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Abstract

This doctoral dissertation concerns combinatorial Banach spaces, that is, Banach spaces
induced in a certain way by families F of finite subsets of N (or other infinite countable
set). These spaces are denoted by XF . The thesis consists of four parts.

In the first part, we introduce the necessary notions, theorems, and facts that we use in
the following chapters.

In the second part, we introduce various examples of combinatorial spaces. We investi-
gate how combinatorial properties of families influence the structure of the spaces they
induce. Particular attention is devoted to spaces associated with non-compact families,
a subject for which the existing literature is rather sparse. In particular, we construct an
example of an ℓ1-saturated space failing the Schur property, and we provide a descrip-
tion of Pełczyński’s universal space as a combinatorial space.

In the third part, we study the dual spaces of the combinatorial Banach spaces generated
by compact families F . Our aim is to obtain a convenient, equivalent description of the
norm on the dual space. To do this, we introduce a quasi-Banach space XF which, as it
turns out, shares many properties withX∗

F . In particular, we show that this quasi-Banach
space provides yet another example of an ℓ1-saturated space without the Schur property.
Moreover, we prove that the Banach envelope ofXF is isometrically isomorphic toX∗

F .

In the fourth part, we investigate the extreme points of the unit ball in combinatorial
spaces and in related spaces. We provide characterizations of extreme points in several
concrete cases. In addition, we adress the problem of describing extreme points in
spaces induced by graphs.
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Streszczenie

Niniejsza rozprawa doktorska dotyczy kombinatorycznych przestrzeni Banacha, tj. prze-
strzeni Banacha, indukowanych w określony sposób przez rodziny F skończonych pod-
zbiorów N (lub innego zbioru przeliczalnego). Przestrzenie te są oznaczane symbolem
XF . Praca składa się z czterech części.

W pierwszej części wprowadzamy niezbędne pojęcia oraz twierdzenia, z których ko-
rzystamy w dalszej części pracy.

W części drugiej wprowadzamy różne przykłady przestrzeni. Badamy, jak poszczególne
kombinatoryczne własności rodzin wpływają na indukowane przez nie przestrzenie.
Szczególną uwagę poświęcamy przestrzeniom związanymi z rodzinami niezwartymi,
na których temat literatura jest raczej uboga. Podajemy m.in. przykład przestrzeni ℓ1-
nasyconej, która nie ma własności Schura, a także podajemy prezentację uniwersalnej
przestrzeni Pełczyńskiego jako przestrzeni kombinatorycznej.

W części trzeciej zajmujemy się przestrzeniami dualnymi do przestrzeni kombinato-
rycznych, generowanych przez rodziny zwarte F . Próbujemy znaleźć wygodny w użytku,
równoważny opis normy na przestrzeni dualnej. W tym celu definiujemy przestrzeń
quasi-Banacha XF , która, jak się okazuje, ma wiele wspólnych własności z X∗

F . W
szczególności pokazujemy, że ta przestrzeń quasi-Banacha jest kolejnym przykładem
przestrzeni ℓ1-nasyconej bez własności Schura. Ponadto, pokazujemy, że powłoka Ba-
nacha przestrzeni XF jest izometrycznie izomorficzna z X∗

F .

W części czwartej zajmujemy się tematyką punktów ekstremalnych kuli jednostkowej
w przestrzeniach kombinatorycznych, a także w przestrzeniach z nimi związanymi. Po-
dajemy charakteryzację punktów ekstremalnych w konkretnych przypadkach. Ponadto,
podejmujemy tematykę punktów ekstremalnych w przestrzeniach indukowanych przez
grafy.
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Introduction

The study of the structure of Banach spaces has been a central theme in modern analysis
since the very beginning of their existence. Over the decades, an increasingly refined
understanding of the geometry and other structural properties of Banach spaces has
been developed. The tools for this development have often involved methods of combi-
natorics, set theory, and topology. As examples of deep results in Banach space theory
in which these methods were used, we can point out:

• James’ space. Construction of a separable, non-relexive space J without uncon-
ditional basis which is isometrically isomorphic to its double dual space ([34]).

• Rosenthal’s ℓ1-theorem. Every bounded sequence in an infinite-dimensional Ba-
nach space has either a weakly Cauchy subsequence or a subsequence that is
equivalent to the standard basis of ℓ1 ([48]).

• Gowers-Maurey space. There exists an infinite-dimensional Banach space such
that its every infinite-dimensional subspace admits no unconditional Schauder ba-
sis ([32]),

and many other results.

This doctoral dissertation is concerned with a particular combinatorial method for defin-
ing Banach spaces. The method determines the name of the constructed space - combi-
natorial Banach space. It is defined as a completion of c00 with respect to the following
norm

∥x∥F = sup
A∈F

∑
n∈A

|x(n)|, (1)

where F is a family of finite subsets of N (or any countable set) which is closed under
taking subsets. The standard unit vectors (en) form an unconditional basis in this space.

