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Abstract

This doctoral dissertation concerns combinatorial Banach spaces, that is, Banach spaces
induced in a certain way by families F of finite subsets of N (or other infinite countable
set). These spaces are denoted by X . The thesis consists of four parts.

In the first part, we introduce the necessary notions, theorems, and facts that we use in
the following chapters.

In the second part, we introduce various examples of combinatorial spaces. We investi-
gate how combinatorial properties of families influence the structure of the spaces they
induce. Particular attention is devoted to spaces associated with non-compact families,
a subject for which the existing literature is rather sparse. In particular, we construct an
example of an /;-saturated space failing the Schur property, and we provide a descrip-
tion of Pelczynski’s universal space as a combinatorial space.

In the third part, we study the dual spaces of the combinatorial Banach spaces generated
by compact families /. Our aim is to obtain a convenient, equivalent description of the
norm on the dual space. To do this, we introduce a quasi-Banach space X7 which, as it
turns out, shares many properties with X 7. In particular, we show that this quasi-Banach
space provides yet another example of an ¢;-saturated space without the Schur property.
Moreover, we prove that the Banach envelope of X7 is isometrically isomorphic to X %.

In the fourth part, we investigate the extreme points of the unit ball in combinatorial
spaces and in related spaces. We provide characterizations of extreme points in several
concrete cases. In addition, we adress the problem of describing extreme points in
spaces induced by graphs.



Streszczenie

Niniejsza rozprawa doktorska dotyczy kombinatorycznych przestrzeni Banacha, tj. prze-
strzeni Banacha, indukowanych w okreslony sposéb przez rodziny F skoficzonych pod-
zbioréw N (lub innego zbioru przeliczalnego). Przestrzenie te sa oznaczane symbolem
X r. Praca sktada sie z czterech czesci.

W pierwszej cze$ci wprowadzamy niezbgdne pojecia oraz twierdzenia, z ktérych ko-
rzystamy w dalszej czesci pracy.

W czgsci drugiej wprowadzamy rézne przyklady przestrzeni. Badamy, jak poszczegdlne
kombinatoryczne wilasnosci rodzin wptywaja na indukowane przez nie przestrzenie.
Szczegbdlng uwage poswigcamy przestrzeniom zwigzanymi z rodzinami niezwartymi,
na ktoérych temat literatura jest raczej uboga. Podajemy m.in. przyktad przestrzeni /-
nasyconej, ktora nie ma wlasnosci Schura, a takze podajemy prezentacje uniwersalnej
przestrzeni Petczynskiego jako przestrzeni kombinatoryczne;.

W czgsci trzeciej zajmujemy si¢ przestrzeniami dualnymi do przestrzeni kombinato-

rycznych, generowanych przez rodziny zwarte /. Prébujemy znalez¢ wygodny w uzytku,
rOwnowazny opis normy na przestrzeni dualnej. W tym celu definiujemy przestrzen

quasi-Banacha X7, ktéra, jak si¢ okazuje, ma wiele wspdlnych wilasnosci z X% W

szczegblnosci pokazujemy, ze ta przestrzen quasi-Banacha jest kolejnym przykltadem

przestrzeni ¢1-nasyconej bez wtasnosci Schura. Ponadto, pokazujemy, ze powtoka Ba-

nacha przestrzeni X7 jest izometrycznie izomorficzna z X%

W czgsci czwartej zajmujemy si¢ tematyka punktéw ekstremalnych kuli jednostkowe;j
w przestrzeniach kombinatorycznych, a takze w przestrzeniach z nimi zwigzanymi. Po-
dajemy charakteryzacj¢ punktéw ekstremalnych w konkretnych przypadkach. Ponadto,
podejmujemy tematyke punktéw ekstremalnych w przestrzeniach indukowanych przez
grafy.
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Introduction

The study of the structure of Banach spaces has been a central theme in modern analysis
since the very beginning of their existence. Over the decades, an increasingly refined
understanding of the geometry and other structural properties of Banach spaces has
been developed. The tools for this development have often involved methods of combi-
natorics, set theory, and topology. As examples of deep results in Banach space theory
in which these methods were used, we can point out:

* James’ space. Construction of a separable, non-relexive space J without uncon-
ditional basis which is isometrically isomorphic to its double dual space ([34]).

* Rosenthal’s /,-theorem. Every bounded sequence in an infinite-dimensional Ba-
nach space has either a weakly Cauchy subsequence or a subsequence that is
equivalent to the standard basis of ¢; ([48]).

* Gowers-Maurey space. There exists an infinite-dimensional Banach space such
that its every infinite-dimensional subspace admits no unconditional Schauder ba-
sis ([32]),

and many other results.

This doctoral dissertation is concerned with a particular combinatorial method for defin-
ing Banach spaces. The method determines the name of the constructed space - combi-
natorial Banach space. It is defined as a completion of ¢, with respect to the following
norm

lzllz = sup » _ l(n)], (1)

AeF cA

where F is a family of finite subsets of N (or any countable set) which is closed under
taking subsets. The standard unit vectors (e,,) form an unconditional basis in this space.

The name combinatorial Banach space was coined by Gowers in 2009 (see [31]), how-
ever, investigations into this type of space date back much earlier.

Perhaps it started with the article ([49]) of J. Schreier. He showed that C'([0, 1]), the
space of continuous functions on [0, 1], does not have the weak Banach-Saks property,
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thereby disproving the conjecture that this property might hold in all Banach spaces.
His argument was based on a family of sets, nowadays known as Schreier sets, i.e., such
sets A for which |A| < min(A). Later on, Baernstein used the notion of the Schreier
set to construct a reflexive Banach space without the Banach-Saks property (see [8]),
however, the norm of this space was slightly different than this of (1). In the late 1970s,
Beauzamy used Schreier sets to define the space now called the Schreier space, exactly
as described above - as the completion of ¢y with respect to the norm (1) for the Schreier
family of sets, which is usually denoted by S. Interestingly, he used this space for the
same purpose as Baernstein - to construct a counterexample of a reflexive space without
the Banach-Saks property.

In the 1990s, Alspach and Argyros in [3] generalized the concept of Schreier sets using
a certain inductive procedure. The families they obtained are known as the higher order
Schreier families, and the Banach spaces induced by these families are accordingly
called the higher order Schreier spaces.

One can say that combinatorial Banach spaces are the next step in the generalization
of the Schreier space. There are no strictly imposed conditions on what assumptions
should be made about the family /; however, the minimal requirements are that the
family contains all singletons and is closed under taking subsets. These were, for ex-
ample, the only assumptions in Gowers’ definition of (1). A common assumption is
that the family F is regular, meaning that it is hereditary, compact, and spreading (for
the definitions we refer the reader to Chapter 1, Subsection 1.3.1). Combinatorial Ba-
nach spaces understood in this way were studied extensively by many authors in various
contexts (see e.g. [5], [12], [21], [6]).

The broad aim of this dissertation is to study various properties of combinatorial spaces
(and other related Banach spaces), depending on the assumptions imposed on the family
F. In contrast to most authors, we do not assume that the family F is compact and
spreading. Our standard requirements are that . is hereditary and covers N (or another
countable set on which it is defined). Considering non-compact families in the context
of combinatorial spaces is rather unusual, as reflected in the scarcity of literature on the
subject.

Besides the case of the space /1, which isometrically isomorphic to X/yj<, non-compact
families do not seem to be within the scope of interest of authors working on combina-
torial spaces. Such a situation provides a wide field for exploration. For example, one
can consider various families appearing in set theory or combinatorics (in particular, the
theory of analytic P-ideals or graph theory) and generate Banach spaces out of them.
It turned out that if the family is interesting or generic, then we may expect that the
induced Banach space will also have interesting properties.

The worlds of combinatorial Banach spaces for compact and non-compact families are
quite different. For example, it is known that X for any compact family F is cg-



saturated. If F is non-compact, this is not the case. Since there is an infinite set A in
the closure of F, an associated space contains a copy of ¢;, which can be seen with
the naked eye - it is spanned by vectors e, for n € A. It is not true, however, that
combinatorial spaces induced by non-compact families are ¢;-saturated. We provide
examples of spaces with both copies of ¢y and /5.

Of particular interest to us were the following properties of Banach spaces

(a) Schur property,
(b) ¢;-saturation,
(c) the lack of a copy of cy.

It is known that for any Banach space the chain of implications (a) = (b) = (c) holds.
Our motivation was to explore whether these implications can be reversed in the realm
of combinatorial Banach spaces. However, suitable counterexamples yield a negative
answer for both implications. The space showing that (b) does not imply (a) thus pro-
vides an example of /;-saturated combinatorial space without the Schur property. For
a long time, it was not sure if such spaces exist at all. The first example was given
by J.Bourgain (see [20]), and then several other involved constructions of such spaces
have been presented (see e.g. [7], [47]). The method used to construct the counterex-
ample showing that (c) does not imply (a) also allows us to establish stronger results.
As a consequence, we have obtained not only a space containing all the ¢, spaces for
1 < p < o0, but also all combinatorial spaces, and even all spaces with an unconditional
basis. Hence, we obtained a combinatorial Banach space that is universal for the class of
Banach spaces with an unconditional basis. This space is generated by a certain Fraissé
limit and the obtained space is isomorphic to the so-called Petczynski space. This is one
of the examples of the phenomenon mentioned above: a generic family of finite subsets
induces an important example of a Banach space.

One of the possible reasons why the authors do not consider combinatorial spaces in-
duced by non-compact families is that then the basis of X ~ is not shrinking. Hence, the
biorthogonal functionals do not form a basis in the dual space, which makes it more dif-
ficult and less convenient to study. In general, the dual spaces of combinatorial spaces
seem to be rather mysterious objects in the theory of Banach spaces. Perhaps the reason
lies in the lack of a nice description of the dual norm. Seeking such a description, we
came up with the following formula

2|7 = inf{ Z sup |z(i) : P C F is a partition ofN}. (2)
Fep €T

Maybe it does not look nice, but in some sense this is dual to the combinatorial norm

| - || = (see: Chapter 3). This formula, however, makes sense only for F which is com-

pact. We have thus experienced firsthand that, at times, discarding compactness as an



assumption on F leads to certain difficulties. We defined the space X as a completion
of cyo with respect to the formula (2). For certain families ., it is a Banach space that is
isometrically isomorphic to X . For instance, note that if F consists of singletons, then
X7 is isometrically isomorphic to ¢y, and X7 is isometrically isomorphic to /;.

In general, if a F is a hereditary, compact family of finite sets that covers N, then X7
shares many properties with X 7. It was difficult for us to find a property distinguishing
those spaces. Hence, for quite a long time, we were convinced that these spaces must be
isomorphic, but we could not prove that. Eventually, we understood why the previous
attempts had failed: in general, X is not a Banach space! More precisely, ||-||” does not
satisfy the triangle inequality. Although this is not an encouraging observation, it turned
out that the space X7 remains of interest. It belongs to the broader class of spaces,
namely quasi-Banach spaces, which, under suitable assumptions, may be isomorphic to
Banach spaces. More precisely, it is possible if the quasi-Banach space is 1-convex. For
some particular cases, X7 satisfies this property and then it is isometrically isomorphic
to X 7; however, in general, this is not true.

Nevertheless, the connection between X7 and X% is so strong that they share properties
that are typically not invariant under isomorphism. For example, the unit balls in those
spaces have ‘the same’ extreme points. Also, for every compact hereditary family F,
the spaces X7 and X% have isometrically isomorphic duals. Besides, the quasi-norm
| - |7 is much easier to handle than the dual norm on X%.

In establishing our results, a notion we sometimes relied on was the set of extreme
points of the unit ball. We used known facts concerning extreme points in the unit ball
of X7, for compact, hereditary F, to obtain that the Banach envelope of X 7 (see: 3.4
in Chapter 3) is isometrically isomorphic to X z. The shape of the set of extreme points
in combinatorial spaces (and some related ones) then began to be fascinating for its own
sake.

Our motivation for pursuing this topic came from two factors: the known description of
the extreme points in the unit ball of X7 for compact families , and the observation
that, beyond the classical examples such as ¢y and ¢;, very little is known about the
extreme points in X ». Even in the case of the Schreier family S, the shape of the set of
extreme points is not known.

If F is a compact family, then the extreme point in the dual unit ball has values in
{—=1,0, 1}, and its support is a maximal set F' € F. We generalized this fact to every
hereditary family F covering N. In accordance with the second motivation, we obtain
a full characterization of extreme points for the specific families /. We also presented
combinatorial spaces defined by graphs and analyzed the extreme points in such spaces,
indicating an interesting interplay between graph theory and convex analysis.

The thesis is organized as follows.



In Chapter 1, we introduce notions and facts which we use in the following part of this
thesis.

In Chapter 2, we present a plethora of examples of combinatorial spaces. We investigate
how the combinatorial properties of the family F influence the structure of the induced
Banach space X . In particular, a relatively simple example of ¢;-saturated Banach
spaces without the Schur property is provided. Also, we give a new presentation of
Pelczynski’s universal space as a combinatorial space, and we also provide an answer
to a question posed by Petczyniski in one of his papers, which appears to remain open.

In Chapter 3, we present quasi-Banach spaces which are closely related to the dual
spaces of combinatorial Banach spaces and share many properties with them. More
precisely, for a compact family F, the Banach envelope of the defined quasi-Banach
space is isometrically isomorphic to X 7. We show that the quasi-Banach spaces induced
by families from a certain class are ¢;-saturated and do not have the Schur property. In
particular, it holds for the Schreier family S, as it belongs to this class.

In Chapter 4 we study the extreme points in combinatorial spaces and their duals, as well
as in the spaces FIN(|| - || 7). In addition, we provide a characterization of the extreme
points in spaces defined by perfect graphs, together with partial results for non-perfect
graphs, simultaneously pointing out the difference between these two cases.

The results presented in Chapters 2 and 3 are based on joint work [18] and [19], and are
the outcome of collaboration with the co-authors. In all cases where the main idea does
not originate from the author of this dissertation, this is explicitly indicated. The results
from Chapter 4 were unpublished at the time of preparing this dissertation. Unless stated
otherwise, they are due to the author of this dissertation.

In addition, Chapter 2 contains only the results from the article [18] to which the author
of this dissertation contributed. However, both Chapters, 2 and 3, also contain new re-
sults obtained by the author of this dissertation, which do not appear in the publications
cited above.



Chapter 1

Preliminaries

1.1 Basic notions

In this thesis, the set of natural numbers includes 0 and is denoted by N. The symbol
N, is reserved for the set N\ {0}. If k € Nand M C N, then

[M]=F = {AC M :|A| <k}

Similarly, [M]* denotes the family of all subsets of M with exactly k elements, and
[M]<% (respectively, [M]°°) denotes the family of all finite (respectively, infinite) sub-
sets of M.

By a partition of a set C' we mean a family C such that [ JC = C and any two distinct
elements of C are disjoint. For technical reasons, which will be explained later, we also
assume that () € C.

For any set A we denote by x 4 the characteristic function of A. The family of all subsets
of N is denoted by P(N) and we identify it with the Cantor set 2" via the bijection

P(N) > Ars yy €2V

Unless stated otherwise, we consider the standard product topology on the Cantor set.
Thus, when we discuss topological properties of a family of sets A C P(N) we mean
the corresponding properties of its image in 2.

For any sets A, 2, we denote by A* the set of all functions from 2 to A. In most cases in
this thesis 2 = N (or, sometimes, another countably infinite set). Such a function is then
called a sequence. For two sequences x,y x + y and z - y denote their coordinate-wise
addition and multiplication, i.e. (z + y)(k) = xz(k) + y(k), (z - y)(k) = xz(k)y(k) for
every k € (.

Iff:Q— AT CQ, and B C A, then an image of the set I" under the function f is
the set

T ={f(z): z €T}

10
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Similarly, the preimage of the set B under the function f is the set
B ={ze€Q: f(x) € B}.

For k,l € N with & < [, we denote by [k, [] the interval of natural numbers between k
and [, namely
k0] = {k,k+1,---,0—1,0}.

In a similar manner, we define half-open and half-closed intervals. We also write n =
[0,n), i.e., we identify each natural number with the set of all natural numbers less than
n. For A, B C N, by A < B we mean that max(A4) < min(B).

1.2 Graphs

Let © be a countable set. A graph G is a pair (V, E), where V C Q and £ C [V]%. An
element of V' is called a vertex, and an element of £ is called an edge. If {v,w} € E
for v,w € V, then we say that vertices v and w are adjacent. In this thesis, graphs are
always undirected and without loops, but they can be infinite (i.e. |V| = Rj). By the
complement of a graph G = (V, E), we mean the graph G = (V,[V]> \ E).

A cycle or a hole of size n > 1 (in short: n-hole) is a finite graph with vertices
{vo, ..., vp—1} such that {v;,v;11} € E forevery i < n — 1, and {v,—1,v} € E.
Such a graph is denoted by C),. An antihole is a graph that is the complement of a hole.
We say that C' C V' is a cligue if every two distinct vertices from C' are adjacent. A set
A C V is called independent or an anticlique if [A]> N E = (), i.e. no two vertices are
adjacent.

We denote by w(G) the size of a maximal clique in G, and call it a clique number.
Similarly, the anticlique number o(G) is defined as the size of a maximal anticlique.
A chromatic number of a graph G, denoted by x(G), is the smallest number of colors
needed to color a graph G in such a way that each two adjacent vertices have different
colors. Since the vertices of any clique need to have different colors, then x (G) > w(G).
We say that a graph G is perfect if, for every induced finite subgraph H of GG, we have
X(H) = w(H). The following two theorems give a characterization of perfect graphs.

Theorem 1.2.1 (Weak perfect graph theorem). A graph G is perfect if and only if its
complement is perfect.

Theorem 1.2.2 (Strong perfect graph theorem). A graph G is perfect if and only if it
does not have either holes or antiholes of odd size at least 5.

Both of these theorems were formulated for the first time as conjectures by C. Berge in
[14]. The theorem 1.2.1 was proved by L. Lovész in 1972 (see [41]), and the theorem
1.2.2 - over thirty years later by M. Chudnovsky, N. Robertson, P. Seymour and R.
Thomas ([23]).
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We say that graphs G and H are isomorphic if there exists a bijection f between sets of
vertices V (GG) and V' (H) such that any two vertices v, v’ are adjacent in G if and only if
their images f(v) and f(v') are adjacent in H. Such f is called an graph isomorphism
or an edge-preserving bijection.

1.3 Banach spaces

Every Banach space (X, || - ||) is considered over R. We omit the norm symbol when it
is clear from the context. For a sequence (x,,) in a Banach space X by [z, we denote
its closed linear span, i.e. the closure (in the norm topology) of the set

N
{Zanxn : N eN,a, ER}.
n=1

Unless stated otherwise, by a subspace of a Banach space X we always mean a closed
subspace.

For a Banach space X we denote by Bx and Sy the closed unit ball and the unit sphere
of X, respectively.

A linear map between Banach spaces X and Y is called an operator. It is a standard
exercise to show that an operator is continuous if and only if it is bounded, i.e., there
exists C' > 0 such that for every z € X

1T (2)]ly < Cll=|.

We say that 7’ is an isomorphism if it is a bijective linear homeomorphism. Equivalently,
a bijection 7" is an isomorphism if there exist ¢, C' > 0 such that for all z € X

clellx < IT@)]ly < Clle].

If c = C' = 1 then we say that T is an isometric isomorphism. We write X ~ Y
and X =Y to indicate that Banach spaces X and Y are isomorphic and isometrically
isomorphic, respectively.

In the case Y = R, the operator 7' is called a functional. The space of all continuous
functionals defined on a space X is denoted by X*.

We denote by e, the sequence in RY whose only nonzero coordinate is 1 in the n-th
position. We call it the standard unit vector.

We now recall the definitions of several classical Banach spaces.

