(z) in the assumption (H),
then a close emmz’natz’on of the proof available in 13| reveals that the assumption

Al —> A needs to be replaced with LAY A7 —2 A and we have
lv|=n lv|=n v Y n—oco

no tools to study convergence of such sequences without the martingale property.

Proof of Theorem (above the boundary case). The proof relies on Proposition
3.2 in |17]. The assumptions for Theorem [4.5| with condition 64/ (6y) = v(6y) for S
are equivalent to assumptions (A1) through (A3) from [17] for a BRW

o)

with critical parameter ¢ = . Proposition 3.2 in [17] entails

n3? N ey, 1 Za,
|| n—o0 4
u

where Zg, is positive almost surely. Furthermore, by equation (1.13) in [17], we
0

have Zo, < D«%Ug, where D is the limit of the derivative martingale associated
[

o8



with —9V, and Uy is strictly ¥J-stable independent of D. If we let 1 be the log-
Laplace transform of —¢V| then it satisfies the equation ¥ (1) = 0 = ¢’(1), so the

derivative martingale associated with —dJV is

S Ve = = 37 (008, — n(6n)) 5@ = D,

lu|l=n [v|=n

so D7 = (DOO)%. Therefore

30 NACH)) 3 _ d
n?Y,(@)e " % =n2? g e VY, —2 3 Zo,
n—o00 0

|u|l=n

where the distribution of Zs, is as in the statement. By (4.8]) we have
6

1
(logY,(0) —log E) — ny(ﬁo) + Slogn
0o 26,

1
6
1 30 _n v (6g)
=3 <log n2 Y, (0)e " %  —log E)

. v(6y)  3logn 4
Ry —n 0o + 20,

and by the continuous mapping theorem

30 e g
logn20Y,(f)e " % —— log Zoe,

n—o0 0

which completes the proof.
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4.3 Proof of Theorems [4.1] and 4.2

We start with the following Lemma, which gives the convergence in probability. It
is an essential step in the proof of Theorems [£.1] and [£.2] as it provides the bound
in (@15).

Lemma 4.8.

(a) If conditions of Theorem[{.1] hold, then

R, p v(v0)

n n—oo ~v6

(b) If conditions of Theorem[4.9 hold, then

R, » v(b)

n n—ooo b

Proof. Let f = ~0 in case (a) and = 6 in case (b). We will prove first that

1 _p8v8) P
— log (Ya(@)e™ 57) ——0. (4.11)

We consider first the case (b). Fix an arbitrary e > 0 and choose § < %

satisfying
v(6o) v (00) tes0
6o o0

Such § always exists, since v is continuous and 6y is the unique argument minimizing

u(t) . . .
—— over t > 0. The Markov inequality yields

1 _, 0v(60) . 6v(8g)
P <E log (Ya(0)e n%) > 5) =P ((5 log (Y (0)e n%) > n9(55>
_ (yn(e)%-”ﬁ@”éﬁ” > en%f>

< E[Yn (9)6]6_5710(%00)4_8) .

Applying the well-known inequality (a + b)° < a® + ¥, valid for any positive a, b
and 0 < 1 and the fact that for any v the random variable Y, is independent of .S,,,
we obtain

E[Y,(0)’] = E [< > eeSvYU>6] < IET[ > eeéS”Yf] = e ODR[Y ], (4.12)

lv|=n lv|=n
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where the last expectation is finite. Summarizing

1 . 6v(8p) —én v(0g)  v(66) e
IP’(—Q log (Y, (0)e™" ) >5) < B[y om0 (5" 5 +e)

n

and thanks to our choice of § the above expression converges to 0 as n tends to
+00. To prove the remaining bound, denote v, = arg maxj,|—, S, . Since

(%) v(60) R, I/(QD) 1

ilog (Ya(@)e ™ %) > ilog (ena(szn W)y, ) =—"—-—+ —log¥,
nf " — nb on n 0, né o’

for any parameters 0 < § < ¢ we obtain

1 _9u(90) R
P —1 Y, (0)e "0 Y —1 Y, <—
(g lox (@) 5") < —¢) < (7 O+n9gn ‘)
:P(e n_90 Yvn<e{:‘7’b9)
n v(0g)
:]P’(e (B +)y,, <1)
<

]P’(e"%Y;,n<1)+IP’(R @+5<5).
n 90

(

Now, since R” converges almost surely to = ) and § < g, the second term converges

to 0. For the first term we have
P (e"Y,, <1) =P (Y <e ") 0.