The name combinatorial Banach space was coined by Gowers in 2009 (see [31]), how-
ever, investigations into this type of space date back much earlier.

Perhaps it started with the article ([49]) of J. Schreier. He showed that C([0, 1]), the
space of continuous functions on [0, 1], does not have the weak Banach-Saks property,
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thereby disproving the conjecture that this property might hold in all Banach spaces.
His argument was based on a family of sets, nowadays known as Schreier sets, i.e., such
sets A for which |A| ≤ min(A). Later on, Baernstein used the notion of the Schreier
set to construct a reflexive Banach space without the Banach-Saks property (see [8]),
however, the norm of this space was slightly different than this of (1). In the late 1970s,
Beauzamy used Schreier sets to define the space now called the Schreier space, exactly
as described above - as the completion of c00 with respect to the norm (1) for the Schreier
family of sets, which is usually denoted by S. Interestingly, he used this space for the
same purpose as Baernstein - to construct a counterexample of a reflexive space without
the Banach-Saks property.

In the 1990s, Alspach and Argyros in [3] generalized the concept of Schreier sets using
a certain inductive procedure. The families they obtained are known as the higher order
Schreier families, and the Banach spaces induced by these families are accordingly
called the higher order Schreier spaces.

One can say that combinatorial Banach spaces are the next step in the generalization
of the Schreier space. There are no strictly imposed conditions on what assumptions
should be made about the family F ; however, the minimal requirements are that the
family contains all singletons and is closed under taking subsets. These were, for ex-
ample, the only assumptions in Gowers’ definition of (1). A common assumption is
that the family F is regular, meaning that it is hereditary, compact, and spreading (for
the definitions we refer the reader to Chapter 1, Subsection 1.3.1). Combinatorial Ba-
nach spaces understood in this way were studied extensively by many authors in various
contexts (see e.g. [5], [12], [21], [6]).

The broad aim of this dissertation is to study various properties of combinatorial spaces
(and other related Banach spaces), depending on the assumptions imposed on the family
F . In contrast to most authors, we do not assume that the family F is compact and
spreading. Our standard requirements are that F is hereditary and covers N (or another
countable set on which it is defined). Considering non-compact families in the context
of combinatorial spaces is rather unusual, as reflected in the scarcity of literature on the
subject.

Besides the case of the space ℓ1, which isometrically isomorphic toX[N]<∞ , non-compact
families do not seem to be within the scope of interest of authors working on combina-
torial spaces. Such a situation provides a wide field for exploration. For example, one
can consider various families appearing in set theory or combinatorics (in particular, the
theory of analytic P-ideals or graph theory) and generate Banach spaces out of them.
It turned out that if the family is interesting or generic, then we may expect that the
induced Banach space will also have interesting properties.

The worlds of combinatorial Banach spaces for compact and non-compact families are
quite different. For example, it is known that XF for any compact family F is c0-
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saturated. If F is non-compact, this is not the case. Since there is an infinite set A in
the closure of F , an associated space contains a copy of ℓ1, which can be seen with
the naked eye - it is spanned by vectors en for n ∈ A. It is not true, however, that
combinatorial spaces induced by non-compact families are ℓ1-saturated. We provide
examples of spaces with both copies of c0 and ℓ1.

Of particular interest to us were the following properties of Banach spaces

(a) Schur property,

(b) ℓ1-saturation,

(c) the lack of a copy of c0.

It is known that for any Banach space the chain of implications (a) ⇒ (b) ⇒ (c) holds.
Our motivation was to explore whether these implications can be reversed in the realm
of combinatorial Banach spaces. However, suitable counterexamples yield a negative
answer for both implications. The space showing that (b) does not imply (a) thus pro-
vides an example of ℓ1-saturated combinatorial space without the Schur property. For
a long time, it was not sure if such spaces exist at all. The first example was given
by J.Bourgain (see [20]), and then several other involved constructions of such spaces
have been presented (see e.g. [7], [47]). The method used to construct the counterex-
ample showing that (c) does not imply (a) also allows us to establish stronger results.
As a consequence, we have obtained not only a space containing all the ℓp spaces for
1 ≤ p <∞, but also all combinatorial spaces, and even all spaces with an unconditional
basis. Hence, we obtained a combinatorial Banach space that is universal for the class of
Banach spaces with an unconditional basis. This space is generated by a certain Fraïssé
limit and the obtained space is isomorphic to the so-called Pełczyński space. This is one
of the examples of the phenomenon mentioned above: a generic family of finite subsets
induces an important example of a Banach space.