* ¢y denotes the space of all sequences of real numbers convergent to 0, endowed
with the supremum norm ||z || = supyey |z(k)|, for x € RN,
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* For 0 < p < oo L,(X, i) denotes the space of all ;-measurable functions f on
X such that

1l = ( /X P} < oo,

This is a Banach space (with the norm || - ||,) only for p > 1. We omit the
underlying set and measure if they are clear from the context. In particular, L,
denotes the space L,([0, 1], \), where X is the Lebesgue measure. On the other
hand, ¢, denotes the space L,(N, 1) with x being the counting measure.

* Lo (X, u) denotes the space of all essentialy bounded ;.-measurable functions on
X with the norm

[flloc = inf sup [f(z)]

)=0zex\A

If X = N and y is the counting measure, this space is denoted by /.

* ((K) denotes the space of all continuous real-valued functions with a compact
Hausdorff space K as a domain, with the norm

If]l = sup [f(£)].
teK

Let (Y, ||-|lv), (X1, ||-|x.), (X2, |||l x,), --- be Banach spaces. We consider the following
set denoted by (P~ X,),

(@Xn)y = {(a:n)?f:l e []%n: (lznllx.)n € y}},
n=1 —
Endowed with a coordinate-wise addition, scalar multiplication and the norm

Gl = N Clznllx )y

it is a Banach space called Y -direct sum of the spaces (X,,).

In the theory of Banach spaces, finite-dimensional spaces play an important role too. Of
particular interest are the spaces cfj and £} for k € N, that is the spaces R* endowed
with the supremum norm or the £,-norm, respectively.

Given Banach spaces X, Y, we say that X is Y-saturated, if every infinite-dimensional
subspace of X contains an isomorphic copy of Y. In most cases, we are interested in
spaces being co- or ¢;-saturated.

This notion can be generalized as follows. Let X be a Banach space and 2l a family of
Banach spaces. We say that X is 2A-saturated if for every infinite-dimensional subspace
E of X there exists Z € 2 such that F' contains a subspace isomorphic to Z.
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A sequence (x,,),en in a Banach space X is called weakly Cauchy (weakly convergent)
if for every z* € X* the sequence (z*(x,))nen is Cauchy (convergent). Every weakly
convergent sequence is weakly Cauchy. Banach spaces in which every weakly Cauchy
sequence is weakly convergent are called weakly complete. Reflexive spaces are the
classical examples. A sequence (¢,) in X* is weak-* convergent to some ¢ € X* if
on () 2= o(z) for every z € X.

We say that a Banach space X has the Schur property if every weakly convergent se-
quence is also norm-convergent. The most well-known example of such a space is /;.
The following classical result of H. Rosenthal implies that Banach spaces with the Schur
property are /;-saturated.

Theorem 1.3.1 ([48]). ({1-theorem) Let X be a Banach space and (x,,) be a bounded
sequence in X. Then (x,,) has a subsequence (x,, ) such that exactly one of the following
holds:

1. (xy,) is weakly Cauchy;
2. (xy, ) is equivalent to the standard basis of (.

Whether the converse holds - i.e., whether ¢;-saturated spaces necessarily have the
Schur property - was an open question for a long time. The answer is negative: the
first example of an /¢;-saturated Banach space without the Schur property was given by
J. Bourgain (see [20]), and then several other involved constructions of such spaces have
been presented (see e.g. [7], [47]). We discuss this phenomenon in subsequent chapters.

Let V be a real vector space. If A C V, then by —A we denote the set {—a : a € A}.
We say that A is symmetric it A = —A.

We say that K C V is convex if for every a,b € K and every ¢t € [0,1] we have
(1 —t)a +tb € K. In other words, the set K is convex if every line segment between
two points from K is contained in K.

For any A C V, the convex hull of A is the smallest convex set containing A. It is
denoted by conv A and has the following equivalent definition

conv A = {Z)\m:nEN, foreveryi <nwv; € A, \; >0, and Z/\i: 1}.

i<n i<n

We say that e € K is an extreme point of K if there do not exist distinct z,y € K and
t € (0,1) such that e = (1 — t)x + ty. We denote the set of all extreme points of K by
Ext(K). There are many equivalent definitions of extreme points. We use the specific
one that is the most convenient for our purposes.

Lemma 1.3.2. Let K be a convex subset of a vector space V. Then e is an extreme point
of K if and only if the only v € V such thate +v € K ande —v € K isv = (.
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Proof. Suppose that there 1s a nonzero v € V such thate = v € K. Thene = %(e +
v) + 3(e — v) and thus, e ¢ Ext(K).

Now, if e ¢ Ext([K), then there are different y, 2 € K and ¢t € (0,1) such that e =
(1 — t)y + tz. Note that we may assume that ¢ = %, i.e., e is a midpoint of the line
segment between points from K. Indeed, if { < %, puty’ = yand 2’ = (1 — 2t)y + 2tz.

Then ¢/, 2’ € K and

1 1

E(y' +2) = i(y +(1=2t)y+2t2)=(1—t)y+tz=e.
Analogously, if t > % then we get the same conclusion by taking 2’ = z and 3/ =
(2 —2t)y + (2t — 1)z

Thus, if e = £(y + 2), then we have y = e + 3(y — z) and z = e — 5 (y — z). Hence, the
vector v = 1(y — z) # Oissuch thate + v € K. O

In Banach space theory, the study of extreme points usually focuses on the closed unit
ball. Accordingly, by extreme points in X we always mean the extreme points of By,
and we use the notation Ext(.X) instead of Ext(Bx). It is easy to see that in any Banach
space Ext(X) C Sx.

Bases

Definition 1.3.3. A sequence (x,,),cn of vectors in a Banach space X is called a Schauder
basis if for every x € X there is a unique sequence of scalars (a, ) ey such that

T = g An L.

neN

In other words, the sequence ( Zivzl anarn) ney converges to z in the norm topology of
X.

Note that for finite-dimensional spaces the notions of a Schauder basis and a Hamel
basis coincide. This is no longer true in the infinite-dimensional case, since a Hamel
basis must then be uncountable.

Thus, in the context of Banach spaces, we use only the term Schauder basis and in the
following part of this thesis, we will simply write basis.

Definition 1.3.4. Let (x,) be a sequence in a Banach space X. Let (z) be a se-
quence in X* such that for every n,m € N z}(x,,) = 0, and for every z € X
r =) nyTn(xy). Such functionals (z}) are called biorthogonal functionals associ-
ated with (x,,).
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Having Definitions 1.3.3 and 1.3.4 one can deduce (see [2, Theorem 1.1.3]) that (z,,)

is a basis for X if and only if for every x € X the expansion ) 2} (x)z, is norm

convergent to x. Since biorthogonal functionals are continuous, we have 27 (z) = a,,.
We say that a sequence (y,,) is a basic sequence if it is a basis for [y,,].

If X has a basis (z,), then [z,,] = X and hence, it is separable (finite linear combina-
tions of x,, with rational coefficients are dense in X'). On the other hand, biorthogonal
functionals associated with z,, form a basic sequence in X*.

Example 1.3.5. Classical separable Banach spaces have Schauder bases.

(i) The standard unit vectors (e,,) form a basis for ¢y and £, for 1 < p < co. We will
call it the standard basis.

(ii) The Haar system is a sequence (h,,) of functions defined on [0, 1] as follows. Let
hy = 1. Fork € Nand s < 2% let

. 25—2 2s—1
1, lfiC E [2i+1 3 2i+1]
_ . 25—1 2
horis(z) = § =1, ifx € [35, 5657]
0 otherwise

One can show that (h,,) is a basis of L, for every 1 < p < oo (see: Proposition
6.1.3 in [2]).

(iii) C(]0,1]) admits a basis as well. It is the so-called Schauder system (f,) and is
defined as follows. Put f{ = 1 and forn > 1 f,(t) = f(f hpn—1(s)ds where h,, is
the n-th Haar function from (ii). For the proof, see the note under Definition 1.a.4
in [39].

The question of whether every separable space admits a basis was posed by Stefan
Banach in his book [9], and it was related to another problem, formulated by Stanistaw
Mazur in the Scottish Book (Problem 153). This question was answered negatively
in 1973. Per Enflo ([26]) constructed a separable Banach space without the so-called
approximation property, the lack of which also implies the lack of a Schauder basis.
Mazur, however, proved another result concerning bases.

Theorem 1.3.6. Every infinite-dimensional Banach space contains a basic sequence.

Remark 1.3.7. If (z,,) is a basis in a Banach spaces X, then for every ¢ € X* we have
©(y) = D ,en@(@n)r,(y) for every y € X. Hence we may (and we will) identify ¢
with (¢(z,)) € RY and consider X* as a subset of RY. If a« = (¢(z,,)), then we will

write (o, y) for p(x) = (p, x).
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We say that two bases (z,,) in X and (y,,) in Y are equivalent if the following holds

oo o
E A, X, CONVErges < E Y CONVErges.
n=1 n=1

An equivalence of two bases (or basic sequences) (x,) and (y,) we will denote by
(zn) ~ (Yn)-

From the closed graph theorem, we have the following result (see [2, Theorem 1.3.2 and
Corollary 1.3.3])

Theorem 1.3.8. For bases (x,,) and (y,,) in Banach spaces X and Y, respectively, the
following conditions are equivalent

(a) (xn) ~ (yn).
(b) There is an isomorphism T : X — Y such that for every n T (x,) = y,.

(c) There exists C' > 0 such that for every finitely nonzero sequence of real numbers
(an) we have

1 [e%S) ) 9]
LIS aull < 13 e < 1S o (L
n=1 n=1 n=1

Thus, if we have a constant C' as in the condition (¢) in the Theorem 1.3.8 then we say
that (z,,) and (y,,) are C-equivalent. Note that if (x,,) and (y,) are C-equivalent, then
they are also C’-equivalent for every C' > C. If C' = 1, then (z,,) and (y,,) are said
to be isometrically equivalent. Moreover, (z,,) and (y,,) are permutatively equivalent if
there exists a permutation  : N — N such that (2,)) is equivalent to (y,,).

Let (x,,) be a basic sequence in a Banach space X and let (p,,) be an increasing sequence
of natural numbers. A sequence of vectors (z) in X of the form z;, = Z’j;k 41 AnTy 18
called a block basic sequence of the (x,,) (here (a,) is a sequence of scalars).

The notion of block basic sequence (or block basis) is very useful, which is seen in the

result of Bessaga and Petczynski (see [15]).

Proposition 1.3.9. Let X be a Banach space with a Schauder basis and let Y be its
infinite-dimensional subspace. Then there is a subspace Z of Y with a basis, which is
equivalent to a block basis of (x.,).

A basis (x,,) of X is called unconditional if for every permutation 7 : N — N (2:0,))
is a basis of X. This is equivalent to say that for every x € X and for every choice of
signs 0, € {—1,1}" the series >, _ 0,2, is convergent.
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The standard bases of ¢y and ¢, are unconditional, but the two bases from Example
1.3.5 are not. Another simple example of a non-unconditional basis is also the so-called
summing basis of cy. This is the basis (x,,) defined as z,, = >, e; forn € N.

We say that a basis (x,,) of a Banach space X is shrinking if the sequence of biorthogo-
nal functionals (z7) is a basis for X*.

The classical example of a space with a shrinking basis is ¢y. On the other hand, since
(7 = l, then ¢y is an example of a space without a shrinking basis.

For spaces with shrinking bases, there is a useful representation of their second dual
spaces.

Proposition 1.3.10. Let X be a Banach space with a shrinking basis (x,,). Then X**
can be identified with the space

FIN = {(an) e RY : sup H ZaixiH < oo}
=1

via the map X** > z** +— (2**(z;)) € FIN.

A dual notion for shrinking basis is a boundedly complete basis. We say that a basis
(x,,) of a Banach space X is boundedly complete, if for every sequence of scalars (a,,)
such that sup H > ai:piH < 00, the series Y~ | a,x, is convergent.

The standard unit vector basis is an example of a boundedly complete basis in ¢, for
p > 1. However, this basis is not boundedly complete in ¢y. Indeed, take a,, = 1 for
every n € N,. Then sup H > AT H = 1lbuta) > e, is not convergent in co.

It is known that if (z,,) is a shrinking basis in X, then (z) is a boundedly complete
basis in X*. It explains why these two notions are considered dual.

One can ask whether for a boundedly complete basis, the opposite is true. Namely, is
the Banach space X with a boundedly complete basis (z,) isomorphic to some dual
space? The answer to this question is affirmative (see [39, Proposition 1.b.4]).

Using the notions of shrinking and boundedly complete bases, R. C. James provided a
convenient characterization of reflexivity for spaces with bases.

Theorem 1.3.11 ([35]). Let X be a Banach space with a Schauder basis (x,,). Then X
is reflexive if and only if (x,,) is both shrinking and boundedly complete.

Quasi-Banach spaces

In this part of the preliminaries, we introduce a broader class of spaces than the class of
Banach spaces. This notion will be used in one of the following chapters.
A quasi-norm in a vector space X is a function || - || — R satysfing
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* lz]| =0 x=0,
» Forevery A € R [|[\z| = |A|||z]],
e There is ¢ > 1 such that ||z + y|| < e(||z]| + [|y]])-

The minimal constant ¢ working above is sometimes called the modulus of concavity of
the quasi-norm. In particular, for c = 1 we get the definition of a norm.

In what follows, we will sometimes allow quasi-norms to take possibly infinite values.
If ||-]| is a quasi-norm (taking only finite values) on a vector space X, then the pair
(X, ||]]) is called a quasi-normed space.

Note that a quasi-Banach space X that is not a Banach space cannot be locally convex.
Therefore, results that hold in Banach spaces and rely on local convexity (e.g. Hahn-
Banach extension property or Krein-Milman theorem), in general, are no longer valid in
quasi-Banach spaces (see [36]). However, the standard results of Banach space theory
such as the Open Mapping Theorem, Uniform Boundedness Principle and the Closed
Graph Theorem can be applied in quasi-Banach spaces since they depend only on the
completeness of the space.

1.3.1 Combinatorial spaces

In this subsection, we introduce the main notion of this thesis - a combinatorial Banach
space.

We introduce a few definitions leading to the final notion.

For A C N we denote by P4 : RY — R the usual coordinate projection along the set,
i.e.

Pa(x)(k) =

z(k), if ke A
0, otherwise

For x € RY we denote by supp(z) the support of x, i.e. the set of all k& € N such that
x(k) # 0. By oo we denote the set of all sequences with finite support.

Definition 1.3.12. We say that a function ¢ : RY — [0, 00] is a nice extended (quasi)-
norm if it enjoys all conditions of being (quasi)-norm, possibly attains infinity, and, in
addition, it satisfies the following conditions

(a) (Non-degeneration) p(z) < oo for every = € cqp,
(b) (Monotonicity) For x,y € RN and n € N |z(n)| < |y(n)| implies p(z) < p(y),

(c) (Lower semicontinuity) lim ¢(P,(x)) = p(x) for every z € RY,
n—oo
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For an extended (quasi)-norm, we define the following sets

FIN(p) = {z € RN : p(z) < oo}, (1.2)
EXH(g) = {z € R": lim o(Py,(z)) = 0}. (1.3)

Note that EXH () has an equivalent definition: it is simply the completion of ¢y with
respect to ¢.

The notion of FIN and EXH is inspired by the theory of ideals. In [17], the authors
presented an interplay between the theory of ideals on N and Banach space theory. For
example, they proved that FIN(¢) and EXH(y), equipped with the nice extended norm
, are Banach spaces and EXH(¢) has an unconditional basis consisting of standard unit
vectors ([17], Proposition 5.1). The last part of this sentence can be reversed. Namely,
every Banach space with an unconditional basis is isometrically isomorphic to EXH(y)
for some nice extended norm .

Note that EXH(¢) C FIN(¢), not only as a subset but also as a (closed) subspace. The
other inclusion holds if and only if EXH(¢) does not contain an isomorphic copy of ¢,
i.e. when (e,) is a boundedly complete basis in EXH(y) (see [17, Theorem 5.4].)

Now we can finally present the most important definition. Let 7 C [N]<* be hereditary
(i.e. closed under taking subsets) and covering N (i.e. | JF = N). For z € RN consider
the following expression

]| 7 = sup Y _ |z (k)]. (1.4)
FeF |

It is easy to see that this is a nice extended norm and thus EXH(|| - || 7) is a Banach space

with unconditional basis. This space is called combinatorial Banach space associated

with the family F (sometimes we will also say that it is /’s combinatorial space). It is

convenient and also common in literature to denote this space by X . In addition, to

abbreviate the notation, we will denote the space FIN(|| - || 7) by Zz.

The name combinatorial space comes from the weblog of Gowers (see [31]), although
such spaces were studied much earlier.

In 1930, Banach and Saks proved that every bounded sequence in L,, (for p > 1) has a
subsequence with norm convergent arithmetic means (see [10]). Such property is nowa-
days called the Banach-Saks property. They asked whether C'([0, 1]) also satisfies this
property. The negative answer to this question was given in the same year by Schreier.
In [49], he constructed a sequence of continuous functions weakly convergent to 0 with-
out a subsequence whose arithmetic means are convergent in a norm. So, in particular,
he presented an example of a Banach space without the weak Banach-Saks property.
In his construction, Schreier used a family of subsets of N, which is now known as the
Schreier family, and its elements are called the Schreier sets. We say that F' € [N |<*
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is the Schreier set, if F' = () or |F| < min(F).
In 1979, Beauzamy in his paper ([13]) used a notion of the Schreier family S (he called
its elements admissible) to construct a Banach space which is now known as the Schreier
space. He used this space to construct another Banach space, being an example of
a reflexive space without the Banach-Saks property (that all spaces with Banach-Saks
properties are necessarily reflexive was proved by Nishiura and Waterman in [42]). The
Schreier space was defined by Beauzamy as the completion of ¢y with respect to the
norm

|zlls = sup { Y |a(i)| : Ais admissible }

i€A

for x € cyg. So, in the light of our definition, it is a combinatorial Banach space associ-
ated with the Schreier family.

As authors of [4] stated, there is some inconsistency in the term combinatorial space.
The most common assumption is that family F C [N]<* is

* hereditary,
¢ compact,

* spreading, meaning that for every k € N and every {my, ..., my} € F,if m; <n;
for each i < k, then {n,,...,nx} € F.

In this case, the family F is called regular. Combinatorial Banach spaces associated
with regular families are quite well studied in the literature, as then they resemble the
Schreier space (e.g., all such spaces have a shrinking basis consisting of standard unit
vectors). However, as mentioned just before introducing the norm (1.4), we only assume
that our families are hereditary and covering N. Any additional assumption about F will
be clearly indicated.



Chapter 2

The zoo of combinatorial Banach
spaces

This chapter is entirely devoted to the consideration of various examples of combi-
natorial Banach spaces. We will present how combinatorial properties of a family F
influence the properties of the induced Banach space.

2.1 Co and El

We start with examples being the classical Banach spaces. Let F; = [N]=L. It is easy
to verify that in these cases, the standard basis of X is isometrically equivalent to the
standard basis of ¢y and thus these two spaces are isometrically isomorphic.

It is important that ¢, can also be seen as a combinatorial space related to other families,
but only isomorphically. Namely, fix natural number n > 1 and let F,, = [N]=". Since
Fi1 C Fo.then || -||7 < |- |l%,. On the other hand, for every = € ¢y and every F' € F,,
we have

> " |x(i)| < nmax |z (i)| < nsup z(k)| = nl|z]|7, 2.1)
<F = keN

Since cqp is dense in combinatorial spaces, it is enough to conclude that for each n X,
is isomorphic to c¢g.