Thus, we conclude the proof of ([{.11)) for case (b).
v(10)
For case (a), by Theorem logY,(0)e™ n converges in distribution to log Hy
v(~6
and this limit is finite almost surely. Therefore - log (V,,(#)e™" = )) converges in

distribution to 0, and hence the convergence holds in probability as well. Thus, the

proof of (4.11)) is completed.
To prove Lemma [4.8 notice that using (4.8]) we can write

R(0) a logY,(0) logE 1
n nb nd  nb

Ov(pB l E
log (Vs (9)67"#) + V;ﬁ) — 059 .

0v(5)
9E converges to 0 almost surely and by (£.11), 25 log Y, (f)e™" 7 converges

to 0 in probability. That completes the proof of the Lemma.

O

Proof of Theorems and (almost sure convergence). To prove the almost sure
convergence we utilize here the arguments given in the proof of Theorem 2.1 in [5].
For the sake of completeness, we present a complete proof. We note that the main
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difference is that, due to Lemma [.8] there is no need to treat separately the cases
below and above the boundary. Again, let 3 = ~6 if conditions of Theorem [4.1] are
satisfied and 8 = 6, if conditions of Theorem are satisfied. We start with the

upper bound
R0 vB) (4.13)

lim su

Fix any € > 0. By (4.8)) and the Markov inequality we get that for any § < min(%o7 1)

P (R;_@ _viB) > e) =P (651%;;(9) _ Yonv(B) > n(595>

n 15} 5
5
— (log Yéi) — Qéng (5) > né&e)
< e—ane(%ﬁ)E [E“S} E [Yn(eﬂ

v(B) _ v(69)

<L (1 - 5 B [Y7]

where the last inequality follows from (4.12]).
Since v is continuous, we can choose ¢ so that

+e>0.

converges. The Borel-Cantelli lemma and arbitrariness of € entails (4.13]).

Therefore the series

Finally our goal is to prove the lower bound

* (0
lim inf R, (9)
n—o0 n

> V(Bﬁ ) as (4.14)

For w such that |u| = m < n, we define

R 0)= max (5(0)+ 3log (00/E) - 5 u),

v>u,lv|=n 0

where v > w means that v is a descendant of u. Note that, due to the branching
*(u)

property of S, {R,,"";, (0) }juj=m areii.d. and have the same distribution as R} _, (6).
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Now,

R (6) = max max (S(v)—l—%log()@/ﬂ,))

|u|=m v>u,lv|=n

= max (S (u) + R:™), (9))

|u|=m
> 5 (im) + max (Rii(iﬁ)n (9)) :
where

Uy, = arg max (R;(f,)n (9)) .

ul=m

Now, for any ¢ € (0,1) and small s such that v(—s/2) is finite,

P(BO_ 1) )

<P ( (i) + manc (Rn<“gﬂ(e>)<n<”(ﬁﬁ)—5))
P (s, (R @) <n (57 -3) ) +# (30um) < -5

g < =ty (0) <n (”(ﬁﬁ) _ §>)NW

where Ny, is the number of offspring in A-th generation. Recalling Lemma [4.8] for

< E

?

+ efnss/él ) |:e—sS<ﬂ[m)/2]

all large enough n,

P (R;;_W 0) <n (”(ﬁﬁ) - g)) <e. (4.15)

We have
(v @ <n (75 5))

If P(N =1)=0, then Npm > olvil 5o P (N[\/m < n) obviously disappears. Oth-
erwise, if P[N = 1] > 0, then as seen in [27| (Corollary 5 with equations (29) and

(4b)) , there are positive constants C' > 0 and « > 0, such that for all large enough
keN,

E

< E[eMva] <E [e" Niym = n] + P (N m <n)

§En+P(N[\/ﬁ]<7’L)

P (Ny < k*) < Cm~°%,
where m = E[N]. Therefore

e" + P (Nym < n) <5WT
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for some £; < 1. To estimate the second term, we bound supremum by the sum

and we have

lvl=[vn]

Therefore we have for all large enough n,

P (R;; o) V(Bﬁ) - —e) < 8g\/m | emmes/AHIVAlv(=s/2).
n

Since for every € € (0, 1),

iP(R;T@—@<—5)<oo,

using the Borel-Cantelli Lemma once again we deduce (4.14)), completing the proof.

]
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