One of the possible reasons why the authors do not consider combinatorial spaces in-
duced by non-compact families is that then the basis of XF is not shrinking. Hence, the
biorthogonal functionals do not form a basis in the dual space, which makes it more dif-
ficult and less convenient to study. In general, the dual spaces of combinatorial spaces
seem to be rather mysterious objects in the theory of Banach spaces. Perhaps the reason
lies in the lack of a nice description of the dual norm. Seeking such a description, we
came up with the following formula

∥x∥F = inf

{∑
F∈P

sup
i∈F

|x(i) : P ⊆ F is a partition of N
}
. (2)

Maybe it does not look nice, but in some sense this is dual to the combinatorial norm
∥ · ∥F (see: Chapter 3). This formula, however, makes sense only for F which is com-
pact. We have thus experienced firsthand that, at times, discarding compactness as an
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assumption on F leads to certain difficulties. We defined the space XF as a completion
of c00 with respect to the formula (2). For certain families F , it is a Banach space that is
isometrically isomorphic to X∗

F . For instance, note that if F consists of singletons, then
XF is isometrically isomorphic to c0, and XF is isometrically isomorphic to ℓ1.

In general, if a F is a hereditary, compact family of finite sets that covers N, then XF

shares many properties with X∗
F . It was difficult for us to find a property distinguishing

those spaces. Hence, for quite a long time, we were convinced that these spaces must be
isomorphic, but we could not prove that. Eventually, we understood why the previous
attempts had failed: in general,XF is not a Banach space! More precisely, ∥·∥F does not
satisfy the triangle inequality. Although this is not an encouraging observation, it turned
out that the space XF remains of interest. It belongs to the broader class of spaces,
namely quasi-Banach spaces, which, under suitable assumptions, may be isomorphic to
Banach spaces. More precisely, it is possible if the quasi-Banach space is 1-convex. For
some particular cases, XF satisfies this property and then it is isometrically isomorphic
to X∗

F ; however, in general, this is not true.

Nevertheless, the connection betweenXF andX∗
F is so strong that they share properties

that are typically not invariant under isomorphism. For example, the unit balls in those
spaces have ‘the same’ extreme points. Also, for every compact hereditary family F ,
the spaces XF and X∗

F have isometrically isomorphic duals. Besides, the quasi-norm
∥ · ∥F is much easier to handle than the dual norm on X∗

F .

In establishing our results, a notion we sometimes relied on was the set of extreme
points of the unit ball. We used known facts concerning extreme points in the unit ball
of X∗

F , for compact, hereditary F , to obtain that the Banach envelope of XF (see: 3.4
in Chapter 3) is isometrically isomorphic to X∗

F . The shape of the set of extreme points
in combinatorial spaces (and some related ones) then began to be fascinating for its own
sake.

Our motivation for pursuing this topic came from two factors: the known description of
the extreme points in the unit ball of X∗

F for compact families F , and the observation
that, beyond the classical examples such as c0 and ℓ1, very little is known about the
extreme points in XF . Even in the case of the Schreier family S, the shape of the set of
extreme points is not known.

If F is a compact family, then the extreme point in the dual unit ball has values in
{−1, 0, 1}, and its support is a maximal set F ∈ F . We generalized this fact to every
hereditary family F covering N. In accordance with the second motivation, we obtain
a full characterization of extreme points for the specific families F . We also presented
combinatorial spaces defined by graphs and analyzed the extreme points in such spaces,
indicating an interesting interplay between graph theory and convex analysis.

The thesis is organized as follows.

10:28282
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In Chapter 1, we introduce notions and facts which we use in the following part of this
thesis.

In Chapter 2, we present a plethora of examples of combinatorial spaces. We investigate
how the combinatorial properties of the family F influence the structure of the induced
Banach space XF . In particular, a relatively simple example of ℓ1-saturated Banach
spaces without the Schur property is provided. Also, we give a new presentation of
Pełczyński’s universal space as a combinatorial space, and we also provide an answer
to a question posed by Pełczyński in one of his papers, which appears to remain open.

In Chapter 3, we present quasi-Banach spaces which are closely related to the dual
spaces of combinatorial Banach spaces and share many properties with them. More
precisely, for a compact family F , the Banach envelope of the defined quasi-Banach
space is isometrically isomorphic toX∗

F . We show that the quasi-Banach spaces induced
by families from a certain class are ℓ1-saturated and do not have the Schur property. In
particular, it holds for the Schreier family S, as it belongs to this class.

In Chapter 4 we study the extreme points in combinatorial spaces and their duals, as well
as in the spaces FIN(∥ · ∥F). In addition, we provide a characterization of the extreme
points in spaces defined by perfect graphs, together with partial results for non-perfect
graphs, simultaneously pointing out the difference between these two cases.

The results presented in Chapters 2 and 3 are based on joint work [18] and [19], and are
the outcome of collaboration with the co-authors. In all cases where the main idea does
not originate from the author of this dissertation, this is explicitly indicated. The results
from Chapter 4 were unpublished at the time of preparing this dissertation. Unless stated
otherwise, they are due to the author of this dissertation.
In addition, Chapter 2 contains only the results from the article [18] to which the author
of this dissertation contributed. However, both Chapters, 2 and 3, also contain new re-
sults obtained by the author of this dissertation, which do not appear in the publications
cited above.
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Chapter 1

Preliminaries

1.1 Basic notions
In this thesis, the set of natural numbers includes 0 and is denoted by N. The symbol
N+ is reserved for the set N \ {0}. If k ∈ N and M ⊆ N, then

[M ]≤k = {A ⊆M : |A| ≤ k}.