It is quite obvious, but worth mentioning that the above inequality cannot be improved to
the isometric equivalence. One of the arguments is that in ¢, endowed with a standard
sup norm (i.e. Xz ), the unit ball has no extreme points, whereas for each n > 1
the standard unit vectors e; are extreme. Another reason for which the spaces X,
and Xx  are not isometrically isomorphic for n # m is given by a result from the
paper of Brech, Ferenczi and Tcaciuc (see [21, Corollary 12]). The authors proved
that two combinatorial spaces related to the regular families F and G are isometrically
isomorphic if and only if there is a permutation 7 : N — N such that G = {n[F] : F' €

22
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F}. For each n, F, is regular, but for n # m, there is no permutation for which %, and
F., would be in such a relation.

The second classical Banach space from the title of this section can also be viewed as
a combinatorial space. If F = [N]<*, then it is straightforward that the standard basis
of X is isometrically equivalent to the standard basis of ¢;. It is worth noting that if
we allowed infinite sets in the definition of a combinatorial norm, there would be one
more family that induces a space isometrically isomorphic to ¢;. Indeed, one can easily
see that for Z = P(N), the combinatorial norm || - ||7 is isometrically equivalent to ¢-
norm. Note that Z = F. Such a phenomenon is a general fact concerning combinatorial
spaces, namely for every family G Xg = Xz, i.e., the family and its topological closure
give the same combinatorial space.

In further sections of this chapter, we will see many other examples of families related
isomorphically to ¢;.

The heuristic and informal intuition about ¢y and ¢; is that they are completely different
in many ways. This section confirms that these spaces have a different combinatorial
flavor, because they are induced by families coming from opposite ends of the spectrum.
One is given by singletons, whereas the other is associated with a power set of N. We
can, however, obtain a combinatorial space which is, in some sense, a mix of these two
spaces.

Let C = {C,, : n € N} be a partition of the set of natural numbers such that |C,,| < co
for every n € N. Let F be its hereditary closure, i.e. the smallest hereditary family
containing C. We show that the space X r is isometrically isomorphic to cy-direct sum
of the spaces 6'10"‘.

For every n, let 0,, denote an increasing bijection between |C,,| and C,,. Note that for
every m € N there is exactly one n,, and j < |C,,| such that

m = oy, (7) (2.2)

So define T : <€Bfl°:1€‘lc"|> O — X7 by

T((2a))(m) = 20, (0, (m)),

where m and n,, are in the correspondence (2.2). By the assumption, ||z,|; —— 0,
thus 7" is well-defined. Also we have

1T ((za))ll 7 = Splélgz T((x)) (k)] = sup Y |an(k)| = sup [[2n 1.

keF neN e,

Hence, T' is an isometry. T is also surjective, because for every y € F using (2.2) we
can build in a natural way an element x € ( b, 6'10'") such that T'(z) = y.
co
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2.2 Schreier spaces and compact families

The notion of the Schreier family was mentioned in the previous chapter. Recall that it
is defined as follows

S=1{0} U{ACN, :|A| < min(A)}. (2.3)

The Schreier space is the best-known and most studied combinatorial space in the liter-
ature. For example, it was proved (see [49]) that this space has no weak Banach-Saks
property. Also, in [22], the authors prove that the Schreier space is cy-saturated. In fact,
even more is true - E.Odell proved in [43] that every quotient of the Schreier space is
co-saturated.

Alspach and Argyros in their paper [3] generalized Schreier families by the following
inductive procedure. Let Sy = [N]=L. If o < w is a successor ordinal and o = 3 + 1
let

k
Sa:{UFZ-:k§F1<F2<...<FkandﬂGSBforeveryigk}U{Q)}.

i=1
For o being a limit ordinal, let cv,, be an increasing sequence convergent to «. Then

S, ={FCN,: thereisn > 1with F €S,, andn < F} U {0}.

The family S, is called the Schreier family of order « and the Banach space associated
with it is called the Schreier space of order o. Note that, in particular, the standard
Schreier family is a Schreier family of order 1. In most cases we denote it rather by S
(like above) than ;.

The Schreier families are examples of regular families of subsets of N, a notion of
which was introduced in Preliminaries. Some of the results concerning the Schreier
space can be upgraded to any combinatorial space associated with regular families. For
instance, for any regular family F, X r is cg-saturated. In fact, the assumption of F C
[N]<*° being spreading can be omitted and only its compactness and being hereditary
are important (see [17, Theorem 6.3]). Thus, we obtain a convenient characterization
expressed topologically: Xz is cg-saturated if and only if 7 C [N]<* is compact in
P(N).

There is also another equivalent condition for a combinatorial space to be cy-saturated.
Namely, X is cp-saturated if and only if it does not contain an isomorphic copy of
¢y (i.e. the standard basis of X is shrinking, see [16, Proposition 3.10]). Hence,
it is natural to ask whether there is a similar characterization for ¢;-saturated spaces.
Obviously, the lack of compactness of F implies the existence of a subspace isomorphic
to /1; however, it can be given explicitly. Indeed, one can easily see that if F is not
compact, then there is an infinite set A in F. As we mentioned in the previous section, F
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and F generate the same combinatorial space. Since (e,, ), is isometrically equivalent
to the standard basis of /1, thus [e,] is a copy of ¢; in X x.

Thus, a natural question arises: is it true that F is not compact if and only if it is
(1-saturated? That would mean that also being ¢;-saturated and having no copy of ¢
is the same for combinatorial Banach spaces. There are, however, many examples of
non-compact families for which the associated combinatorial Banach space is not ¢;-
saturated. We will present them even in the next section.

2.3 Chains and Antichains

The following examples concern the families living on 2<%, i.e., the set of all finite 0 — 1
sequences. For any s,t € 2<N we say that ¢ extends s if s(k) = t(k) for every k < |s|
and |s| < |t|, where |s|, |t| stands for the length of sequences s and ¢. This notion defines
the natural order on 2<:

s <t & textends s

Then consider the following families with respect to the order <
A ={A C 2"V Ais afinite antichain}

and
C = {C C 2<N: Cis a finite chain}

The spaces X 4 and X were introduced by H. Rosenthal, and in literature they are
usually denoted by S and B, respectively.

The space S is called the (dyadic) stopping time space. The name comes from the
equivalent definition of this space expressed in the martingale language (see [11]). There
is no unified name for the space B, however, we will call it the chain space in this thesis.

Unlike the Schreier families, A and C are far from being regular, and so S and B are
not cg-saturated. In fact, these spaces contain many copies both of ¢; and ¢,. Indeed, if
D is an antichain (chain), then (e, ),cp is isometrically equivalent to the standard basis
of /1 (cp) in S and isometrically equivalent to the standard basis of ¢ (/1) in B.

One may deduce that, in general, combinatorial Banach spaces are {c, ¢; }-saturated.
Recall that it means that each infinite-dimensional subspace has copies of either ¢y or
¢1. However, S and B are counterexamples to that.

Namely, it was proved both by Schechtman and Rosenthal (both works were unpub-
lished manuscripts) that S contains isomorphic copies of ¢, for each p € [1,00). The
only proof of this fact seems to be presented by N. Dew in his PhD thesis (see [25, Sec-
tion 7.6]). The proof involves machinery of probability theory and stochastic processes.



26

On the other hand, H. Bang and E. Odell proved that the space B is universal (for the
definition see Section 2.6) for Banach spaces with unconditional basis (see [11, Theorem

2)).
Therefore, it shows that combinatorial Banach spaces can have way richer structure than
one can expect, and it is not just a simple amalgamation of cq and ¢;.

The following fact from [11] presents an interesting relationship between stopping time
space and the chain space.

Proposition 2.3.1 ([11]). S* is isometrically isomorphic to the space Z¢, and B* is
isometrically isomorphic to Z 4.

So, in some sense, families A and C are dual to each other.

2.4 Farah spaces

In this section, we introduce a certain family of sets and its modifications that provide
many examples of combinatorial spaces. This class of families is motivated by the defi-
nition of an analytic P-ideal due to Farah (see [28]).

For each n € N, let [, = [2",2"™!). Thatis, Iy = {1}, [, = {2,3}, I, = {4,5,6,7}
etc. The Farah family F is defined by

F={A€[N*®:VneNy A < -} (2.4)

In other words, elements of F can take at most % of interval [,,. This family can be
slightly generalized in the following way. Fix function ¢ : N — [1,00). Then we
consider g-Farah family F; given by

F,={A€[N**:VneN|ANI,| <g(n)}.

In particular, the Farah family F is given by a function g(n) = % (here the domain is
N, instead of N). The class of spaces X, is called the Farah spaces.

Note that for every function g, F is not compact and thus it contains a copy of ;. What
is more, we can obtain an isometrically isomorphic copy of ¢; as a g-Farah family.
Namely, for a function given by g(n) = 2", we have Fy = [N]<>, thus Xy = /;.

In fact, we can show even a stronger result.

Theorem 2.4.1. The Farah spaces have the Schur property.

The proof for the standard Farah space Xy is presented in [17]. We present it here for
any g-Farah space, with slight modifications.
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Proof. Fix g : N — [1,00). Suppose that (z,) € Xp, is such that ||z, ||r, > ¢ for
some £ > 0 and for infinitely many (without loss of generality - for all) n’s (i.e. (x,)
is not convergent to 0 in the norm). Without loss of generality we can assume that (z,,)
is a block sequence, and thus A,, := supp(z,,) satisfy |A4,| < oo for every n € N, and
A, < A,41. There is a subsequence (x,, ) such that for every n € N there exists at
most one k& € N such that I,, N A, # (). Define a sequence of sets (B,,) as follows. If
there is k such that I,, N A,,, # 0, then let B, (= B") be such subset of I,, N A, that
|B,| < g(n) and ||z, ||, = > cp, |Tn,(j)|- If there is no such k, put B, = . Let
B = ,,c Bn and note that B € F, Define ¢ : Xy, — R given by

- Z Z sgn(wy, (7))z(5)

Note that ¢ is linear and for every x € Xr, [¢(2)| < ||z[|,, hence ¢ € X5 . However,
for every [ € N we have

o(xp,) = Zngn T, (7)), (J Z [Tn, (J)] = |70, |lg, > €.
jEB k=1 jeBlL
Thus ¢ is not weakly null. U
In particular, we have an immediate corollary.
Corollary 2.4.2. For every g : N — [1,00), Xp, = Zy,.

Now fix functions g, h : N — [1,00). We present some relations between values of ¢
and h, and an isomorphic structure of their Farah spaces. However, before we show this
result, we introduce briefly the notions that will be used in the proof.

Recall that | -] : R — Z is a function called a floor function and it is defined by

7] =max{ke€Z:k<r}.

For every € RY consider such bijection o : N — N that for every n € N and every
k€ I, |x(c(k))| > |x(o(k + 1))|. Let y be a sequence defined by y(k) = z(o(k)).
Note that y restricted to every interval I, is non-increasing and for every function 1) :
N — [1,00) [|z[|r, = ||ly[lF,. Foreveryn € Nand 0 < k < 2" let

ap = [y(2" + k)|.
Then

¥
lylle, =D > af

neN k=0
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Proposition 2.4.3. Let g,h : N — [1,00) be such that there exist positive constants
c1 < co such that for every n € N

Then Xy, and Xy, are isomorphic.
Proof. We use notions introduced above. For convenience, we distinguish three cases.

(a) Casel.Ifc, > c¢; > 1, thenforeveryn [h(n)] < [g(n)],and thus ||y||r, < ||y|lF,-
On the other hand, for every n € N we have

ay + ... +afypy < calal + o+ aly)),

hence ||y||r, < c2|ly|l¥,

(b) Case 2. ¢; < 1 and c; < 1. This case is symmetric to Case 1. Here we have
lylle, < lyllw,. because [g(n)] < |[h(n)]. Also,

n n 1 n n
aq + ...+ G’Lh(n)j S C—1<(l1 + ...+ atg(n)J),

and so ||ly|lr, > c1]|y|l¥,-

(c) Case 3. Letc; < landcy > 1. Let My = {n € N : |[g(n)| < |h(n)]|} and
M; = N\ M,. Then, for every n € M, we repeat the step from Case 1, and for
n € M - the step from Case 2.

These three cases combined yield

allylle, < llylle, < callylle,- (2.5)

This implies that Xp, and Xy, are equal as sets and that the identity operator is an
isomorphism. ]

It is natural to ask whether the opposite theorem holds or, at least, whether there is any
relation between g and ~. We do not know the answer, hence we formulate the following
problem.

Problem 2.4.4. Given functions g and /, suppose X, and X, are isomorphic. Is there
any relation between the values of g and h? In particular, are there 0 < ¢; < ¢o such

Lg(n)]
that ¢; < ()] < ¢y
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Note that, if there is an isomorphism 7" : Xy, — Xg,, then for every z € Xg,

allz||lg, < |T(2)|r, < bllz[F,,

for some positive numbers a < b. Thus, a and b would be natural candidates for con-
stants in the Problem 2.4.4.

Also, note that there are examples of Farah spaces which indicate a positive answer to
the question. Indeed, consider ¢ = 1 and h defined by h(n) = 27, i.e. % can be
arbitrarily small. As it was mentioned earlier, Xy, is isometrically isomorphic to ¢;. If
Xy, were isomorphic to /1, then its basis would be equivalent to the standard unit vector
basis of /; (as ¢; has a unique unconditional basis, see [38]). However, for every N € N
> ken ekllE, = N, whereas || >, _ ex|lr, = max{|log, N, 1}. Hence, these bases

cannot be equivalent, and thus X, and X, are not isomorphic.

2.5 Modifications of Farah families

Theorem 2.4.1 provides a family of Banach spaces with the Schur property, and there-
fore with the ¢, -saturation property. Moreover, many of these spaces are not isomorphic
to /1. More precisely, every g-Farah space with g satisfying lim,, 92(2) = 0 serves as
an appropriate exmaple. In particular, classical Farah space is not isomorphic to ¢; (see

[17]).

In this section, we present some modifications of Farah families whose combinatorial
spaces differ from g-Farah spaces. As the choice of the function g is not crucial in these
constructions, we fix in this section a function g associated with the classical Farah fam-
ily F for simplicity (see the Definition 2.4).

2.5.1 F with intervals

Consider the following family
IF = {FUE:FEF7 and F C [, for some nEN}.

So this family is created by adding some interval to the Farah. It may look like a cos-
metic modification, but this extension changes the resulting combinatorial space quite
fundamentally. Namely, Xtg contains an isomorphic copy of ¢y.

To see this, consider sequence x = ZneN x,, where

1
Tp = 27)(1271
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Then

1 2% 1
O, B T

e = || an”IF <1 +Z on

neN neN neN

so x € Zir. However, since for every n € N [,, € IF, then || Py, (2)|wr > 1, and so
x ¢ Xyr. Thus Xip contains a subspace isomorphic to cq (see [17, Theorem 5.4]).

2.5.2 The rapid Farah

Let D C NT* consists of all strictly increasing sequences. For every o € D define a
function s, : N, — [0, 00) in the following way

90 (k)

, if there exists k£ € N such that m = o (k)
So(m) =

0, otherwise.
Next, define the family A, given by
A, ={A€[N**:VneN; |[ANL,| < s,(n)}.
Finally, we define a family RF, called the rapid Farah family, in the following way
RF={Fe[N**:30eD3Ac A, FC A} (2.6)

The formal definition of this family does not seem to be friendly; however, the intuition
is clear. The finite set F' is an element of RF if and only if for some increasing bijection
of natural numbers o, I’ can take the whole interval I, (1), a half of the interval /,3) and
so on. Note that for every n € N, [, is an element of RF - in (2.6) it suffices to take
any o € D such that o(1) = n. Also notice that F C RF (consider o(n) = n).

The rapid Farah space Xgry turns out to be another example of an /;-saturated Banach
space without the Schur property.

Proposition 2.5.1. Xgry does not have the Schur property.

1
Proof. For every n € N, letx,, = on Xl Since [,, € RF for every n, then ||z, || rr =

1. However, we show that (z,,)nen, is weakly null.
Fix 2" € Xgp. Then 2*(x) = >, axx(k). Suppose there exists € > 0 and A €
[N, ]°° such that for every n € A |z*(z,,)| > ¢. It means that for each n € A we have

‘jg:(1j|:> 2me.

J€ln
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Denote A = {ny,nsy,ns, ...} and assume that n; < n,; for every i. For every n € N let
My = Uy Iny- Putw = 37, . sgn(ay)zy and y, = Py, (w). Then we have

1 1
[ynllrE <1+ g Tt <logy(n +1).

On the other hand,
sgn
|2 ( yn|—}z%yn ZZ 2% Z 2—‘2%1 > ne
JEM, k=1 j€ln, J€In,
*
Hence 27 (yn) ne , and so z* 1s unbounded, which is a contradiction. [

>
|ynllrr ~ logy(n +1)

To prove that Xry is ¢;-saturated, we need to introduce some notation. For 1 <[ < 27
we define the formula || - ||,,; on RY by

I,
|]lns = max { S |x(i)| : F C 1, and |F| < | : |}
1€F

Of course, || - ||, is @ norm on {z € RN : supp(z) C I,} ~ R». For example,
lzlle = 2202y [|#]|nn and

o
|z||rF = sup { Z |2 [[nn 2 (n) € NN is strictly increasing}.
k=1

We prove an easy observation basically saying that the sequence ||z||,,; does not de-
crease too fast in /[ under a certain condition.

Lemma 2.5.2. Ifr € RN, 1 <1 <, and (I' + 1)? < 2", then

2 fnr > [11- 2.7)

I'+1
Proof. Ttis easy to see thatif 1 < K' < K,v € RE andv(1) > v(2) > -+ > v(K) >
0, then (v(1) +--- +v(K"))/(v(1) + - -+ v(K)) > K'/K. It follows that

@l o [270) 20 -1 11

lallng = [2°1] = 201 0 2n

z z LU E1)
>_ = . O
AR AT A

Theorem 2.5.3. The space Xry is (1-saturated.
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Proof. Applying the Selection Principle (see e.g. [27, Theorem 4.26]), it is enough to
find copies of ¢; in subspaces of the form [(z,,)] where (z,,) is a normalized block basic
sequence. We can assume that the sets D,,, = {n : supp(z,,) N I, # (0} are consecutive
and fix

Im
{ni" <nf <---<n"} C Dy, suchthat 1 = ||z,,|rr = Z [
k=1

The proof is based on the following technical statement:
Claim. Let s € N. Then there is a y € [(x,,)] such that the following holds:

(a) supp(y) C N\ U’ _, I, is finite and ||y||rF = 1.
(b) If z € ¢gp, supp(z) C UZ:1 I,,,and 8 € R, then

Iz + Byllre = |[2llre +[5]/2.

Let us first show that this implies the theorem. We can construct inductively a normal-
ized block basic sequence yy € [(z,,)] the following way: Let y; = x; and in general,
let y;41 be y from the claim above to an s satisfying supp(yx) < |J._, I,,. To finish
the argument, we show that (y;) is equivalent to the standard basis of ¢;. If K € N and
6 € R¥ then

K-1

D OR[> Z_Q(k)yk +|9(§)|

k=1 RF k=1 RF
| S, MK D), )
> Joy) + 22 4 PUOL 3 - 000

Regarding the claim, we distinguish two cases.

Case 1. max{||zp|[pm1:i=1,...,ln} 27200,

We show that y = x,, is as required if m is large enough. Take an arbitrary m € N such
that s < min(D,,) —4. Then s < n{*—4 and hence s+i+1 < n"+(i—1)—2 < n"—2
for every i € [1,1,,]. It follows that (s + 7 + 1) < 2™"~! for every such i. The point is
that, assuming s < min(D,,) —4and 1 < i <,

(@) [|Zmllnm st is defined, and

(i) Lemma 2.5.2 applies with z = x,,,, l =i, ' = s + i, and n = n]".