Similarly, [M ]k denotes the family of all subsets of M with exactly k elements, and
[M ]<∞ (respectively, [M ]∞) denotes the family of all finite (respectively, infinite) sub-
sets of M .
By a partition of a set C we mean a family C such that

⋃
C = C and any two distinct

elements of C are disjoint. For technical reasons, which will be explained later, we also
assume that ∅ ∈ C.
For any setAwe denote by χA the characteristic function ofA. The family of all subsets
of N is denoted by P(N) and we identify it with the Cantor set 2N via the bijection

P(N) ∋ A 7→ χA ∈ 2N.

Unless stated otherwise, we consider the standard product topology on the Cantor set.
Thus, when we discuss topological properties of a family of sets A ⊆ P(N) we mean
the corresponding properties of its image in 2N.
For any setsA,Ω, we denote byAΩ the set of all functions from Ω toA. In most cases in
this thesis Ω = N (or, sometimes, another countably infinite set). Such a function is then
called a sequence. For two sequences x, y x + y and x · y denote their coordinate-wise
addition and multiplication, i.e. (x + y)(k) = x(k) + y(k), (x · y)(k) = x(k)y(k) for
every k ∈ Ω.
If f : Ω → A, Γ ⊆ Ω, and B ⊆ A, then an image of the set Γ under the function f is
the set

f [Γ] = {f(x) : x ∈ Γ}.

10
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Similarly, the preimage of the set B under the function f is the set

f−1[B] = {x ∈ Ω : f(x) ∈ B}.

For k, l ∈ N with k < l, we denote by [k, l] the interval of natural numbers between k
and l, namely

[k, l] = {k, k + 1, · · · , l − 1, l}.
In a similar manner, we define half-open and half-closed intervals. We also write n =
[0, n), i.e., we identify each natural number with the set of all natural numbers less than
n. For A,B ⊆ N, by A < B we mean that max(A) < min(B).

1.2 Graphs
Let Ω be a countable set. A graph G is a pair (V,E), where V ⊆ Ω and E ⊆ [V ]2. An
element of V is called a vertex, and an element of E is called an edge. If {v, w} ∈ E
for v, w ∈ V , then we say that vertices v and w are adjacent. In this thesis, graphs are
always undirected and without loops, but they can be infinite (i.e. |V | = ℵ0). By the
complement of a graph G = (V,E), we mean the graph Gc = (V, [V ]2 \ E).
A cycle or a hole of size n > 1 (in short: n-hole) is a finite graph with vertices
{v0, ..., vn−1} such that {vi, vi+1} ∈ E for every i < n − 1, and {vn−1, v0} ∈ E.
Such a graph is denoted by Cn. An antihole is a graph that is the complement of a hole.
We say that C ⊆ V is a clique if every two distinct vertices from C are adjacent. A set
A ⊆ V is called independent or an anticlique if [A]2 ∩ E = ∅, i.e. no two vertices are
adjacent.
We denote by ω(G) the size of a maximal clique in G, and call it a clique number.
Similarly, the anticlique number α(G) is defined as the size of a maximal anticlique.
A chromatic number of a graph G, denoted by χ(G), is the smallest number of colors
needed to color a graph G in such a way that each two adjacent vertices have different
colors. Since the vertices of any clique need to have different colors, then χ(G) ≥ ω(G).
We say that a graph G is perfect if, for every induced finite subgraph H of G, we have
χ(H) = ω(H). The following two theorems give a characterization of perfect graphs.

Theorem 1.2.1 (Weak perfect graph theorem). A graph G is perfect if and only if its
complement is perfect.

Theorem 1.2.2 (Strong perfect graph theorem). A graph G is perfect if and only if it
does not have either holes or antiholes of odd size at least 5.

Both of these theorems were formulated for the first time as conjectures by C. Berge in
[14]. The theorem 1.2.1 was proved by L. Lovász in 1972 (see [41]), and the theorem
1.2.2 - over thirty years later by M. Chudnovsky, N. Robertson, P. Seymour and R.
Thomas ([23]).

13:48174
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We say that graphs G and H are isomorphic if there exists a bijection f between sets of
vertices V (G) and V (H) such that any two vertices v, v′ are adjacent in G if and only if
their images f(v) and f(v′) are adjacent in H . Such f is called an graph isomorphism
or an edge-preserving bijection.

1.3 Banach spaces
Every Banach space (X, ∥ · ∥) is considered over R. We omit the norm symbol when it
is clear from the context. For a sequence (xn) in a Banach space X by [xn] we denote
its closed linear span, i.e. the closure (in the norm topology) of the set{ N∑

n=1

anxn : N ∈ N, an ∈ R
}
.

Unless stated otherwise, by a subspace of a Banach space X we always mean a closed
subspace.
For a Banach space X we denote by BX and SX the closed unit ball and the unit sphere
of X , respectively.
A linear map between Banach spaces X and Y is called an operator. It is a standard
exercise to show that an operator is continuous if and only if it is bounded, i.e., there
exists C > 0 such that for every x ∈ X

∥T (x)∥Y ≤ C∥x∥.

We say that T is an isomorphism if it is a bijective linear homeomorphism. Equivalently,
a bijection T is an isomorphism if there exist c, C > 0 such that for all x ∈ X

c∥x∥X ≤ ∥T (x)∥Y ≤ C∥x∥.

If c = C = 1 then we say that T is an isometric isomorphism. We write X ≃ Y
and X ≡ Y to indicate that Banach spaces X and Y are isomorphic and isometrically
isomorphic, respectively.
In the case Y = R, the operator T is called a functional. The space of all continuous
functionals defined on a space X is denoted by X∗.
We denote by en the sequence in RN whose only nonzero coordinate is 1 in the n-th
position. We call it the standard unit vector.
We now recall the definitions of several classical Banach spaces.

• c0 denotes the space of all sequences of real numbers convergent to 0, endowed
with the supremum norm ∥x∥∞ = supk∈N |x(k)|, for x ∈ RN.

14:20274
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• For 0 < p < ∞ Lp(X,µ) denotes the space of all µ-measurable functions f on
X such that

∥f∥p = (

∫
X

|f |pdµ)
1
p <∞.

This is a Banach space (with the norm ∥ · ∥p) only for p ≥ 1. We omit the
underlying set and measure if they are clear from the context. In particular, Lp
denotes the space Lp([0, 1], λ), where λ is the Lebesgue measure. On the other
hand, ℓp denotes the space Lp(N, µ) with µ being the counting measure.

• L∞(X,µ) denotes the space of all essentialy bounded µ-measurable functions on
X with the norm

∥f∥∞ = inf
µ(A)=0

sup
x∈X\A

|f(x)|.

If X = N and µ is the counting measure, this space is denoted by ℓ∞.

• C(K) denotes the space of all continuous real-valued functions with a compact
Hausdorff space K as a domain, with the norm

∥f∥ = sup
t∈K

|f(t)|.

Let (Y, ∥·∥Y ), (X1, ∥·∥X1), (X2, ∥·∥X2), ... be Banach spaces. We consider the following
set denoted by

(⊕∞
n=1Xn

)
Y( ∞⊕

n=1

Xn

)
Y
=

{
(xn)

∞
n=1 ∈

∞∏
n=1

Xn : (∥xn∥Xn)n ∈ Y }
}
.

Endowed with a coordinate-wise addition, scalar multiplication and the norm

∥(xn)∥ = ∥(∥xn∥Xn)∥Y

it is a Banach space called Y -direct sum of the spaces (Xn).
In the theory of Banach spaces, finite-dimensional spaces play an important role too. Of
particular interest are the spaces ck0 and ℓkp for k ∈ N+, that is the spaces Rk endowed
with the supremum norm or the ℓp-norm, respectively.

Given Banach spaces X, Y , we say that X is Y -saturated, if every infinite-dimensional
subspace of X contains an isomorphic copy of Y . In most cases, we are interested in
spaces being c0- or ℓ1-saturated.
This notion can be generalized as follows. Let X be a Banach space and A a family of
Banach spaces. We say that X is A-saturated if for every infinite-dimensional subspace
E of X there exists Z ∈ A such that E contains a subspace isomorphic to Z.
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A sequence (xn)n∈N in a Banach space X is called weakly Cauchy (weakly convergent)
if for every x∗ ∈ X∗ the sequence (x∗(xn))n∈N is Cauchy (convergent). Every weakly
convergent sequence is weakly Cauchy. Banach spaces in which every weakly Cauchy
sequence is weakly convergent are called weakly complete. Reflexive spaces are the
classical examples. A sequence (φn) in X∗ is weak-* convergent to some φ ∈ X∗ if
φn(x)

n→∞−−−→ φ(x) for every x ∈ X .

We say that a Banach space X has the Schur property if every weakly convergent se-
quence is also norm-convergent. The most well-known example of such a space is ℓ1.
The following classical result of H. Rosenthal implies that Banach spaces with the Schur
property are ℓ1-saturated.

Theorem 1.3.1 ([48]). (ℓ1-theorem) Let X be a Banach space and (xn) be a bounded
sequence inX . Then (xn) has a subsequence (xnk) such that exactly one of the following
holds:

1. (xnk) is weakly Cauchy;

2. (xnk) is equivalent to the standard basis of ℓ1.

Whether the converse holds - i.e., whether ℓ1-saturated spaces necessarily have the
Schur property - was an open question for a long time. The answer is negative: the
first example of an ℓ1-saturated Banach space without the Schur property was given by
J. Bourgain (see [20]), and then several other involved constructions of such spaces have
been presented (see e.g. [7], [47]). We discuss this phenomenon in subsequent chapters.