33

By the definition of || - ||rr, we know that

l m

12+ Brwllre > I2llre + 181> Izl

=1

m
T st

Therefore, given any r € [1,1,,),

12+ Brm|[re = [[2]lre = | Bzmllre = |5] <Z R

> Jol S e

i=r+1

77L

s = 3 Wenlhr )
m
=1

Now, we need to specify m a little further. Fix first r, then m from N such that

(r)y r/(s+r+1)>3/4;
(m) s <min(Dy,) — 4 and ||| 1 < 1/4r for every i € [1,1y].
Applying Lemma 2.5.2 as in (ii) above, for every i € (r,l,,] we have

7 T
I H Lm, nyti 2 me n
s+1+1 s+r+1

n s

m y > m 4
me ngts+i — )

and hence the last difference of sums in (1) can be estimated as follows:

lm
Z meHnl 5+ Z ”menl iZ T Z ”menl i Z meHn K

i=r+l1 i=r+1
1 1 1
—=—=. (29
1w Y
8] > —|]/2, hence y = x,, is
as desired.
Case 2. There are a 6 > 0, an S € [N]>, and for every m € S an i,, € [1,,,] such that
||xm| mo1 > J.

n; m’

Fix J € Nand E = {m; < my < --- <my} C S\{1,2,3}. Then, withn; = n;” , we

J
know that 1 < m;—3 < nj" —3 < n;—3,itfollows that j+1 < n;+(j—1)—2 < n;—2,
and hence (j + 1)* < 2"~! and we can apply (x) with [ = 1,1’ = j, and n = n;:

J J
|m I 1 0
> RFZ; !xm]Hn],]_Z e z;m

mekE j=1
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Therefore, we can pick finite subsets Iy < Fy < ... of Ssuchthat ||}  p om|rF >
k for every k and define

~ ZmGEk Lm

T =
| ZmeEk T ||RE

€ [(zm)],

a normalized block basic sequence. Instead of working with (z,,), we switch to (7 ) and
define everything as above, Dy, = {n : supp(zx) N I,, # 0}, {pFi=1,...,,} C Dy
such that 1 = ||Z4[|rr = >, ||Tk|l7# 5» etc. Then

_ . ~ max { ||z, ||z, : m € By, i € [1,2;]} 1
max { |||l s € [1, 4]} < : -,
: k k

therefore, we can apply Case 1 to find the desired y € [(Zx)] C [(z)]- O

Remark 2.5.4. In fact, we obtained an even simpler example of an /¢;-saturated space

1
without the Schur property. Consider X = [(x,)] C Xgrp where z,, = STREE Then

(x,) witnesses the failure of the Schur property, and, by the last theorem, X is ;-
saturated. Considering X C RN along the 1-unconditional basis (), the norm is of the
following very simple form:

||la]| = sup { Z |a (ng) € NY is strictly 1ncreas1ng}

In other words, X is the completion of ¢y with respect to || - ||. Alternatively, || - || is an
extended norm on R and @ € X if and only if ||a| < oo, if and only if | Pay,(a)|] — 0,
because Xrg does not contain copies of ¢y, hence nor does X, therefore its basis is
boundedly complete.

The space X is a special case of the so-called Garling sequence space. The Garling
norm || - ||,,, Where w is a decreasing sequence of positive numbers and 1 < p < o0, is
defined by the formula

1
p
||x||wp—sup(z|x )P )),

neNL

where O is the set of all increasing sequences of natural numbers. The Garling space
g(w, p) is defined as
g(w,p) = {z € R : [[zlu, < oo}.
Hence, X = g(h, 1), where h(n) = % forn > 1.
For further details on Garling spaces, we refer the reader to [1].
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2.5.3 Combinatorial spaces with prerequisite subspaces

Examples presented in the Subsection 2.3 witness that combinatorial spaces can contain
any Banach space with an unconditional basis. However, it is rather difficult to track
down and really see e.g., a copy of /5 in these examples. We will show that for every
Banach space Y with an unconditional basis, there is a natural family / such that a
complemented block basic sequence in X r is equivalent to the basis of Y. The point
is that we may encode a given “geometric” structure in the definition of /. The idea is
due to A. Pelczar-Barwacz and it is presented in the paper [18].

The family from this example is defined on the set €2 = N\ {0, 1}. Fix a Banach space
Y with normalized 1-unconditional basis (b,),>2. We consider Y C R along this
basis (that is, y = > -, y(n)b,), also, we consider Y* C R® along (b%). As (b,) is
1-unconditional, if ¢ € Y* then |||y~ < > 7, |o(n)|. Define

F(Y) = {Fe < - ('F&l'[ ') e By*} (2.10)

and notice that it is a hereditary cover of ().

Theorem 2.5.5. With Y and F = F(Y) as above, the sequence x,, = ﬁXln is a
complemented normalized block basic sequence in X r that is equivalent to (b,,).

Proof. If y € coo(€2), then
_ ron vl g
= sup E |F N I|=— L eF

FnlI,
:sup{‘<<5n%>,y>‘ ie, = *1 and FE}"}

< sup {[{o,9)] 0 € By-} = [ully-

Conversely, given ¢ € By, for eachn > 2 we can fix an F;,, C [,, such that

|F] [Fal +1
<lo(n)| < —77—-
I |1,
Then A, = )27, F,, € F and
|Ay N 1, - Il ~— 1 1
o— | sgn(o(n))——— ) —sgn(a(n)) < —_—=—.
(oo =) <35 o stz <Xy =
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Therefore, if y € coo(£2), then

lylly = sup {[{o.9)| : 0 € B(Y")}
Fni,
§sup{‘<<€n%),y>’ + ||92||Y ce, = *£1 and Fe}“}

- Ylly
S ylnyea|| + 1l
n=2

2
and hence ||y|ly < 2| >°.7, y(n)z, ||~

To show that [(x,)] is complemented in X, define T : R? — R® as follows: For
r€R®and k € I, let

+
F

In other words, T'(x) on I, replaces the values of = with its arithmetic mean over I,,.
Clearly, T is linear, T' [|(,) is the identity, and T? = T. It remains to show that
T[Xr| € Xr (i.e. T[XF] C [(z,)]) and that T" is continuous.

Givenz € Xrand F' € F, let E C () be such that

(@) |ENI,| =|FnNI,|forevery n (hence E € F), and
(b) > e |x(k)| is maximal with respect to (a).

It follows that ), . |T'(x)(k)| < > .cp|2(k)| < ||z holds for every F' € F, hence
|T(x)||7 < |||l Applying this inequality, if z € Xz and n > 2 then

[ Plon,00) (T'(@)) | 7 = [T (Pr2n o) (2) | 7 < || P2 o0y (@) [| 7,
therefore, T'(z) € X7, andso T : X — X is bounded. L]

Example 2.5.6. Let Y = /, and let F be the associated family above. Then X con-
tains an isomorphic copy of /5 and thus it is not ¢;-saturated. However, we will show
that it also does not contain an isomorphic copy of ¢y. Hence, this example provides an
asymmetry - being cy-saturated and having no copy of /; is equivalent in the realm of
combinatorial spaces, but if we replace ¢y and /1, then the statement is not true anymore.

We know that a normalized basic sequence (z,,) in a Banach space X is equivalent to
the usual basis of ¢y if and only if

Z a(i)x;

i=1

dK>0VnVaeR" < K max |a(i)].

1=1,....,n

If X has an unconditional basis (b,) and X contains a copy of ¢, then, assuming (b,,)
is normalized, there is a normalized block basic (nbb) sequence (z,) with respect to
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(b,,) which is equivalent to the canonical basis of ¢, (see [2, Theorem 3.3.2]). Since nbb
sequences in such a space is unconditional, it follows that such a sequence is equivalent
to the basis of ¢ if and only if

n

>

i=1

JK >0Vn < K. 2.11)

If X = X, b, = e,, and, for a normalized block basic sequence (z,,), s((x,)) stands
for > °° | x,, then (2.11) is equivalent to ||s((x,))||# < oo. Furthermore, in this case,
we can always assume that such a normalized block basic sequence is JF-supported,
that is, supp(z,) € F for every n, because if ||Pg,(z,)|| = 1 with some F,, € F
and y, = Pp, (x,), then (y,) is an F-supported normalized block basic sequence and

I5((ya))ll7 < lls((@n))]l-

Of course, there are other natural ways to express ||s((x,))]|#:

Is(Gan))lle = sup | Pa(s((e)le = s 32 1 PaCen)l

where F C H C F and, in this case, || Py ()| = || Pu(z)||; for every z € RV,

Reformulating the above, X » does not contain a copy of ¢, if and only if the following
holds:

V.F-supported nbb sequence (z,,) in X sup Z |Pa(xy)]| 7 = o0. (2.12)
AEF n=1

Hence, to show that X = does not have a copy of ¢y, we use the condition 2.12. The
main idea of the proof and the above remarks are due to B. Farkas, and they come from
the joint work [18].

Let (z,,) be an F-supported normalized block basic sequence in Xz, supp(z,,) = F,, €
F; by thinning our sequence, we can assume that the sets D,, = {k > 2 : F,, N I}, # 0}
are consecutive and

— 16 1
;W <7 (2.13)

For k € D,, let F, , = F,, N I;; and pick an L), ;, C F,,  such that

| P, . (zn)||
on '

’Fnk’
Byl = |22
Bl = |52

] and [Py, (a0)]5 > (2.14)

We show that

A:G U EwweF

n=1keD,
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and that >~ 7 | || Pa(z,)|| 7 = oo (hence (2.12) holds).

We have
JANLE & |Busl? \Fnk\ S 1
Z 2 Z Z |1;,|2 Z Z |1, |2
n=1 k€D n=1 k€D,
|Fnk’2 Z | Fo k] 1 )
Z Z TR IRAT
2 2 2
( [ i " peDn [ i k€D, [ i
where we know the following:
|Fn k|2 Z |Fy N I |2
Z < 1 because F;,, € F. (1)
2 2
55 P
1 Fxl 1 1 J— I 4 16
ﬁ Z |Ik‘2 S 5 Z 9k—1 S E Z 9k—1 - n - 2min(Dn) < 2min(Dn)' (2)
keDn k€Dnp, k=min(Dy)
1 = 1 16 16
Z 7,2 < Z 92k—2 3. 92min(Dn) < omin(Dy,) 3)
keD,, k=min(Dy)

Now, substituting (1), (2), and (3) in the estimation above and applying (2.13):

o

‘Ik|2 = (271)2 omin(Dn) omin(Dn) 24 4 4
Thus A € F. The second statement follows easily from (2.14):

S 1Paa)llr = 30 3 1P (o) = 30 30 Atz
n=1

n=1 keD, n=1keDy,

o0

= 1P ()7 I
_; on _;Qn -

2.6 Universal spaces

We will finish this chapter with a construction which will provide another classical Ba-
nach space of the form X r.

Let 2 be a family of Banach spaces. We say that a Banach space Z is (complementably)
universal for the class 2l if for every X € 2l there exists a (complemented) subspace of
Z that is isomorphic to X. The classical example is C'([0, 1]) being a universal Banach
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space for the class of all separable Banach spaces. On the other hand, W. Szlenk in
his paper [51] proved that there is no separable reflexive space that is universal for all
separable reflexive Banach spaces.

A. Petczynski in [46] constructed a Banach space U, called Pefczyriski’s space, that is
complementably universal for the class of Banach spaces with unconditional basis. We
will show that there is a combinatorial Banach space Xp having this same property, and
so being isomorphic to Pelczynski’s space. An appropriate family P will be obtained
as a result of Fraissé type construction. This result is part of the joint work [18], but the
proof presented here is slightly different.

Let K be a countable (up to isomorphism) class of finite structures. We say that K is a
Fraissé class if it

* is hereditary, that is for any A € K, if B is a substructure of A, then B € K,

* has joint embedding property, i.e. any A;B € K can be embedded in some
C eK.

* has amalgamation property, i.e. forany A, B, C' € K and embeddings f : A — B
and g : A — C, there are D € K and embeddings F': B — D, G : C'— D such
that Fof =Gog.

A classical Fraissé’s theorem says that there exists a unique (up to isomorphism) count-
able structure K containing structures from K, and being homogeneous, which means
that any isomorphism ¢ : A — B for A, B € K can be extended to an automorphism
® : K — K. Itis called the Fraissé limit of K.

One can also see that homogeneity of Fraissé limit implies so-called extension property,
meaning that for any finite A C K, any B € K such that A is a substructure of B, and
any embedding ¢ : A — K, there exists an embedding ¢ : B — K that extends .

To prove this, consider B € K. Then there is an embedding j : B — K. Now, fix an
embedding ¢ : A — K. Then ¢ : A — ¢[A] and j|A : A — j[A] are isomorphisms
between finite substructures of K. Hence, the isomorphism ¢ = @ o (j|A)~! : j[4] —
¢|A] extends to an automorphism W on K. Then ¢ = ¥ o j : B — K is an embedding
and for every a € A

pla) = ¥(j(a)) = ¢(i(a)) = ¢(a).
Proposition 2.6.1. The class F of all finite families of finite sets is a Fraissé class.

Proof. Clearly, F is hereditary and, up to isomorphism, countable. If 7,G € F, then
both can be embedded into F U G € . To prove that ' has amalgamation property,
consider Fy, F1,G € F and embeddings f; : G — F; fori € {0,1}. Since f; are
injective, consider bijection v : f1[G] — fo[G] given by ¥(f1(G)) = fo(G) for G € G.
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In such a way, we identify an image of G under f, with an image under f;. Consider
family U = F, U F; and maps F; : F; — U given by Fy(C') = C and

C, otherwise.

F(C) = {w(@, if C € fi[g]

It is easy to see that F;; are embeddings and we have

(Fo o fo)(G) = fo(G),

and
(F1 o f1)(G) = Fi(f1(G)) = ¥(f1(G)) = fo(G).
O]

Let ‘H denote the Fraissé limit of I and let /P be its hereditary closure. One can easily
deduce that /P is a unique (up to isomorphism) homogeneous family containing all finite
hereditary families of finite sets. However, an even stronger condition is satisfied.

Proposition 2.6.2. Every infinite hereditary family F of finite sets embedds in P, i.e.
there is M C N and a bijection b : (N, F) — (M, P) such that ' € F < b[F] € P.
Then we say that ‘P is universal.

Proof. Fix an infinite hereditary family /. We construct an embedding of  into P by
finite-stage extension.
For every n € N, let F,, denotes a restriction of F to the initial segment [0, n), that is

Fon={Ae€F:ACn}.

Note that for every n, F,, is hereditary. Let by : ({0}, Fo) — (M, P) be any embedding
and suppose we have defined embeddings b, : ([0,n),F,) — (M,P). Then, using
extension property of Fraissé limit, we define b,.; : ([0,n + 1), Fy1) — (M, P)
as an extension of b,. Then the final embedding of /' — P is given by a bijection

b= U,enbn- []

What follows is that for every hereditary family J, its combinatorial Banach space X
is isomorphic to the complemented subspace of Xp.

Theorem 2.6.3. Let P be the hereditary closure of the Fraissé limit of the class of
all finite families of finite sets. Then Xp is complementably universal for the class
of all Banach spaces with unconditional basis. Consequently, Xp is isomorphic to
Petczyriski’s space U.
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Proof. Let Y be a Banach space with an unconditional basis. Theorem 2.5.5 gives us
a family F such that X contains a complemented copy of Y. The space Xp contains
a complemented copy of X, and hence of Y as well. By [46, Corollary 4] Xp is
isomorphic to Petczynski’s universal space U. [

Remark 2.6.4. The above example provides a solution for one of Petczynski’s ques-
tions, [46, Problem 4], which seems to be still open. The canonical basis (e,,) of Xp,
where P is as in Theorem 2.6.3, is not permutatively equivalent to Petczyriski’s univer-
sal unconditional basis (u,,) of his universal space (see [46, Problem 4]), i.e. there is
no permutation 7 such that (e,(,)) is equivalent to (u,). Indeed, contrary to the case of
(u,), the basis of our space is not universal. E.g., no subsequence of (e,,) is equivalent
to the canonical basis of /5. To see this, let H C N be infinite and denote by Py the
restriction of P to H, i.e.

Py={AcP:ACH}

Then, either Xp,, = [(€,)ncn| contains a copy of ¢; or Xp,, is ¢o-saturated.



Chapter 3

On the dual to combinatorial Banach
spaces

The main motivation of this chapter is an attempt to study Banach spaces dual to com-
binatorial Banach spaces. Even in the case of the Schreier space, not much seems to be
known about its dual. Perhaps the reason lies in the lack of a nice description of the dual
norm. Here we present the candidate for such a description.

3.1 Introduction

For a family 7 C [N]<* we denote by P the family of all such partitions of P of N
that P C F. For x € ¢y consider the following function

|z||” = inf > sup|a(i)]. (3.1)
PePr £ icF
Perhaps this formula does not look tempting at first glance, but in a ’combinatorial’
sense it is dual to ||-||+. Indeed, we can think about evaluating ||x|| » as partitioning N
into pieces from F, summing up |z ()| for ¢ from one piece of the partition and then
maximizing the result, for all partitions and all pieces. On the other hand, evaluating
|z||” comes down to partitioning N into pieces from F, taking a maximum of |z(i)| for
1 from one piece of the partition, summing up those maxima, and then minimizing the
result for all possible partitions.

If P is a partition of N, then for z € ¢y by ||z||” we will denote ||z||”, where F is a
hereditary closure of P. Note that in this case

|7 =" sup |z(k)].

pep k€
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So, for a family P C [N]<>° we have
7 = inf ||,
F

Note that in general, (3.1) does not define a norm.

Example 3.1.1. Let S be the Schreier family. Consider the finitely supported sequences
r = (0,1,1,0,0,0,...), y = (0,0,1,1,1,0,0,0,...). We can easily check that ||z[|® =
ly||® = 1, but ||z + y||® = 3, so the triangle inequality is not satisfied.

The lack of triangle inequality is not something welcomed in the theory of Banach
spaces. However, there are still good reasons to study ||-|[”. It turns out that it is a
quasi-norm, at least if F is a compact family of finite sets. Moreover, it is a nice quasi-
norm (in the sense of definition 1.3.12).

Instead of showing that ||-||” is a quasi-norm and then showing that it is nice, we will
do the opposite: first, we will check that ||-||” satisfies all the conditions of definition
1.3.12. The reason is that lower semicontinuity will allow us to focus on finitely sup-
ported sequences.

It is easy to check that if F is a family covering N, then ||-]|* is monotone and non-
degenerated (in the sense of Definition 1.3.12). However, it is not necessarily lower
semicontinuous. Consider e.g. the family F of all finite subsets of N and = defined by
x(k) = 1 for each k. Then || P,(x)||” = 1 for each n but ||z||” = co. We will show that
if we additionally assume that F is compact, then ||-||” is lower semicontinuous and so
1t 1S nice.

Theorem 3.1.2. [f F C P(N) is compact, hereditary and covering N, then ||-||” is a
nice quasi-norm.

Before we start the proof, we recall some definitions and facts about the Vietoris topol-
ogy.

Fix a compact F C P(N). Every partition can be considered as a subset of 2" and thus
we can treat the set Pr as a subset of the power set of 2. We can endow this set with
the Vietoris topology.

Definition 3.1.3. Let X be a compact topological space. By K(X), let denote the family
of all closed subsets of X. The Vietoris topology is the one generated by sets of the form

(U1, Uz, .. Up) ={K e K(X): K C | JUi AVi <n KN T; # 0}, (3.2)

i<n

where U; are open subsets of X.
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Note that if X is a compact space, then K (X) endowed with the Vietoris topology is
compact as well. Also, K (X) is metrizable (by the Hausdorff metric).