Let V be a real vector space. If A ⊆ V , then by −A we denote the set {−a : a ∈ A}.
We say that A is symmetric if A = −A.
We say that K ⊆ V is convex if for every a, b ∈ K and every t ∈ [0, 1] we have
(1 − t)a + tb ∈ K. In other words, the set K is convex if every line segment between
two points from K is contained in K.
For any A ⊆ V , the convex hull of A is the smallest convex set containing A. It is
denoted by convA and has the following equivalent definition

convA =
{∑

i≤n

λivi : n ∈ N, for every i ≤ n vi ∈ A, λi > 0, and
∑
i≤n

λi = 1
}
.

We say that e ∈ K is an extreme point of K if there do not exist distinct x, y ∈ K and
t ∈ (0, 1) such that e = (1− t)x+ ty. We denote the set of all extreme points of K by
Ext(K). There are many equivalent definitions of extreme points. We use the specific
one that is the most convenient for our purposes.

Lemma 1.3.2. LetK be a convex subset of a vector space V . Then e is an extreme point
of K if and only if the only v ∈ V such that e+ v ∈ K and e− v ∈ K is v = 0.
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Proof. Suppose that there is a nonzero v ∈ V such that e ± v ∈ K. Then e = 1
2
(e +

v) + 1
2
(e− v) and thus, e /∈ Ext(K).

Now, if e /∈ Ext(K), then there are different y, z ∈ K and t ∈ (0, 1) such that e =
(1 − t)y + tz. Note that we may assume that t = 1

2
, i.e., e is a midpoint of the line

segment between points from K. Indeed, if t < 1
2
, put y′ = y and z′ = (1− 2t)y + 2tz.

Then y′, z′ ∈ K and

1

2
(y′ + z′) =

1

2
(y + (1− 2t)y + 2tz) = (1− t)y + tz = e.

Analogously, if t > 1
2

then we get the same conclusion by taking z′ = z and y′ =
(2− 2t)y + (2t− 1)z.
Thus, if e = 1

2
(y+ z), then we have y = e+ 1

2
(y− z) and z = e− 1

2
(y− z). Hence, the

vector v = 1
2
(y − z) ̸= 0 is such that e± v ∈ K.

In Banach space theory, the study of extreme points usually focuses on the closed unit
ball. Accordingly, by extreme points in X we always mean the extreme points of BX ,
and we use the notation Ext(X) instead of Ext(BX). It is easy to see that in any Banach
space Ext(X) ⊆ SX .

Bases
Definition 1.3.3. A sequence (xn)n∈N of vectors in a Banach spaceX is called a Schauder
basis if for every x ∈ X there is a unique sequence of scalars (an)n∈N such that

x =
∑
n∈N

anxn.

In other words, the sequence
(∑N

n=1 anxn
)
N∈N converges to x in the norm topology of

X .

Note that for finite-dimensional spaces the notions of a Schauder basis and a Hamel
basis coincide. This is no longer true in the infinite-dimensional case, since a Hamel
basis must then be uncountable.
Thus, in the context of Banach spaces, we use only the term Schauder basis and in the
following part of this thesis, we will simply write basis.

Definition 1.3.4. Let (xn) be a sequence in a Banach space X . Let (x∗n) be a se-
quence in X∗ such that for every n,m ∈ N x∗n(xm) = δn,m and for every x ∈ X
x =

∑
n∈N x

∗
n(xn). Such functionals (x∗n) are called biorthogonal functionals associ-

ated with (xn).
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Having Definitions 1.3.3 and 1.3.4 one can deduce (see [2, Theorem 1.1.3]) that (xn)
is a basis for X if and only if for every x ∈ X the expansion

∑
n∈N x

∗
n(x)xn is norm

convergent to x. Since biorthogonal functionals are continuous, we have x∗n(x) = an.

We say that a sequence (yn) is a basic sequence if it is a basis for [yn].
If X has a basis (xn), then [xn] = X and hence, it is separable (finite linear combina-
tions of xn with rational coefficients are dense in X). On the other hand, biorthogonal
functionals associated with xn form a basic sequence in X∗.

Example 1.3.5. Classical separable Banach spaces have Schauder bases.

(i) The standard unit vectors (en) form a basis for c0 and ℓp for 1 ≤ p < ∞. We will
call it the standard basis.

(ii) The Haar system is a sequence (hn) of functions defined on [0, 1] as follows. Let
h1 = 1. For k ∈ N and s ≤ 2k let

h2k+s(x) =


1, if x ∈ [2s−2

2k+1 ,
2s−1
2k+1 ]

−1, if x ∈ [2s−1
2k+1 ,

2s
2k+1 ]

0 otherwise

One can show that (hn) is a basis of Lp for every 1 ≤ p < ∞ (see: Proposition
6.1.3 in [2]).

(iii) C([0, 1]) admits a basis as well. It is the so-called Schauder system (fn) and is
defined as follows. Put f1 = 1 and for n > 1 fn(t) =

∫ t
0
hn−1(s)ds where hn is

the n-th Haar function from (ii). For the proof, see the note under Definition 1.a.4
in [39].

The question of whether every separable space admits a basis was posed by Stefan
Banach in his book [9], and it was related to another problem, formulated by Stanisław
Mazur in the Scottish Book (Problem 153). This question was answered negatively
in 1973. Per Enflo ([26]) constructed a separable Banach space without the so-called
approximation property, the lack of which also implies the lack of a Schauder basis.
Mazur, however, proved another result concerning bases.

Theorem 1.3.6. Every infinite-dimensional Banach space contains a basic sequence.

Remark 1.3.7. If (xn) is a basis in a Banach spaces X , then for every φ ∈ X∗ we have
φ(y) =

∑
n∈N φ(xn)x

∗
n(y) for every y ∈ X . Hence we may (and we will) identify φ

with (φ(xn)) ∈ RN and consider X∗ as a subset of RN. If α = (φ(xn)), then we will
write ⟨α, y⟩ for φ(x) = ⟨φ, x⟩.
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We say that two bases (xn) in X and (yn) in Y are equivalent if the following holds

∞∑
n=1

anxn converges ⇔
∞∑
n=1

anyn converges.

An equivalence of two bases (or basic sequences) (xn) and (yn) we will denote by
(xn) ∼ (yn).
From the closed graph theorem, we have the following result (see [2, Theorem 1.3.2 and
Corollary 1.3.3])

Theorem 1.3.8. For bases (xn) and (yn) in Banach spaces X and Y , respectively, the
following conditions are equivalent

(a) (xn) ∼ (yn).

(b) There is an isomorphism T : X → Y such that for every n T (xn) = yn.

(c) There exists C > 0 such that for every finitely nonzero sequence of real numbers
(an) we have

1

C

∥∥ ∞∑
n=1

anyn
∥∥ ≤

∥∥ ∞∑
n=1

anxn
∥∥ ≤ C

∥∥ ∞∑
n=1

anyn
∥∥. (1.1)

Thus, if we have a constant C as in the condition (c) in the Theorem 1.3.8 then we say
that (xn) and (yn) are C-equivalent. Note that if (xn) and (yn) are C-equivalent, then
they are also C ′-equivalent for every C ′ > C. If C = 1, then (xn) and (yn) are said
to be isometrically equivalent. Moreover, (xn) and (yn) are permutatively equivalent if
there exists a permutation π : N → N such that (xπ(n)) is equivalent to (yn).

Let (xn) be a basic sequence in a Banach spaceX and let (pn) be an increasing sequence
of natural numbers. A sequence of vectors (zk) in X of the form zk =

∑pk+1

n=pk+1 anxn is
called a block basic sequence of the (xn) (here (an) is a sequence of scalars).
The notion of block basic sequence (or block basis) is very useful, which is seen in the
result of Bessaga and Pełczyński (see [15]).

Proposition 1.3.9. Let X be a Banach space with a Schauder basis and let Y be its
infinite-dimensional subspace. Then there is a subspace Z of Y with a basis, which is
equivalent to a block basis of (xn).

A basis (xn) of X is called unconditional if for every permutation π : N → N (xπ(n))
is a basis of X . This is equivalent to say that for every x ∈ X and for every choice of
signs θn ∈ {−1, 1}N the series

∑
n∈N θnxn is convergent.
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The standard bases of c0 and ℓp are unconditional, but the two bases from Example
1.3.5 are not. Another simple example of a non-unconditional basis is also the so-called
summing basis of c0. This is the basis (xn) defined as xn =

∑n
i=1 ei for n ∈ N.

We say that a basis (xn) of a Banach space X is shrinking if the sequence of biorthogo-
nal functionals (x∗n) is a basis for X∗.
The classical example of a space with a shrinking basis is c0. On the other hand, since
ℓ∗1 = ℓ∞, then ℓ1 is an example of a space without a shrinking basis.
For spaces with shrinking bases, there is a useful representation of their second dual
spaces.

Proposition 1.3.10. Let X be a Banach space with a shrinking basis (xn). Then X∗∗

can be identified with the space

FIN =
{
(an) ∈ RN : sup

n

∥∥ n∑
i=1

aixi
∥∥ <∞

}
via the map X∗∗ ∋ x∗∗ 7→

(
x∗∗(xi)

)
∈ FIN.

A dual notion for shrinking basis is a boundedly complete basis. We say that a basis
(xn) of a Banach space X is boundedly complete, if for every sequence of scalars (an)
such that sup

n

∥∥∑n
i=1 aixi

∥∥ <∞, the series
∑∞

n=1 anxn is convergent.

The standard unit vector basis is an example of a boundedly complete basis in ℓp for
p ≥ 1. However, this basis is not boundedly complete in c0. Indeed, take an = 1 for
every n ∈ N+. Then sup

n

∥∥∑n
i=1 aixi

∥∥ = 1 but a
∑∞

n=1 en is not convergent in c0.