In our case, the role of X is played by F. According to the above, we would like to
consider P as a subspace of K(F). Notice that according to our definition of partition,
it contains () and so it is a closed subset of F (in fact, it forms a sequence converging to

0).
Lemma 3.1.4. Px is closed in IC(F). Consequently, Pr is a compact subspace of KC(F).
Proof. Let G € Pr. We need to prove that G is a partition, i.e.
i 0eg,
(i) UG =N,
(iii) All elements of G are pairwise disjoint.

Of those (i) is straightforward.

Suppose now that there exists n € N such thatn ¢ | JG. Put U = {x € 2V : z(n) = 0}.
The set U is an open subset of 2V. Take the basic (in Vietoris topology) set Ky =
{K € K(F) : K C U}, being an open neighborhood of G. Then Ky NPx = (). Indeed,
otherwise, there would be a partition P such that P C U, which is impossible, because
there is A € P such that n € A. The set Ky, therefore, testifies that G ¢ P~, which is a
contradiction. It proves (i).

To prove (iii), suppose that there are A, B € G suchthat AN B # () and A\ B # (). Let
n€ AN Bandm € A\ B. Consider the following open subsets in 21

U ={xe2V:z(n)=1Az(m)=1},
Uy={xe2V:2(n)=1Az(m) =0},
Us = 28,

and the basic set (Uy, U, Us). Then GNU; # 0, because A € Uy and GN U, # 0, since
B € U,. So the set (U, Us, Us) is an open neighborhood of G. If Pz N (Uy, Us, Us) #
(), then there is a partition P and sets K, L € P such that n,m € K, n € L, and
m ¢ L. But it is impossible, since elements of P are pairwise disjoint. It implies that
PrnN <U1, Us, U3> = (), which is a contradiction. O

Proof of Theorem 3.1.2. As we have mentioned, it is enough to show lower semiconti-
nuity. Fix z € RY.

Assume that ||z]|” = D (possibly D = oo). Then for every partition P we have
|z||” > D. Foreachn € Nputz, = P,(x). Suppose that there exists M < D such that
|z,||7 < M for each n. Then for every n there is a partition P, such that ||z,,||"» < M.
By compactness, we may assume (passing to a subsequence if needed) that (P, )nen
converges (in the Vietoris topology) to a partition P. Since ||z||” > D, thereis N € N



45

such that ||z y||” > D. There are only finitely many elements Ry, Ry, ..., R; of P having
non-empty intersection with {1,2, ..., N}. For k < j put

U.={ze2V:Vie Rynl,...,N]z(i) = 1}
and consider the basic open set <U1, Us,...,U;j, Uj+1>, where U; 1 = 2". Then
P € (U, Us,...,U;,Uji1).

Indeed, trivially P N U;;; = P and for k < j we have R, € P N Uy # 0. Since P,
converges to P, there is k > N such that P, € (Uy, Us, ..., U;, Uj4q ). It means that

{PNn{l,....N}: Pe P} ={Pn{l,...,N}: PP}

So,
k|7 > lan]™ = lzn ]| > M,

a contradiction. [
Now we can prove that ||-||” is indeed a quasi-norm.

Theorem 3.1.5. Let F be a compact hereditary family. Then for every x,y € RY
f

(a) if x,1y have disjoint supports, then ||z + y|” < ||z||” + ||y|

(b) ||z +yl|”7 <2(||=|7 + ||lyl|”), and so ||-||” is a quasi-norm.

Proof. Of the above (a) is clear. We will check (b).

Let z,y € RY. By lower semicontinuity of ||-||” it is enough to consider the case when
x and y are finitely supported. Moreover, we will assume that z(k), y(k) > 0 for every
k (since ||z + y|| < |l|z| + |v||| and ||z|| = |||z||| for each z,y € X7) (by |x| we mean
a sequence defined by |x|(k) = |z(k)| for each k € N).

Now, let P, Q@ C F be partitions witnessing ||| and ||y||” respectively (here we
take partitions of the supports of = and y). Enumerate P = {P,, P,,..., P} and Q =
{Q1,Q2,...,Q;}. Leta; = max{xz(j): j € B;} fori < k, and b, = max{y(j): j €
Q. } for i < [. Re-enumerating P and Q, if needed, we may assume that (a;) and (b;)
are non-increasing.

Now we will define a partition R of supp(x +y), intertwining P and Q in the following
way:

Ryns1 =P, \ | J Rifor0<n <k, and Ry, = Q, \ | J Rifor1 <n <l
1<2n 1<2n
Then max{z(i) + y(i): i € R1} < ay + by, max{x(i) + y(i): i € Ry} < ay + by and
so on. Therefore, the partition R witnesses that
| 4+ ylI” < (a1 +b1) + (b1 + az) + (a2 + ba) + (bo +a3) + -+ <
<ap+2(az+ -4 ag) 200+ by) < 2(||zl|” + lyllF). (3.3)
]
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Hence, for a compact family F, we denote by X7 the completion of ¢y, with respect
to the quasi-norm ||-||*. Moreover, analogously to combinatorial spaces, FIN(||-[|”) is
denoted by Z7.

Theorem 3.1.6. If F is a compact, hereditary family and F covers N, then Z” and X”
are quasi-Banach spaces.

Proof. We prove it by mimicking the proof from [17].

That ||-||” is a nice quasi-norm follows directly from Theorem 3.1.5 and from Theorem
3.1.2.

We are going to show that Z7 is complete and then that X7 is its closed subspace.

For simplicity denote ¢ = ||-||*. We use in this proof the symbol FIN(i) for Z7 and
EXH(¢p) for X7,

First, we will prove that FIN(¢) is complete. Let (z,,) be a Cauchy sequence in FIN(¢).
Applying monotonicity, ¢( Py (2, — 7)) < @(2n — ) for every k, n, m, and hence
(Pgy () ken is a Cauchy sequence in the kth 1-dimensional coordinate space of RY
(which is a quasi-Banach space, as  is finite on cq), Py () e, Yy for some yy.
Put y = (yx). We will first show that y € FIN(y). The sequence {z,,: n € N} is
bounded, let say ¢(z,,) < B for every n. We show that p(y) < 4B, i.e. (by the lower
semicontinuity of ¢) ¢(Py(y)) < 4B for every M € N. Fix an M > 0. If n is large

B
enough, say n > ny, then o( Py (y — z,)) < i for every k < M and hence

P(Pu(y)) < 2(0(Pur(y—=n))+o(Par(a))) < 203 9(Ppg(y—0))+p(0)) < 4B.

The first inequality follows from Theorem 3.1.5(c) and the second from Theorem 3.1.5(a).
Now we will prove that z,, — y. If not, then thereare e > Oandng <n; < --- <n; <
. such that p(z,; —y) > ¢, thatis, (P, (75, —y)) > € for some M; € N\ {0} for
every j. Pick jo such that o(z,, — x,) < g for every n > nj, and then pick j; > jo
€
2M;

Jo

such that o( Py (2, —y)) < for every k < Mj,. Then, using Theorem 3.1.5(a)

e < o(Pagyy (T, = ) < @(Pagyy () — 0y ) + > o(Py(mn,, — 1)) <,
k<M]‘0
a contradiction.

Now we will show that EXH(p) = ¢g. The space cq is dense in EXH(y) because
o(x — Pu(2)) = ¢(Panl(z)) == 0 for every z € EXH(yp). We have to show
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that EXH(y) is closed. Let x € FIN(p) be an accumulation point of EXH (). For
any ¢ > 0 we can find y € EXH(y) such that o(x — y) < ¢, and then ny such that
©(Pwn(y)) < € forevery n > ng. If n > ng then (P, (2)) < 2(¢(Pan(z —y)) +
e(Pan(y))) < 4e. 0

The main corollary of this section is the following reformulation of (a part of) Theorem
3.1.6:

Theorem 3.1.7. If F is compact, hereditary and covering N, then X7 is a quasi-Banach
space.

The following is a simple consequence of (a) of Theorem 3.1.5.

Corollary 3.1.8. If a family F is a hereditary closure of a partition P, then the formula
(3.1) defines a norm.

As we already know, in general, the formula (3.1) does not need to define a norm, but
we can consider the Banach envelope of X”. Let F be a compact, hereditary family.

Let . .
z||” = inf { ZHleF neN ...z, € X,x = Zm,} (3.4)

i=1 i=1

Since ||-||” is a quasi-norm, this formula defines a norm. The space X7 = EXH(|| - ||7)
is caled the Banach envelope of X7 (see [37]).

Remark 3.1.9. Clearly, for every compact, hereditary family F and for x € cyy we have
f
lzll” < [l

If there is C' > 0 such that for each sequence (x;) of vectors in ¢g

n
| >
i=1

_F n
<CY il (3.5)
=1

then
].'
Cll=l|” > =]

Property (3.5) is called I-convexity and it is equivalent to the normability of a quasi-
Banach space (by ||-||7). In the next section, we will show that in general ||-||” does not
have to be 1-convex.

Also, we will prove that the Banach space induced by ||| is isomorphic to X%.

The following theorem shows that the quasi-Banach spaces X7 and Z7 are identical.
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Proposition 3.1.10. If F C [N]<N is a compact hereditary family covering N, then
X =2z

Proof. For each z € RY and for fixed n we can write x = x,, + 2/, where z,, = P,(z)
and 2}, = Py, (). Thus if z € X7 then ||z,||” — 0 and

1217 < 2([lzall” + 2 lI”) < oo,

because z,, is finitely supported. It shows that X7 C Z*. On the other hand, if z € Z7,
then there is a partition G = {Gy : k € N} C F such that Z sup |z(j)| < oco. It

keN JECk
implies that

> supla (i) o,

eG
k>n JETk

Let ¢ > 0 and fix m such that Z sup |z(j)| < e. Let n > max( |J G;). Then

k>mJeGk <m

2,17 < [, 19 <> sup |z(5)] < e.
k_szGGk

It finishes the proof. [

3.2 X7 and the dual of X

In this section, we will examine how close X7 is to X%, the space dual to X r.

In case F is simple enough (i.e., it is generated by a partition), it is not hard to see that
X7 is isometrically isomorphic to X (Proposition 3.2.1). In general, this is not true.
However, X % is always the Banach envelope of X7

We start with the aforementioned result for spaces generated by partitions.

Proposition 3.2.1. Suppose P is a partition of N (into finite sets) and F is its hereditary
closure. Then X% is isometrically isomorphic to X7 .

Proof. Enumerate P = {F}, F», ... }. It is known that for F being generated by parti-
tion, X  is isometrically isomorphic to @CO leF"‘ and so its dual space is isometrically

In\

isomorphic to P,
Lety € X7. Then lyllm = > max|y( )|. Taking y, = Pr,(y) for each n, we
neN k

can see y, as element of R, Thus Hny > ||Ynllco» Which gives us the norm on
neN

D, . O
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Let F be a compact, hereditary family covering N. Define T': cj9o — X7, a linear
operator given by

T(y)(z) =Y a(k)y(k) (3.6)

keN

for z € X. It is plain to check that T is injective. Also, let Ty: coo(||[|”) — X% and
Ty : coo(|| - |I7) — X% denote the operators given by the same formula as 7.

Proposition 3.2.2. Ty and T} are continuous with the norm 1.

Proof. To prove that Tj is continuous, take finitely supported y and let P be such that
ly|[” = > max|y(k)|. Then for every x € X with ||z||z < 1 we have
Fep keF

> wRyR) =] > akyk)| < max [y (k)| > lek) <yl
keN FeP keF Fep keF

Thus
IT(W)|I% < llyll”, (3.7)

and so 7 is continuous.

To show that T} is continuous, we use (3.7). Notice that for y = > y; we have
i<n

ITWIE < D IT Wl < Y llyl”

i<n i<n

It implies that || T'(y)||% < ||y||”, hence T is continuous. O

Note that by above proposition, as X is complete, we can extend the operator 7 to a
continuous injective linear operator X* — X%, denoted also by T,. The same holds
true for 7, and X7

We now state the main theorem of this section.

Theorem 3.2.3. Let F C [N|<N be a compact, hereditary family covering N. Then X7
is isometrically isomorphic to X 7.

In the proof, we will use some general facts about the spaces of the form X7 and the
extreme points of the unit ball in X% and X 7.

Recall that in a quasi-Banach space X which is not a Banach space, the unit ball is not
convex. Although the notion of an extreme point is usually considered in the context of
convex sets, the definition itself does not require convexity a priori. Thus, we can also
consider extreme points of non-convex sets.
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Now we introduce the notion which is very useful in the proof of Theorem 3.2.3.

We say that a quasi-Banach space X has convex series representation property (CSRP) if
for every x € By there exists a sequence ()\,) of positive real numbers with )\, =
1 and a sequence (u,,) of extreme points of Bx such that

r = Z)\nun. (3.8)

neN

The combinatorial spaces and their duals were studied geometrically in the context of
extreme points. Note that if F is a compact, hereditary family of finite sets, then all the
extreme points of the unit ball of X7 are finitely supported and there are only finitely
many extreme points with a given support (see [5], [21]). It is known (see [5]) that X
has CSRP, for F as above. We will also show that the same holds in X7

In [5], the authors provide proof of Gowers’s theorem regarding the characterization of
extreme points of the unit ball in X%. In his blog [31], Gowers states (without proof)
that the set of extreme points is of the form

{Zsie;‘ LF e FMAX g e (1, 1}} (3.9)
i€l

where
* (ef) are biorthogonal functionals for the canonical Schauder basis (e;),

o FMAX s a family of maximal sets from F, i.e. these sets F’ for which FU{k} ¢ F
for every k € N.

Actually, the fact that Ext(X7) is given by (3.9) was proven only for the Schreier space
and for higher order Schreier spaces. However, that result also holds for a general
compact, hereditary family 7 C [N]<N (see [5, Remark 4.4] and [21, Proposition 5]).
We will show that X7 has basically the same extreme points, that is To(Ext(X7)) =
Ext(X75).

Proposition 3.2.4. Assume that F C [N|<N is a compact, hereditary family covering N.
Avectory € X7 is an extreme point of the unit ball of X7 if and only if it is of the form

y(i) = {6 yrek (3.10)

0 otherwise,

for some F € FMAX and ¢; € {—1,1}.

Proof. First, assume that |y(k)| = 1 for each k € F for some F € FMAX,
Suppose y is not extreme and y = (1 —¢)x +tz forsome 0 < ¢t < land z,z € Byr. In
particular, absolute values of = and z do not exceed 1. Suppose that e.g. |z(k)| < 1 for
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some k € F. Then 1 = |y(k)| < (1 —t)|z(k)| + t|z(k)| < 1, which is a contradiction.
So |z(k)| = |z(k)| = 1 for each k € F. On the other hand, if z(k) # 0 for k ¢ F', then
by maximality of F it follows that ||z||* > 1. It implies that z(k) = O for every k ¢ F.
Hence x = y. This is a contradiction, and so y must be an extreme point.

Now suppose thaty € Ext(X7). Then ||y||” = 1. Let P € P£ for which ||y||" = [|y||”.
For each P € P we have |y(i)| = |y(j)| for every i, j € P. Indeed, suppose otherwise.
Then there is P € P andi,j € P suchthat |y(j)| < |y(7)| and so for n < |y(3)| — |y(j)]
we would have ||y +ne;||7 < ||y £ ne;||” < 1, hence y would not be an extreme point.
It follows, that if supp(y) € F, then y needs to be of the promised form (in particular
supp(y) is a maximal set in F, otherwise ||y £ e;||= 1 for i & supp(y) with supp(y) U
{i} € F). If supp(y) ¢ F, then we may find distinct Py, P, € P and ag,a; # 0 such
that y(i) = a; fori € P, j € {0,1}. Since ||y||” = 1, |aol, |a1| < 1. But then for
sufficiently small 7 > 0 and for u € By~ defined by

m, ifs € Po
u(i) =q —n, ifie P (3.11D)
0 otherwise,

we would have
ly £ull” < llyxull” =ly|” =1.

So, y has to be of the form (3.10). O

Proof of Theorem 3.2.3. We shall use the natural identification of X with a subspace
of RN by the map X% > f — (f(e,))22, € RY (see Remark 1.3.7). In this setting

the extended mapping 7 of Proposition 3.2.2 (see the remark after Proposition 3.2.2)
becomes the formal inclusion X¥ < X%, and, by the fact that (e}) is a basis for X3

(as Xz has a shrinking basis), X5 is the completion of (cqq, || - ||%)-
By Proposition 3.2.2 we have ||-||% < || - || on X7, We will prove that || - [|© < ||-||%
on cyg, which implies equality of ||| - ||© and || - [|% on cgo. Then the definition of X7

yield X7 = X% and equality of || - || and ||-||% on X = X%

We will prove that ||| - ||[7 < || - [|% on cgo by showing that By N cop € Bgr.

Fix finitely supported x € Bx and let A = supp(x). Since X7 has CSRP, we have
T = oy Akt for uy, € Ext(XF) and A, such that ), A = 1.

By continuity of P4 we have v = ), .y A\xPa(uy). By the form of extreme points (see
(3.9)) the set { P4(u): k € N} is finite and so we may enumerate it as {v;: i < n} for
some n € N. Also, there are ; > 0,7 < n,suchthat} . o, =landz =)  ou;.
It means that 7 € conv(P4[Ext(Bxs)]), where conv(K) denotes the convex hull of a
set K. Since each u; is an extreme point, we have that eq P4 (u;) + e1Pw\ A(u;) is an

1
extreme point for g, 1 € {—1, 1}. In particular, as v; = 5 (uz + (Pa(u;) — PN\A(ui)) ,
we have r € conv(Ext(X7)) and thus By: N coo = conv(Ext(XF%)).
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On the other hand, by Proposition 3.2.4 we know that Ext(X%) C Bxr C Bg» and,
since B¢ is convex, we obtain that B xx M Coo C Bgr. O

Now we present the aforementioned result that X 7 same as X7, has a CSRP.

Theorem 3.2.5. For any compact, hereditary family F C [N]<N covering N, the space
X7 has CSRP.

Proof. We have to show that for every x € Bx there exists an appropriate sequence
of extreme points and coefficients. First, we will prove it assuming that supp(z) € F.
Then we will generalize it for the case x € ¢y and at the end we will show the final
result.

1) supp(z) € F
Assume supp(z) C Fy for some Fy € FMAX. Put o = min{|z(k)|: k € supp(z)}.

Define \y = min{«a,1 — a} and \,, = 1~ forn > 1. Let ug be an extreme point
defined by
sgn(z(k)), if k € supp(z)
up(k) = ¢ 1, if k € Fy \ supp(z)
0 otherwise.

Put v9g = A\ug and define Sy = {k € N : z(k) = vo(k)}. Note that, a priori, it is
possible for Sy to be empty. If not, let Go C N be such that Fy < Gy and F; :=
(Fu \ So) UGy € FMAX (for Sy = () we take Gy = () as well).

We iterate this construction for n > 1, i.e., we put

sgn(z(k) — ; vi(k)), ifkeF,

un(k) =41 if ke F,\ F,, (3.12)

0, otherwise,

let v, = A\yup, S, = {k € N: z(k) — ZKH vj(k) = v,(k)} and let G,, be such a set
that F,, < G, and F,,,1 := (F,,\ S,,) UG, is maximal (again, if S,, = (), then G,, = () as
well). Note that on each step of the construction, the sequence z — > v; is supported
i<n

on a subset of the maximal set F;,. "

Now we show that the sequences (\,,) and (u,,) are as desired by the definition of CSRP.
It is clear that ) A, = 1 and for every n the vector u, is an extreme point in X 7
(by Lemma 3.2.4). It remains to check that the series ) Anu, is convergent to x in
the quasi-norm ||-||”.

Claim. For every k € Nr, (k) := |x(k) = >
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Proof of claim. We prove it by induction with respect to n. If n = 0 and k € supp(z)
then we have —)\g < z(k) — A\ < 1 — Xg for z(k) > 0. Since \g < 1 — \g by
the definition, the inequality holds for z(k) > 0. The definition of )\, implies also
immediately that ro(k) < 1 — \g for k ¢ supp(x). Finally, if (k) < 0, then vo(k) =
—Xpand then —1 + )y < .T(]{?) — Uo(l{?) <A <1-—)X.

Now suppose that 7,(k) < —— for some n. If z(k) — > j<n Vi(k) > 0, then
Unt1(k) = Apy1, if £ € F,, and thus

L= 1—X 1-=X 1-=X
2 = " < alk) - Z vi(k) < on  gn+l  on+l

j<n+1

If 2(k) — > <, vj(k) < 0 then v,y1(k) = —A,11 and the case is symmetric. Thus for

1—MXo
ke F,rna(k) < STESE Itk € Fpp \Fythenz(k) =32, vi(k) = —vppa(k) =

— A1 Which finishes the proof of the claim. ]

Note that the above claim implies that ) . A,uy, is convergent to = since

|z — E Atp||” = max
- keF, X
Jj<n j<n

(k) — Zun(k)) <! ;fo nz )

It finishes the proof for x having a support in F.
2) X € Cooe.

m
If x is a finitely supported sequence, then x = ) x; for some m € N, where z; are
i=1
sequences with supports contained in some F; € FMAX, Then, we make a similar
construction as in the previous case for each x; separately. Put M = ||z||”, and for each
1 <i < mleto; = mingep, [z(k)|, 8; = maxer, |x(k)|. Next, define a sequence
(AL )r by taking

Bi

A\ = min{ay, % —a;}and ), = % forn > 1.

Foreach i, Y _ A\ = % and thus > 7" >~ AL =1

neN 'n neN 'n
The sequence of extreme points (u’ ), is defined as in the first case. Then, repeating

arguments from the previous case for every ¢, we obtain

. B\
o = D X" < M

Jj<n

Thus, for each n we get
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m :Bz _)\7,

BN WIS TS B LD D =S RN E

i=1 j<n i<n

and the last expression tends to 0 when n — oco. Hence, every finitely supported se-
quence can be expressed as a convex series of extreme points.

3) The general case.
For z € X7, the result follows from the lower semicontinuity of ||-||” and the previous
cases. Indeed, for any ¢ > 0 find N € N such that ||z — Py(2)|” < g. For that N, we

can find a convex combination as in the second case, converging to Py (). Namely, for

sufficiently bign € N
IPv(@) =30 Y ] <5

i=1 j<n

Thus, using quasi-triangle inequality, we have

b= S S AIT =2(fe= A ne - ) <

i=1 j<n
It finishes the proof. [

Now we will show a result which indicates that the connection between X7 and X% is
quite strong. For each compact family JF the space X is a (quasi-Banach) pre-dual of
(X#)**. In other words, X 7 and X7 have isometrically isomorphic dual spaces. In fact,
this is a direct corollary of Theorem 3.2.3 and [37, Chapter 2.4]. We enclose a detailed
proof.

Theorem 3.2.6. If F C [N|<N is a compact hereditary family covering N, then (X7 )*
is isometrically isomorphic to (X z)**

Proof. By Proposition 1.3.10 the space (X x)** is isometrically isomorphic to Zx. As in
the proof of Theorem 3.2.3 we use the natural identification of (X7)* with a subspace of
R via the map (X7)* 3 f — (f(en))22; € RY. We need to prove that ||y||] = ||y|l#
for any y € RY, where ||-]|7 denotes the functional norm on X7

Take any y € RY. For any set Fy € F consider 7y € X given by

2o(n) = sgn(y(n)), ifn € Fy,
0 0, otherwise.

This is a vector of norm at most 1 in X7 and thus

yllZ =1 wo(n)y(n)l = ly(n)

nekFy neky
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As Fy € F was arbitrary, we obtain ||y||7 > ||y||#. To prove the reverse inequality,
take any = € cqo such that ||z]|” = 1. There exists a partition P = {F}, Fy, ..., Fj} of
the support of x at which the infimum in the definition of the quasi-norm is attained,

namely
l=]l” = E sup|x

Let 2’ be defined by 2/(j) = ai~sgn(y(j)) if j € F;, where a; = sup|z(k)| (if j & U, F,
keF;

then let 2/(j) = 0). Then ||2'||” = ||z||” =1 and

| > wmy(n)] <Y la(n)y(n)] < Y ' (n)y(n)

neN neN neN
Moreover
J J J
Yy =YYl (n)y(n Z D ) <Y allyllz = llyllz
neN i=1 nekF; =1 nekF; =1
which, as cqo is dense in X7, implies that ||y||7 < |ly||= and finishes the proof. O

Unfortunately, one cannot deduce from Theorem 3.2.3 that X7 and X% are isomorphic.
Below, we present an attempt to prove that these spaces are indeed isomorphic.

Fix a compact, hereditary family F and let ¢ € X%. Then

keN

where y(k) = p(ex). It is straightforward that

lell < llyll” (3.14)
Indeed,
ky(k
ol = sup [ZrenT@®y®l_ | Senr By
rEXF\{0} I]l7 weXF\[0} SUPpep, [|lZ]lp
k k)y(k
— sup inf | > renz(B)y (k)] < inf sup | D> ken 2(k)y(k)| _ ||y||f,
zeXrF\{0} PEPF HxHP PEPF ze X\ {0} ||:EH7;
(3.15)

where the last equality is a consequence of Proposition 3.2.1 and the only inequality
above comes from the fact that sup,. 4 infyep 0(x,y) < infyepsup,c6(z,y), what-
ever A, B and 0 are.
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The question is whether the other inequality in 3.14 holds or, at least, with some con-
stant ¢ € (0, 1)). In a very particular case, there is equality in (3.14). Namely, consider
F = 8, the Schreier family and for fixed n € N, let y € XS be given by y = x4,,
where A,, = (Jy<p<,, Ir and, recall, I, = [2%,2¥"1). Then

S _ — —
lyll® = p_ maxfy(k)| = > _ max[y(k)| =n
meN m<n

Now define = as follows. Let P;, (z) = 2" ™y, for 0 < m < n, and for every
k€ Uy Im letz(k) = 0. Then 2 € X5, >, .y 2(k)y(k) = n2", and one can easily
see that [|z[|s = sup,,ey D ;. [2(K)| = 2. Hence, the functional ¢ € X related to
the sequence y satisfies

n
loll 2 - =n = gl

For an arbitrary non-increasing sequence, we do not have equality in (3.14). However,
the other inequality is satisfied with a constant equal to %

Proposition 3.2.7. For the Schreier family S and a non-increasing sequence y with
positive coordinates, the following holds

L1
Iyl1® > llylls > 5 llvll®.

Proof. Fix y € ¢y satisfying the assumptions. Since y is non-increasing, we observe
that in the definition of the norm ||-||°, the partition for which the infimum is attained is

G=A{Il,:neN}

Then [ly[|® = >, ., y(2¥) for such m € N that 2" < max(supp(y)). Without loss of
generality, we can assume that max(supp(y)) = 2™"! — 1. Distinct two cases:

Case 1. y(1) < iy(Zk)

Then define a sequence = € X in such a way that for k¥ < m and j € I} put z(j) =

1 1
T = o and for j ¢ |, .,, Ir let z(j) = 0. We have ||z||s = 1 and also
A <
m 2k+1_1 ()
y(i
S stin =30 Y 4D
keN k=0 =2k

Since y is non-increasing, for every k& < m and every i € I, we have y(i) > y(2~F+1).
Thus,
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Case 2. y(1) > iy@k)

k=1
Take x(1) = 1 and z(k) = 0 for k # 1. Then ||z||s = 1 and

Zx(k)y(k) =y(1) > %(y(l) i Zy@k)> _ %

keN

1
Hence we obtain that ||y||§ > §||y||8 O

Unfortunately, a hope given by the result for non-increasing sequences was dashed,
since we found an example of a family for which X7 and X% are not isomorphic.

Example 3.2.8. In this example we will consider finite dyadic trees, i.e. the sets Ty =
{0, 1}=" of 0-1 sequences of length at most V. Notice that, identifying elements of Ty
with natural numbers, using some fixed enumeration of 7, we may think of 7 as a
subset of integers. For s € {0, 1}V let F, = {s;x: k < N} and let Fy be the hereditary
closure of the family {F}: s € {0,1}"}. So, Fy is the family of chains in T and each
F, is a maximal chain (a branch). For each s € {0,1}" let z, be the vector in RT¥
given by z; = xp,. Letx = 37 (v 5. Notice that z(t) = [{s: ¢ C s}|. It can be
checked by a simple induction (on V) that

|z = 2N 4 1.2V L4 2. oN"2 4 g oN=8 4 L oN-1

and so
)7 =2 + N2Vt =2V (1 + N/2).

Let C' > 0. Take N so that (1 + N/2) > C. Then
FN
| 3 "oz =0 3 jei
se{0,1}N se{0,1}N

So, at this point, for every C' > (0 we are able to find an example which violates the
inequality from Remark 3.1.9 for the chosen C'. Now, we will amalgamate all those
Fn’s into one example.
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For each N fix an injection ky: Ty — N in such a way that the images (ky|[Ty])y is a
partition of N. Let

‘F:U{kN[F} FE./T"N}.

Then F is a compact hereditary family of subsets of N covering N. But there is no

C' > 0 such that -
|| <ol

i€A i€A

for every A C N and so, according to Remark 3.1.9, X7 is not isomorphic to X%.

Now, we will show that for the Schreier family the same phenomenon occurs, that is
there is no isomorphism between X7 and X®. The argument is more complicated and
it was presented by A.Pelczar-Barwacz in [19]. It indicates that if F is complicated
enough, X7 is not isomorphic to X 5.

For any finite A C N let ¢(A) be the minimal number of consecutive Schreier sets in A
covering A.
2N

Lemma 3.2.9. For any N € N there are sets F1, ..., Fon € S so that for x = 2 XF;
we have the following =

1. z(i) € {2":r=0,...,N} forany i € supp(z),

2. ¢(A,) > 2V, where A, = {i e N: z(i) = 2"}, foranyr =0,...,N.

Proof. Fix N € N. We shall again use the dyadic tree Ty = {0,1}=". This time we
will assign to each element of 7. First, we will linearize the inclusion ordering on 7'y:
define < on Ty by

s =t if (tC sor(tisincomparable with sand (sN¢)"1C s)).

Notice that s N ¢ is the longest element of 7 which is extended by both s and ¢. Below
we enclose a drawing of 75 with the nodes enumerated according to <.

14/15\7
13/ \10 6/ \3
VANVANNANA
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By t;, we will denote the smallest element of T, i.e. the sequence constantly equal 1.
For s € T, s # to denote by s~ be the immediate predecessor of s and let s’ be the
smallest, with respect to <, descendant of s. Note that s’ is always a terminal node. For
r < N let L, be the r’s level of Ty, i.e. the set of elements T’y of length r.

For every s € Ty we will define an interval [, inductively, with respect to <. Let
I, = {N + 1}. If s # t, is a terminal node, then let I be an interval of length
2max |I,- | and such that min /; > (2N 4 1) max I,-. For a non-terminal node s let [
be an interval of length |Iy| and such that min /; > max I,-. In this way we will get a
sequence of intervals () such that s <t iff I, < I;.

Each (maximal) branch B of T induces a set Fz = USGB
this way form the family (Fj)fil defining the vector = promised in the statement. First,
notice thatif s € Ly_,, then s belongs to 2" many branches. So, x satisfies the condition
(1) of the statement. By the same reason we have A, = (J,., I, foreach r.

We will check that the family { Fjz: B is a branch} is as desired by proving two claims.

I,; the sets obtained in

Claim 1. Fjz € S for every branch B.

Consider first the branch B, containing t,. By definition |I;| = 1 for each s € By,
thus |Fjg,| < N + 1 (and, clearly, min Fg, = min F;, = N + 1, so Fz, € S). Pick
now a branch B containing any other terminal node s € T)y. By definition, min F =
min [y > (2N + 1)maxI,-. On the other hand, for every t € B, ¢ < s and so
|I;| = |Iy| < |I5| = 2max I,-. It follows that

|F5| < (2N + 1) max I,- < min Fj,

and so Fz € S.
Claim 2. ¢(A,) > |Ly_,| = 2V for each r.

Fix r < N and an interval / € Sin A, = UseLN_T I, Ge. I = JNA,, where J is an
interval). If for some s; < sy, € Ly_, we have I N I, # (), then max [ < max [,.
Indeed, notice that |I| < max/[,. As s; = $g, and s;, so belong to the same level,

51 2 85, hence 2max [, < |[y| = |I,| and so max [ < max [,. But this means that
¢(A7") > |LN—T| = 2N O

Theorem 3.2.10. The space X is not isomorphic to XS (and, thus, it is not isomorphic
to X3).

2N

Proof. For every N € Nlet zy = > xp~v be as in Lemma 3.2.9. Then, we have
=1 "’

||XF]_N||S = 1forany j = 1,...,2V and N € N, as each F}V is a Schreier set. Conse-

quently,
S Iyl =2V,
J
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On the other hand, we will show that 2V ||z ||® — oo as N — oo. Therefore, for each
C' > 0 there is N such that
I xepll > €2
j

and so, by Remark 3.1.9, we will be done.

Suppose, towards contradiction, that there is M € N with ||zy]® < 2M*N. For
a fixed N € N pick Schreier sets (B;); witnessing ||z||°, i.e. such that ||zx|° =
Y max{zy(i): i € B;}. Let

L, = |{l : max{xy(i): i € B} =2"}|
forr =0,...,N. Then
N
2V >N g0 (3.16)

r=0
On the other hand, as A" C B" := | J{B; : max{xy(i): i € B} > 2"},

2V < G(AT) < @(B") <l + 1+ -+ Iy forevery r =0,...,N — 1. (3.17)

The first inequality follows from Lemma 3.2.9, whereas the last one from the definition
of ¢: the partition of a set into consecutive Schreier sets is the smallest in the sense of
cardinality of all the partitions into Schreier sets.

In order to simplify the notation, we write m,, = Iy_,,r = 0,..., N. Then
N
> m2 < 2M, (3.18)
r=0
thus
m, < 2M+" forevery r =0,..., N.

So, for r > M + 2 we have
Mo+ + Mp_preg < 2M g MM oM g 9rm2 <l (3119)
On the other hand 2V~ < mpy_, 4+ - -+ mg foreachr = 0, ..., N, that is
2"<mp+---+mgforanyr =0,..., N (3.20)
Therefore, for » > M + 2 we have, by (3.19) and (3.20),
2" <my Mg g Sy ey +2770 0 (321)
Hence, for every r > M + 2 thereisi € {r — M —1,...,r} with

m; > 2T71(M + 2)71
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and so ]
P L ——
D)
By diving (sufficiently big) /V into intervals of size M + 2 and subsequently using the
above fact we see that

N
N 1 N

27> . = 3.22

;m TM+2 2(M+2)  2(M+2)? (3-22)

which yields a contradiction with (3.18) for sufficiently big N. ]

Remark 3.2.11. There is also another approach to producing a norm on the dual space
of combinatorial-like spaces, different from the one considered above. In [44] D. Ojeda-
Aristizabal proposed a formula for the norm of the original space constructed by Tsirelson,
which can also be adapted to the case of mixed Tsirelson spaces. The case of the orig-
inal Tsirelson space is somewhat similar to the case of duals to combinatorial spaces;
its (pre)dual norm can be derived from a precise formula, whereas the norm of the
very space does not possess an analogous expression. The formula proposed in [44]
is based on a dualization of the Figiel-Johnson norm (similar to our case), but yields a
norm, instead of just a quasi-norm, via including in the definition of ||z|| the expression
inf{||y|| + ||z|| : v + z = =}, which forces the triangle inequality. As it is noted in [44],
this definition does not permit calculating the norm of a vector in a way similar to the
case of Figiel-Johnson norm on the dual of the original Tsirelson space (see [29]). In
contrast, not including the above expression in our definition allows us to work with the
quasi-norm on duals of combinatorial spaces, as shown in the next section, at the price
of the lack of the triangle inequality.

3.3 On /;-saturation of X7 ’s

In this section, we consider spaces X7 for a family F satisfying an additional condition
(see definition 3.3.1).

In Preliminaries, we give references to the constructions of ¢;-saturated Banach spaces
which do not have the Schur property. The result of Galego, Gonzalez, and Pello in
[30] says that you do not have to construct such space: the dual to the Schreier space is
already a good example. Although the lack of Schur property in X3 is quite straightfor-
ward, the proof that it is /;-saturated is rather difficult.

We will show that the same holds for X7, for any compact family F. We think that our
proof is considerably easier and it indicates that studying X7 is easier than X . This is
why X7 may be helpful.
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We will prove the lack of Schur property using Theorem 3.2.6 for families satisfying a
certain property introduced by J.Lopez-Abad and S.Todorcevic in [40].

Definition 3.3.1. A family F of subsets of N is called large when F N [M]" # () for
every infinite subset M of N and for every n € N.

Proposition 3.3.2. Suppose that F is a large family of finite subsets of N. Then X7
does not have the Schur property.

Proof. Consider the sequence (e,,), the standard unit vector basis. We claim that this
sequence is weakly null, but it is not convergent to zero in the quasi-norm.

Indeed, fix ¢ € (X7)* and denote y(n) = ¢(e,). By Theorem 3.2.6 we have y =
(y(n)) € Zx, so |ly||z < oco. If lim, o y(n) # 0, then there is an infinite M/ C N
and ¢ > 0 such that |y(m)| > ¢ for each m € M. By the assumption, for each k € N
there is /' € F such that ¥ C M, |F| = k and so ), _p|y(i)] = c- k. Hence,
Y|l 7 = supper Y icrly(i)| = 0o, a contradiction.

On the other hand, for every n € N we have |le,||” = 1, so (e,) is not convergent to
zero in the quasi-norm. ]

One can easily see that the Schreier family S is large in the sense of the Definition 3.3.1.
Hence, in particular, X does not have the Schur property.

Definition 3.3.3. We say that the vector x € X7 is k-stable, k € N, if ||z| <
Lowr
ol

1
Note that for any k-stable x € X7 and any F' € F we have ||Pr(z)[|7 < %Hxﬂf

Lemma 3.3.4. Let x1, 25 € cog be such that supp(x1) < supp(xsz). If P is a partition
such that for every P € P we have P N supp(x1) = 0 or P Nsupp(z2) = 0, then

loy + @l = [l |7 + (|21

Proof. Let P € P. Then, either x; or z, vanishes on P, so for each k € P, |z1(k) +
2o(k)| = |z1(k)| + |22(k)|. It implies immediately that ||z; + 2»]|7 = [|z1]|” + ||22]|”.
OJ

Proposition 3.3.5. Let x,y € cog be such that
(i) supp(z) < supp(y),
(ii) y is ko-stable, where ky = max supp(z).

Then for each scalar \

A
I+ 2gll” = lall” + Syl
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Proof. First, notice that if y is k-stable, then Ay is k-stable and so we may assume that
A= 1

Since x + is finitely supported, there exists partition PP such that ||z +y|” = ||z +y||”.
Let A = {n € supp(y) : VP € P (n € P = PNsupp(x) # 0)}. Note that the
sequences x, Py 4(y) and the partition P satisfy the assumption of Lemma 3.3.4. In

addition, there are pairwise disjoint sets Fi, ..., F, € F such that A C |J F;. So,
i<ko
using the assumption of ky-stability (see the remark after Definition 3.3.3) and Lemma

3.1.5 (a) we obtain

1PAWIT < D IR W)I" < Sllvll”

1<ko

1
2
and thus

Iz +yl” = llz+ylI” > 2+ Poa@)ll” = lzl” + [ Paa@)ll”

> [lz1” + 1 Pwa@)I” = 217 +

ly[I”
L (323
5 - (323)

O
Theorem 3.3.6. X7 is ¢,-saturated.

Proof. Let (x,,) be a sequence in X7 and let F be a subspace of X7. We are going
to show that E contains an isomorphic copy of ¢;. By the standard arguments (see e.g.
[15]) we may assume that £ = [x,,], where for each n € N we have x,, € cqp, ||z,]|7 =
1 and supp(z,,) is finite. Additionally, we assume that supp(x,,) < supp(x,1) for each
n € N.

It is enough to construct a sequence (y,,) of unit vectors in £ which will be equivalent
to the standard /;-basis, i.e. such that for each sequence (\;);<,, of scalars

The sequence (y,,) will be of the form of a block sequence of (z,,) We define by in-
duction sequences of natural numbers (k,), (/) and the sequence of vectors (y,,). Let
Iy = 1,91 = 1 and k; = maxsupp(zy). Next, let

TN

=1

In+1
(1) Int1 € Nbesuchthat »  a; is k,-stable,

i=lp+1

ln+1

>

i=lp+1

ln+1
| > =

i=lp+1

, and
_F

() Ynt1 =
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(3) kp+1 = maxsupp(Yn+t1)-

We will show that we are able to perform such a construction. Only condition (1) needs

some explanation.
L

Claim. For each ! € N and each k£ € N there is L > [ such that Zmz is k-stable.

i=l
Suppose it is not true. Then there are k, [ € N such that for each L > [
L 1L
1> willoo > ol > all”
i=l i=l

Denote z = Y x;. Then, for every L we have || Pr(z)||” < 2k||z|s < 2k, and so, by
i=l

lower semicontinuity, ||z||” < 2k. Thus, z € Z7. On the other hand, for every i € N

we have ||z;||” = 1, so || Pyr(2)|” > 1 for every L, which means that z ¢ X7 This

is a contradiction with Proposition 3.1.10.

Having this construction, fix n € N and a sequence (\;)i<,. Of course, ||y;]|” = 1 for
each 7 and subsequently using Proposition 3.3.5 we have

n n—1
HZAZ?A i > HZN%
i=1 1=1

and so (y,,) is equivalent to the standard ¢, -basis. O

n

W I 1
> .. > — > — .
+ 5= _]/\1!+2E \M_QE |\l
=2

i=1

n—1
i = H Z Ai¥i+AnYn
i=1



Chapter 4

On the extreme points

This chapter is concerned with a geometric property of combinatorial spaces and those
related to them: the extreme points of the unit ball. The general question of this chapter
is as follows:

Problem 4.0.1. Given a hereditary family F covering N (or another countable set), what
is the shape of the set Ext(Xz)?

It is a classical result that Ext(co) = 0 and Ext(¢;) = {£e, : n € N}. But ideally,
one would like to find a universal description of the set Ext(Xx) for any family F.
This seems to be difficult, as the literature on this topic is rather sparse. For example,
not much is known about the set of extreme points in the Schreier space Xs. It was
proved, for instance, that Ext(Xs) C cqo and that its cardinality is Ny (see [50]). This
result was later generalized to any combinatorial space associated with regular family
(see [12]). Nevertheless, there is still no full characterization of Ext(Xs). In [50], the
authors present some examples of extreme points, but they do not appear to indicate any
clear pattern.

For non-compact families even less is known about this topic. For example, we do not
know whether each extreme point in related combinatorial spaces is necessarily finitely
supported. The argument presented in [12] for regular families does not seem to work;
however, we did not find any combinatorial space X and its extreme point with an
infinite support.

Remark 4.0.2. Fix a family F. For every § € {—1,1}" consider the linear map T} :
X7 — Xr given by
To(x) =0z 4.1

It is easy to check that 7} is an isometric isomorphism, hence it maps extreme points
onto extreme points. It follows that if z € Ext(Xz), then forevery § € {—1,1}", 0.z €
Ext(Xz). Thus, if we want to show that some = € Xz is or is not an extreme point,

65
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we may assume, without loss of generality, that each coordinate of = is nonnegative (we
will denote this fact by z > 0). We make such an assumption unless stated otherwise.

Now we present two simple lemmas which will be useful in the following part of this
chapter.

Lemma 4.0.3. Let n € N and let (\;)i<n be a sequence of positive numbers with
Zign Ai = 1. Let (o;)i<n, be a sequence of real numbers such that

<n
Then |a;| < \; for every i < n.

Proof. To simplify the notation, for aset X' C N and a sequence 3, we denote ) , .. 5(k)
by S(B,K). Let A = {k < n: |ag| > A}, B =1[0,n]\ A. Suppose A # (). Let
Ay={keA:ap> X \}and A ={k € A:ar < —\;}. Then

S(\, Ag) < S(a, Ag) and S(\, A1) < —S(\, Ar) (4.2)
We have
1> A+ o] = S(IA+al,[0,n]) =
i<n
— SO\ Ag) + S(a, Ag) — SO\, Ar) — S(a, Ay) + SO\, B) + S(a, B) =
=1-25(\, A1) + S(a, Ag) + S(a, B) — S(av, Ay),
and thus

25(a, Ay) > S(a, Ag) + S(a, B) — S(a, Ay). (4.3)
Furthermore, expanding S(|]A — «/, [0, n]) in a similar manner, we obtain
25(\, Ag) > S(a, Ag) — S(a, Ay) — S(a, B). 4.4)
Hence, summing up both sides of (4.3) and (4.4) we obtain
25(\, Ag) +25(a, Ay) > 25(a, Ag) — 25 (e, Ay)
which is a contradiction with (4.2). [l

Lemma 4.04. Let n € N, and let k < n. Suppose (\;)1<i<n is a sequence of real
numbers with the following property: for every A € [n]* >~._, \; = 0. Then \; = 0 for
everyl <i < n.

jEA
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n

Proof. Note that each ¢ appears in exactly < I

: i) subsets of size k. Hence, we have

n—1
0= Ya=(311)Xn
Agn] i€A i<n
and so Y, \; = 0. Furthermore, for a fixed ¢ and every S € [n \ {i}]* (which exists,
because k < n) we have Zjes A; = 0. Hence, the sequence A1, ..., A\i—1, Ait1, ..., A\
also sums up to 0, which implies that \; = 0 and since ¢ was arbitrary, this completes
the proof. ]

4.1 Extreme points in dual spaces

Although not much is known about extreme points in combinatorial spaces, it turns out
that in their dual spaces, there is a nice characterization. For compact families F, the
formula (3.9) presented in Chapter 3 describes an extreme point in X 7. Below, we show
that the same characterization works in the general setting.

Fix ¢ € X3 and let « denotes its sequence representation, that is a(n) = ¢(e,) (see
Remark 1.3.7). If @ € By, then |a(n)| < 1 for every n; conversely, if supp(a) € F
and |a(n)| < 1 for every n, then a € By In particular, if 3 € {—1,0, 1}" is such that
supp(f) € F, then B € By and, unless supp(8) = 0, [|8]| = 1. Now, for H C F
define

W(H) = {ﬁ € {—1,0,1}" : supp(B) € H}

Notice that W (H) C By and if F C H, then W (H) is a norming set, that is,

||x]| 7 = sup {’(ﬂ,xﬂ B € W(H)} for every x € Xr.

It is easy to see that W (#H) is symmetric. Then, by [21, Lemma 4], we have

*

GO (W (H)) = B(X}).

Also, one can easily check that the weak* topology on W (H) coincides with the inher-
ited topology from the product {—1,0, 1}V,

Proposition 4.1.1. For every hereditary family F covering N Ext(Xx) = W(fMAX

)

Proof. By the Banach-Alaoglu theorem Bx: = conv® (W (F)) is weak* compact.
Since X7 with the weak™ topology is locally convex, applying Milman’s theorem (see

[27, Theorem 3.66]) we obtain Ext(Xr) C conv? (W (F)) = W(F). Now suppose
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that 3 € W(F) and that supp(/3) is not maximal in F. Let k € N\ supp(/3) be such
that supp(5) U{k} € F. It follows that |5 + e;|| < 1 and so 3 is not an extreme point.

To see that W(F ) C Ext(Xz), consider o0 € W(F MAX) and suppose there are
@, B € Bxs, different than o, such that o = Q—;B It follows that for every n € supp(o)
a(n) = B(n) = o(n), and hence there is k& € supp(«) \ supp(o). As supp(o) U {k} ¢
F, we can pick a finite non-empty S C supp(c) such that SU{k} ¢ F. Define z € X»

such that supp(z) = S U {k} and z(n) = % for every n € supp(z). Then

|z]|7 = 1, but (o, ) = 1+ |a|(skl)| > 1, which is a contradiction. O

4.2 Extreme points in Farah spaces

In this section, we present a full characterization of extreme points in g-Farah spaces.
The key fact turns out to be the following lemma.

Lemma 4.2.1. Let g : N — [1,00) and let v € Xg,. If v € Ext(XF,), then |{n € N :
supp(x) NI, # 0} = 1.

Proof. Following Remark 4.0.2, we assume that z(j) > 0 for each j € N. Suppose
there are ny < ny such that B,, = supp(z) N I,,, # () fori € {0,1}. Let A € F, be
such that 1 = ||z[lr, = >_;c42(j). Let Ay, = AN, Then |A,[ < [g(n;)] and,
without loss of generality, we can assume that A,,, C B,,.. For a sufficiently small ¢ > 0

define
€ 15

Z:—X'n ——Xn'
[Angl 770 A, [

Then ||z||p, < 2¢ and, since z is piecewise constant, then ||z & z||g, is attained on A.
In particular, if C' = I,,, U I,,,, then

1Po( £ 2) e, = Y (@£2)() + Y (x2)(j) =

JEAR, JEAR,
S Ee+ Y wli)Fe= D a()+ Y. =),
jeAnO jeAnl jeAng jeAnl

and so ||z & z||g, = 1, a contradiction.

Hence, if v € Ext(Xp,), then supp(z) C I,, for some n.

Lemma 4.2.2. The vector te, is an extreme point in Xy, if and only if n € I,,, where
m is such that g(m) > 2.
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Proof. Suppose e, € Ext(Xp,) and let m be such that n € I,. Then, if g(m) < 2,
then for every k € I, \ {n} [le, + exllr, = 1.

Now let m € N be such that g(m) > 2 and n € I,,,. Suppose that e, is not an extreme
point and let z # 0 be such that ||e, + z||p, < 1. One can see that n ¢ supp(z) and
supp(z) N I, # 0, because otherwise ||e, & z||g, > 1. So there is j € supp(z) N I,
different from n. Since g(m) > 2, then ||e,£z2||r, > 1+|2(j)| > 1, acontradiction. []

It is natural to ask whether there are any other extreme points in X, . If there is such z,
then there is m € N such that |z(k)| < 1 for every k € I,,, and (k) # 0 for some k.

Lemma 4.2.3. Suppose v € Ext(Xg,) and x # =*e,, for every n. Then supp(z) = I,
for some m € N.

Proof. Suppose that supp(z) C I,,,. Then, if |supp(z)| < [g(m)], there exists ¢ > 0
such that y = e(ey — ¢;), where k,1 € supp(x) with k # [, yields |z £ y|lg, = 1,
which is a contradiction. On the other hand, if |supp(z)| > |g(m)], then choose
0 < 0 < min{z(k) : k € supp(z)} and define y = de; for some j € I,,, \ supp(z).
Then clearly, ||z £ y||r, = ||z|lr, = 1, and thus = ¢ Ext(X¥,). O

Theorem 4.2.4.
Ext(Xp,) ={ te,: ImeN(g(m) >2AneI,)}

1 -1 n _ N
U{Wﬁ-xln.neg [[1,2M)], 0 € {-1,1}""}.

Proof. Let Ey and E; denote, respectively, the first and second sets in the union on the
right-hand side above. By Lemma 4.2.2 Ej; C Ext(Xg, ), so now we will show that the
same holds for F;.

Suppose that for a fixed m x = m X1,, 1s not an extreme point. Then there is nonzero

y € Xy, such that ||z £ y|r, < 1. Let A € F, be such that |[AN,| = | g(n)] for every
n. Then
D @ EYDI+ D Y Wil <1 (4.5)
JEANT, n#m jEANT,
Note that by Lemma 4.0.3 x(j) £ y(j) > 0. Hence, we can rewrite (4.5) as follows

1+ > i+ > o)<t (4.6)

JjeEANIy, n#m jeANI,

Y <o,

n#m jeANI,

Thus



70

hence for each n # m and each j € AN I, we have y(j) = 0, and what follows -
y(j) = 0 for every j ¢ I,,. Having this, from (4.6) we obtain that

> yli) =0,

JEANT

and by Lemma 4.0.4 (as A N I, is an arbitrary subset of [, of size [g(m)] < 2™) we
conclude that y(j) = 0 for each j € I,,,. This is a contradiction with y # 0.

Now suppose that v € Ext(Xg, ). Then, by Lemma 4.2.1, there is n € N such that
supp(z) C I,. If |supp(z)| = 1, then z = +e;, and by Lemma 4.2.2 we know that in
this case g(n) > 2,1i.e. © € Ey. If | supp(x)| > 1, then by Lemma 4.2.3 supp(z) = I,.
By Remark 4.0.2 we can assume that (k) > 0 for each k € [,,. Suppose that x ¢ E},
that is, = is not constant on the ,,. Define By = {k € I, : x(k) < g7} and
By = I,, \ Bo. Notice that by the assumption these sets are non-empty and, in addition,
|B1| < |g(n)]. Let Ay C By be such that

i > 4.7
i) 2, ) -

and |Ag| + |B1| = [g(n)|. Then we have

1= lalle, = 3" a(k) + 3 (k).

k?EAo keB1

There exists ¢ > 0 such that for every k € By z(k) — ¢ > x(j) for every j € By and,

what follows, (j) + & < ;57 for each j € By. Define

€
Y=¢&€kr — 77 7XBo-
| Ag| ™7

Then we have

lz £ ylle, = > (x(k) F ‘5—0’) + ) a(k)ke=1,

keAp k€eB1

thus = ¢ Ext(Xp,), a contradiction. O

On the family determined by a fixed vector

Let = be a vector given by

1
T=D o X (4.8)

neN

In this short part of the chapter, we consider the family /, determined by x in the
following way
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Fo={AcN"™:) a(j) <1} (4.9)
JEA
Note that for every n € N, an interval [, is an element of F,. In addition, F, is not
compact, as it contains infinite sets in its closure, e.g., {2" : n > 1} € F,.
For a family defined in such a way, the Banach space Zr, has an interesting property.
Namely, z is its extreme point.

Proposition 4.2.5. The vector x given by (4.8) is the extreme point of Zr,.

Proof. Suppose x is not an extreme point and let z be, as usual, a nonzero vector such
that ||z £ z|| z, < 1. Denote z(j) = ¢, for every j > 1. In particular, for every maximal
element A (i.e. such that ), ,x(j) = 1) we have >, [z(j) & ¢;| < 1. Hence,
the assumptions of Lemma 4.0.3 are satisfied by A € FMAX and numbers x(3), &; for

j € A, and then we have
1£) g <1,

JEA

and thus jea€j = 0 for every maximal set A. In particular, for every k € N
D e= (4.10)

and for every m € I,
D gj g gy =0, 4.11)
Jel\{m}

as I, \ {m}U{l, '} is a maximal set in F, for every pair [, !’ € I}, ;. Note that, combin-
ing (4.10) and (4.11), we obtain 2¥+1 equations with 2*+2 variables ok, €9k 41, ..., Eokt1,1.
The matrix M), of size (2% + 1) x (2* +2) that corresponds to this system of linear equa-
tions is, up to permutation of rows or columns, of the following form. Its first row
consists of 2F consequtive 1’s and last two entries are equal to 0, and for2 < j < 28 41
the j-th row has only one 0 in (j — 1)-th column, and the rest of the entries are equal to
1. For example, for £ = 2 the matrix M is equal to

—_ = = O
—_ = O = =
— O = = =
O~ = = =
— = == O
—_ = == O

In particular, one can see that the last two columns are equal. The rank of this matrix
is equal to 2% 1+ 1. Indeed, one can see that submatrix B) which is obtained from
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M, by removing its last column, is a square matrix of dimension (2* + 1) and, up
to permuatation, its j-th row, for 1 < j < 2k 4+ 1 is equal to 1 — e;, where 1 =
(1,1,..,1) € R¥*! and ¢, is j-th standard unit vector in R2**+!. Hence, these rows are
linearly independent vectors, thus det(B;) # 0, and so rank(M;) = 2% + 1.
It is also easy to see that

0

0

€ ker(My).

S
I

1
—1
Using the rank-nullity theorem, we obtain that dim(ker(My)) = (28 +2) —rank(M},) =
1, so ker(My) is spanned by u. What follows, in particular, ¢; = 0 for every i € I}, and
Eokt1 = Egri141. Sincein (4.11) 251 and 251 +1 can be exchanged forany [, I’ € I}, 1,
we also obtain that ¢;, = 0 for all ©+ € [,;. Since k£ was chosen arbitrarily, for every
Jj € N we have ¢; = 0, and hence z = 0. O]

Remark 4.2.6. Note that, by the definition of z,

AN, AN
AeF, &) > x(j)ﬁl@Z‘ o k|§1@(%)63g1.

keN jEANI, keN

Hence, F, is the family of the form (2.10), more precisely, F, = F(cg).

4.3 Combinatorial spaces and graphs

In this section, we introduce a combinatorial norm || - || associated with a graph G.
We present it in this chapter because we will be mostly interested in extreme points in
a related combinatorial space. More precisely, we will study extreme points of the unit
ball in Z;. In many cases, G will be a finite graph, and thus Z; and X will coincide
(as finite-dimensional spaces).

Let €2 be a countable, possibly finite, set and let G = (V| E) be a graph with V' C
Q. Let C¢ and A denote the set of all cliques and the set of all anticliques of G,
respectively. Then, a combinatorial Banach space associated with a graph G is defined
as a completion of ¢y with respect to the following norm

|zllc = sup Y |z(v)].
CeCa veC

Note that here we slightly abuse the notation compared to the previously defined com-
binatorial spaces. More precisely, in the subscript of the norm symbol, we should write
Cq, but we only write the symbol G. This should not confuse the reader.
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It is worth mentioning that some of the families considered so far in this thesis can be
viewed as graphs, such as C and A from Section 2.3. Indeed, C = (2<%, Ej), where E
consists of pairs of comparable sequences, and A = (2<V E}), where F| is a comple-
ment of . These two graphs are perfect and dual in the sense that the cliques of C are
the anticliques of A and vice versa.

It turns out that the extreme points in the case of perfect and non-perfect graphs differ
significantly; hence, we divide the discussion into two subsections.

4.3.1 Extreme points and perfect graphs

The literature concerning perfect graphs is very rich. Recall that by Theorem 1.2.2 G
is perfect if and only if it contains neither an odd hole nor an odd antihole. We will
present an elegant characterization of the set of extreme points in Z. In more general
settings, these results come from a manuscript by P. Borodulin-Nadzieja, B. Farkas, and
J. Lopez-Abad, which had not yet been published at the time of writing this thesis.

Recall that by Theorem 1.2.1 of L. Lovdsz, a graph G = (V, E) is perfect if and only
if its complement is perfect. It turns out that the following theorem of V.Chvital (see
[24]) was an important part of Lovasz’s proof.

Theorem 4.3.1. A graph G = (V, E) is perfect if and only if

conv{xa: A€ Ag} = {x c[0,1]V: Zm(v) < 1 forevery C € C(;}.

veC

This theorem will also be an important part of our characterization of extreme points.
Note that the equality in the theorem above can be written as follows

conv{z € W(Ag): x>0} ={xr € Bx, : x > 0},
where W(H) = {B € {—1,0,1} : supp(B) € H} for a family H (see Section 4.1).
Theorem 4.3.2. For a graph G = (V, E) the following are equivalent
(1) G is perfect.
(2) W(Ag) = Bx.,, N coo-
(3) For every finite induced subgraph H of G Bx., = BX;H.

(4) For every finite induced subgraph H of G Ext(Xc,, ) = W (A}AX).

Note that here we use the notation with Cy and Ay in a subscript to emphasize that we
consider the spaces induced by cliques and anticliques, respectively.
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Proof. We will prove (1) = (2) = 3) = (4) = (1).

(1) = (2). Note that this implication follows immediately from Theorem 4.3.1, since
both sets in (2) are invariant under changing signs in coordinates.

(2) = (3). Note that (2) holds if and only if W (Ay) = B Xc,, for every finite induced
subgraph H. Then,

BX;‘H = conv(Ext(X7},)) = conv (W (AMAX)) = conv(W (Apg)) = Bx,,;

where the second equality follows from Proposition 4.1.1.

(3) = (4). This is an immediate consequence of Proposition 4.1.1.

(4) = (1). If GG is not perfect, then it contains either an odd hole or an odd antihole.
Both of these cases are considered in the next section. Then, by Proposition 4.3.7 and
Proposition 4.3.9, we conclude that (4) is not satisfied. L]

The following corollary follows straightforwardly from the previous theorem.
Corollary 4.3.3. If G is a perfect graph, then Ext(Zg) = W (AMAX).

It is important to mention that Theorem 4.3.2 does not allow us to draw such conclusions
about the shape of Ext(X¢) for an infinite graph G. Indeed, F = [N]=! is a perfect
graph, but Ext(Xz) = Ext(cg) = 0. The same situation is with A, family of all
antichains on 2<N. Indeed, if  was in Ext(X 4), then supp(z) would be some maximal
chain C, and for each « € C' |z(«)| = 1. But this is impossible, because the norm of
tails of x should be convergent to 0.

Sierpinski coloring and combinatorial Banach spaces

This part of the chapter is an exception, which means we consider combinatorial Banach
spaces related to some graphs, but we do not focus on their extreme points. We present
a quite interesting family defined by a certain coloring. It is also considered in the
manuscript of Nadzieja, Farkas, and Lopez-Abad that was mentioned before.

A function ¢ : [Q)* — {0, 1} is called a coloring. Every set A C Q) such that |c[[A]?]| =
1 is called monochromatic.

Having coloring ¢ we can define a graph G. = (2, E), where £ = {{a,b} € [Q]
¢(a,b) = 1}. Then the set of finite cliques (anticliques) consists of monochromatic sets
of color 1 (0).

Fix a bijection f : N — Q. The Sierpiriski’s coloring c; associated with this bijection
is a coloring defined on [N]? in the following way: c¢y(m,n) = 1 if and only if (m <
n < f(m) < f(n)). Hence, the family of cliques consists of these sets A = {ny <
ny < .. < ngt, k€ N, such that f(ng) < f(ny) < ... < f(ng). Analogously,
anticliques are exactly these sets, on which f is decreasing. We denote by G ¢ a graph
for a given coloring associated to the bijection f and, for simplicity, by X ; we denote the
combinatorial Banach space related to Gy. We call it the Sierpiriski’s space associated
with f.

2 .
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Proposition 4.3.4. For every bijections f,g : N — Q, the graph G is isomorphic to
an induced subgraph of G4, and vice versa.

The idea behind the proof is to mimic the order of f via the bijection g. For example,
if f and g restricted to [0, 3) are given by f(0) = 0, f(1) = —1, f(2) = 3, and
g(0) = —1, g(1) = =2, g(2) = 0, then we can say that they mimic each other, because
f(i) < f(5) & gli) < g(j) for every pair (i, j).

Proof. Without loss of generality, we can assume that f(0) = ¢(0) = 0. The isomor-
phism is a result of the following inductive procedure.

First note that there exists the smallest natural number n; > 0 such that ¢,({0,n;}) =
cr({0,1}). Atstep k we find the smallest natural number n;, > ny;_q such that ¢, ({0, nx }) =
cr({0,k}) and c,({n;,ni}) = cf({J, k}) for every j < k. This is a formal expression

of the fact that every relation between any two values of f, restricted to [0, k] is exactly
the same as the relation between any two values of g.

In this way, we find an infinite set M = {0 < n; < ny < ...} such that the map

N > j — n; € M is a graph isomorphism between Gy and a subgraph of GG, induced
by M. ]

As a consequence, we have the following corollary concerning combinatorial spaces
induced by Gy and G,,.

Corollary 4.3.5. For every bijections f,g : N — Q, X is isometric to a complemented
subspace of X, and vice versa.

Proof. We find infinite sets M, N such that G ¢ is isomorphic to a subgraph of G, in-
duced by M, and G is isomorphic to a subgraph of Gy induced by N. Then X/ is
isometric to [e, : n € M] C X, and X, is isometric to [e, : n € N] C X;. Clearly,
these isometric copies are complemented. ]

However, the theorem of M. Wéjtowicz (see [52]) states that if (z,,) and (y,,) are bases
in Banach spaces, (z,) is equivalent to a subbasis of (y,) and (y,) is equivalent to a
subbasis of (z,,), then (x,,) and (y, ) are permutatively equivalent. Thus, we obtain the
following result.

Theorem 4.3.6. For any two bijections f,g : N — Q, Xy and X, are isomorphic.

4.3.2 Extreme points and non-perfect graphs

In this subsection, we consider only non-perfect graphs. Recall that, by Theorem 1.2.2,
such graphs must contain odd holes or odd antiholes of size at least 5. We begin our
study of Ext(X¢) with the case where G is an odd hole or an odd antihole. Then we
will extend it to some more complex non-perfect graphs.
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Proposition 4.3.7. If G = (V, E) is an odd hole then

Em(Xd%:{%9~xv:9€{—1J}V}

Proof. Denote V' = {wvg,vy,...,v5_1}, where k& > 3 is an odd number. Suppose that
a vector z € RY given by z(v;) = 4 for 0 < j < k is not an extreme point (note
that ||z||¢ = 1, since all maximal cliques in G are of size 2). Take z # 0 such that
|z + 2|l < 1. Denote 2(v;) = ¢;. Note that for every 0 < j < k we have |¢;| < 1,
hence
stei+3+en <1
1 1 ,
§—€j+§—€j+1 Sl

where an addition in the subscript of €’s is mod k. It implies that for every j we have
g;+¢€j+1 = 0. Hence z = ggn - xv where n € {—1,1}V is given by n(v;) = (—1)7 for
0 < j < k. However, since k is odd, then 1(vg) = n(vg_1), s0 €9 = €x_1 = 0, and what
follows, z = 0.

Now let e € Ext(Xy) and assume that all values of e are non-negative. Note that
then e(v;) + e(vi41) = 1 forevery 0 < ¢ < k. Indeed, otherwise take a sufficiently
small positive number § and define z € RY as follows: if e(vy) + e(v1) = 1, then let
2(vg) = 6 and z(v;) = —d. Otherwise, put z(vy) = z(v1) = 0. Next, for any ¢ > 1,
put z(vip1) = —z(vy), if e(v;) + e(v;z1) = 1 and z(vi1) = 2(v;), otherwise. Then z,
up to an absolute value, is equal 0 and for every i |e(v;) + z(v;)| + |e(vis1) + 2(Vis1)]
is either equal 1 or equal to e(v;) + e(v;11) + 20 and the ¢ is chosen such that it does
not exceed 1. For |e(v;) — z(v;)| + |e(vit1) — z(vi41)| we have an analogous case, and
hence ||e + z||¢ < 1. Note that we did not use an assumption that & is odd, so this is
true for any hole.

Now suppose there is j such that e(v;) # % For simplicity, we can assume that j = 0.
Since e(v;) + e(v;41) = 1 for every i, then we have

e(vp), if i is even
e(v;) = o
1 — e(vy), if 7 is odd.

However, since k& — 1 is even we have e(vx_1) + e(vy) = 2e(vg) # 1, which is a
contradiction. [

Before we begin our analysis of extreme points in the antihole case, we need to introduce
some notation.

Recall that an antihole is the complement of a hole, meaning that each vertex is con-
nected to all the others except its two neighbors (in the original cycle). Below we present
a graphical representation of a 9-antihole.
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To describe the set of extreme points in the case of an odd antihole (G, we need to present
some facts about cliques in G.

We use the following notation. If V' = {vg,vy,...,v5_1} is the set of vertices of an
antihole G and {v;,, v;,,...,v;,,} C V is a clique, then we denote C' = (ig, i1, ..., i)
and we always assume that j-th entry of C'is smaller than (j + 1)-th.

It is easy to see that the size of a maximal clique in G is equal to Lg], since among
the numbers {0, 1,...,k — 1} there is at most g pairs p, ¢ such that [p — ¢q| > 2 (
mod (k — 1)). An interesting question is, how many of the maximal cliques are there
in G?

This can be reformulated as the following combinatorial problem. Find the cardinality
of B C {0,1}*™* (k = 2m + 1) of the sequences satisfying following properties

(1) Each element s of B has exactly m 1’s,

(2) For every s € B there is no i < 2m such that s(i) = s(i + 1) = 1, i.e. the distance
between 1’s needs to be at least 2,

(3) s(0) and s(2m) cannot be both equal 1.
Lemma 4.38. |B| =2m+1

Proof. One can see that s € B if and only if s satisfies condition (2) and there is
exactly one block of two zeros in s, i.e. there is exactly one j € {0, 1, ..., 2m} such that
s(j) = s(7+ 1) = 0 (including the case that the first and last coordinates of s is a block
as well). Thus, we have 2m + 1 many choices of such j and this choice, combined with
condition (2), determines the sequence s uniquely.

[
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We also need to introduce a certain type of matrix. Let n € N,;. We say that an n X n
matrix A is circulant (see [33]) if it is of the form

Qo a; ... QAp—92 QAp_1
ap-1 Gy ... Qp-3 Gp_2
A= . . . . 4.12)
(05} as ... Qo aq
L ay Ay ... QAp—1 ao i

In other words, A is determined by a single vector (ayg, a, ..., G, _2, G,_1), meaning that
for every 1 < i < n, the i-th row is a right shift of the first row by (i — 1) positions.

It is known (see [33]) that the eigenvalues \; of A, for 0 < j < n are given by the
formula

n—1
A= ar(M, (4.13)
k=0

where ¢, = e isa primitive n-th root of unity. It is worth to mention that (4.13) is an
(7 + 1)-th coordinate of a discrete Fourier transform of a sequence (ag, ay, ..., Gp—1).

Proposition 4.3.9. Let G = (V, E) be an odd antihole with |V| = 2m + 1, where
m > 2. Then

Ext(Xq) = {%0 cxv 0 € {-1, 1}V}.

Proof. First, we show that = given by z(v) = %, for v € V is an extreme point.
Suppose otherwise, and let z be a nonzero vector for which ||z £ z||¢ < 1. Then for
every maximal clique C;, where 0 < i < 2m + 1, we have ) . (z(v) & 2(v)) < 1
and, what follows, > . 2(v) = 0. Fix a clockwise enumeration of V' Then one can
see that we obtained a system of linear equations Az = 0, where A is a 0 — 1 square
matrix of dimension 2m + 1 such that each row consists of m 1’s, indicating a clique
of G (e.g. for m = 3, i.e. when G is an 7-antihole, there is a row (1,0,1,0,1,0,0)
which corresponds to the clique (0,2,4)). Such A is a circulant matrix determined by
the vector a given by

ak) = 1, if kis ffven and k£ <2(m — 1)
0, otherwise.

Claim. det(A) = m and so A is invertible.
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Proof of the Claim. By (4.13) we know that each eigenvalue \; of A is of the form

3

—2kj
>‘j = Cn 7

0
for n = 2m + 1. Note that \g = m and for 1 < j < 2m we have

B
Il

1 — C;Qmj
Note that
(2 = (b)) = (¢ Emt ) = 2T (T = ()
and thus

5 = M= — — = — —

S0-67) IO -6GNA+6G7)  TLEAA+6)
where the last equahty follows from the fact that the set of nth roots of unity forms a
group and, what follows {¢;7 : 1 < j < 2m} = {¢J : 1 < j < 2m}. Itis known that
the product of roots of a polynomial P(z) = >, arz" is equal to (—1)N 40 Since
1+ (Jisarootof C(z) = (z —1)*"T! — 1 forevery 0 < j < 2m, their product is equal
(—1)>m*1. (—2) = 2. Hence

det H>\ . H - (1 - CTJL) szl(l - CTJL) . m

1 14
Gra+q) 2
and thus det(A) = m. O

=1,

Thus z needs to be 0, which is a contradiction.
Now let e € Ext(X¢). Then for every maximal clique C' we have

D e(v) =1. (4.14)

veC
Indeed, if for some 7 ZUGCi e(v) < 1, then one can find a nonzero vector z = A~ 1w,
where w is such that u(i) = 1 — > . e(v) # 0. This z is a witness for |[e & z|¢ < 1.
Since x that is constantly equal to % satisfies (4.14) and A defines a bijective linear
operator, we conclude that this is the only vector satisfying

1

1
Ax =

It finishes the proof. ]
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Remark 4.3.10. One can deduce from Propositions 4.3.7 and 4.3.9 that in both cases the
set of extreme points can be described by a common formula. Namely, each coordinate
of an extreme point x € X is, up to absolute value, equal to #, where m is the size of
the maximal clique in G (equal to 2 when G is an odd hole, and equal to | '%!| when G
is an odd antihole). What is more, the proof of Proposition 4.3.7 can also be expressed
in a similar manner as the one above. The appropriate circulant matrix, associated with

an odd hole G, is determined by a vector (1, 1,0,0, ..., 0).

Let us now consider the following situation. Suppose that to the set of vertices V' =
{vg, v1, ...,vam} of an odd antihole (m > 1) we add an additional vertex w # v; for
every 0 < ¢ < 2m. Then, for a fixed non-maximal clique (i, i1, ...,%,_1) C V, we
connect w to each of the vertices of this clique.

Proposition 4.3.11. For a fixed m and j < m, let G be the graph defined as above.
Then the vector x given by
m—j

1
z(v;) = — forall0 <i<2m, xz(w)= —

is an extreme point of Xg.

Proof. If x was not in Ext(X¢), then find a vector z # 0 for which ||z + z||¢ < 1. Then
we have one equation and one variable more than in the proof of Proposition 4.3.9.
More precisely, we obtain 0 — 1 square matrix B of dimension 2m + 2, which is of the

form y
0
[u 1] , 4.15)

where A is the matrix from the proof of Proposition 4.3.9, 0 is a column vector of 2m+-1
zeros, and u is a row vector that corresponds to the clique (i, 41, ...,7;_1). It is easy to
see that det(B) = det(A) = m. Thus, z = 0, which is a contradiction. O

Hence, the above proposition states that, given a (2m+1)-antihole G = (V, E') and some
w ¢ V, the vector that is constantly equal to % on V' can be extended to an extreme point
& € RV} in such a way that z(w) may take any value from {2, 2, . =1} where
the precise value depends on how w is connected to G.

Conversely, for any number * with 0 < m < n, consider a graph consisting of a
(2n + 1)-antihole and a vertex w adjacent to n — m vertices of a fixed clique. Then
the vector x, defined to be % on the vertices of the antihole, and equal to % on w, is
an extreme point in the space induced by such a graph. Thus, we have the following
corollary.

Corollary 4.3.12. For every rational number q € (0, 1) there is a graph G = (V, E)
and x € Ext(X¢) such that g € z[V.
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Extensions to certain non-perfect graphs

It is natural to ask, what the extreme points look like for spaces related to more complex,
non-perfect graphs. In some trivial cases, the answers are straightforward. For example,
if G = ({vo, ..., vax }, E) is an odd hole and we extend it to G = (V U{w}, EU {vy, w})
for some vertex w # v; for every i and vy € V/, then it is easy to see that € R equal
to % is an extreme point in Zz. It is also trivial that if we extend G' by isolated vertices
wy, .., w; for some j € N, then x defined by z(v;) = 1 and z(w;) =1 (0 < i < 2m+1,
0 < 7 <) is an extreme point in the space related to this extended graph.

These simple extensions led us to the interesting algorithm that allows us to produce
extreme points in spaces Z generated by graphs containing an odd hole.

The procedure describing the graph G and defining an extreme point x is as follows.
Suppose that G contains an odd hole Cy, for odd k& > 3. Fix some enumeration {v,, :
n € M} of the set of vertices, where M can be either equal to an initial segment of
natural numbers, or equal to N. The algorithm has two parts.

First, let Dy = CY. For every vertex v € Cy, put x(v) = %

Next, let
ko = min{j € M : thereis v € Dy such thatv; € G\ Dy and {v;,v} € E}.

If there is exactly one v € Dy such that {vy,,v} € E, then put z(vy,) = 3,
otherwise let z(vy,) = 0. Put Dy = Do U {vg, }.

* We proceed inductively, i.e., at step n + 1 let
k, = min{j € M : thereisv € D,, suchthatv; € G\ D,, and {v;,v} € E}.

We put z(vg,) =
otherwise we put x

, if there is exactly one v € D,, such that {v;, ,v} € E,
Vg, ) = 0, and denote D,,,1 = D,, U {vy, }.

[

—

* If there are no more such vertices, or we took infinitely many steps, we start the
second part of the algorithm.

* Let Hy = |J D,. Note that if w € G \ H, then it is not adjacent to any v € V'

with z(v) = 1. Let

lo=min{j € M : thereisv; € G \ Hp}.

We put x(v;,) = 1 and for every vertex u that is adjacent with vy, let z(u) = 0.
Let Hy = HyU{v,} U{u eV : {y,,u} € E}.
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* We continue inductively, in a similar way as in the first part. At the step n + 1, let
l,, be the smallest natural number j for which v; ¢ H,. We put z(v;,) = 1 and
x(u) = 0 for every u with {v;,,,u} € FE.

Below we can see an example of a graph G with values of z € RV (inside circles)
obtained in the described procedure.

Proposition 4.3.13. x© € Ext(Z¢).

Proof. Suppose there is z # 0 such that ||z £ z||¢ < 1. For p € {0, 3,1} let V, denotes
7! [{p}]. One can see that supp(z) NV} = supp(z) N Vy = 0. Indeed, every vertex v
with z(v) = 0 is either adjacent to w for which z(w) = 1, or forms an 3-clique with
v, V1 € V% . It is easy to verify that in both cases z(v) = 0. Similarly, every v with
x(v) = 1 is either adjacent to w, for which z(w) = 0 or v is isolated, and so z(v) needs
to be 0.

Thus supp(z) C V1. Let V? = C}, and for every n > 1 put
2
Vi'={v eV, : thereexistsw € V11 such that {v,w} € E}.
2 2

For every n € N, fix a vertex v,, with the following properties:

e v, €V,
2

* {vp,v11} € E.

Put ¢, = z(v,) for every n. Since {v,,v,+1} € FE, then we obtain ¢,,,1 = —¢,, and,
what follows, ¢, = (—1)"¢q for every n > 1. Since vy € C}%, then by Proposition
4.3.7 €9 = 0, and thus €,, = 0 for every n. Since the chain of vertices (v,,) was chosen
arbitrarily, it implies that 2 = 0 and it finishes the proof. [
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Remark 4.3.14. By Proposition 4.3.13, we can informally say that, starting from an
odd hole G and an extreme point x in Z, and following the described procedure, we
can always extend G' to any graph G and z to some 7 in such a way that 7 € Ext(Zg).
However, it is not clear whether a similar procedure exists when starting with an odd
antihole. We are able to construct some simple extensions, but no clear pattern emerges.
This may suggest that if such an algorithm exists, it is highly likely to be more compli-
cated than the one described above.
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