It is known that if (xn) is a shrinking basis in X , then (x∗n) is a boundedly complete
basis in X∗. It explains why these two notions are considered dual.
One can ask whether for a boundedly complete basis, the opposite is true. Namely, is
the Banach space X with a boundedly complete basis (xn) isomorphic to some dual
space? The answer to this question is affirmative (see [39, Proposition 1.b.4]).

Using the notions of shrinking and boundedly complete bases, R. C. James provided a
convenient characterization of reflexivity for spaces with bases.

Theorem 1.3.11 ([35]). Let X be a Banach space with a Schauder basis (xn). Then X
is reflexive if and only if (xn) is both shrinking and boundedly complete.

Quasi-Banach spaces
In this part of the preliminaries, we introduce a broader class of spaces than the class of
Banach spaces. This notion will be used in one of the following chapters.
A quasi-norm in a vector space X is a function ∥ · ∥ → R satysfing
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• ∥x∥ = 0 ⇔ x = 0,

• For every λ ∈ R ∥λx∥ = |λ|∥x∥,

• There is c ≥ 1 such that ∥x+ y∥ ≤ c(∥x∥+ ∥y∥).

The minimal constant c working above is sometimes called the modulus of concavity of
the quasi-norm. In particular, for c = 1 we get the definition of a norm.
In what follows, we will sometimes allow quasi-norms to take possibly infinite values.
If ∥·∥ is a quasi-norm (taking only finite values) on a vector space X , then the pair
(X, ∥·∥) is called a quasi-normed space.
Note that a quasi-Banach space X that is not a Banach space cannot be locally convex.
Therefore, results that hold in Banach spaces and rely on local convexity (e.g. Hahn-
Banach extension property or Krein-Milman theorem), in general, are no longer valid in
quasi-Banach spaces (see [36]). However, the standard results of Banach space theory
such as the Open Mapping Theorem, Uniform Boundedness Principle and the Closed
Graph Theorem can be applied in quasi-Banach spaces since they depend only on the
completeness of the space.

1.3.1 Combinatorial spaces
In this subsection, we introduce the main notion of this thesis - a combinatorial Banach
space.
We introduce a few definitions leading to the final notion.
For A ⊆ N we denote by PA : RN → RN the usual coordinate projection along the set,
i.e.

PA(x)(k) =

{
x(k), if k ∈ A

0, otherwise
.

For x ∈ RN we denote by supp(x) the support of x, i.e. the set of all k ∈ N such that
x(k) ̸= 0. By c00 we denote the set of all sequences with finite support.

Definition 1.3.12. We say that a function φ : RN → [0,∞] is a nice extended (quasi)-
norm if it enjoys all conditions of being (quasi)-norm, possibly attains infinity, and, in
addition, it satisfies the following conditions

(a) (Non-degeneration) φ(x) <∞ for every x ∈ c00,

(b) (Monotonicity) For x, y ∈ RN and n ∈ N |x(n)| ≤ |y(n)| implies φ(x) ≤ φ(y),

(c) (Lower semicontinuity) lim
n→∞

φ(Pn(x)) = φ(x) for every x ∈ RN.
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For an extended (quasi)-norm, we define the following sets

FIN(φ) = {x ∈ RN : φ(x) <∞}, (1.2)

EXH(φ) = {x ∈ RN : lim
n→∞

φ(PN\n(x)) = 0}. (1.3)

Note that EXH(φ) has an equivalent definition: it is simply the completion of c00 with
respect to φ.
The notion of FIN and EXH is inspired by the theory of ideals. In [17], the authors
presented an interplay between the theory of ideals on N and Banach space theory. For
example, they proved that FIN(φ) and EXH(φ), equipped with the nice extended norm
φ, are Banach spaces and EXH(φ) has an unconditional basis consisting of standard unit
vectors ([17], Proposition 5.1). The last part of this sentence can be reversed. Namely,
every Banach space with an unconditional basis is isometrically isomorphic to EXH(φ)
for some nice extended norm φ.
Note that EXH(φ) ⊆ FIN(φ), not only as a subset but also as a (closed) subspace. The
other inclusion holds if and only if EXH(φ) does not contain an isomorphic copy of c0,
i.e. when (en) is a boundedly complete basis in EXH(φ) (see [17, Theorem 5.4].)

Now we can finally present the most important definition. Let F ⊆ [N]<∞ be hereditary
(i.e. closed under taking subsets) and covering N (i.e.

⋃
F = N). For x ∈ RN consider

the following expression

∥x∥F = sup
F∈F

∑
k∈F

|x(k)|. (1.4)

It is easy to see that this is a nice extended norm and thus EXH(∥·∥F) is a Banach space
with unconditional basis. This space is called combinatorial Banach space associated
with the family F (sometimes we will also say that it is F’s combinatorial space). It is
convenient and also common in literature to denote this space by XF . In addition, to
abbreviate the notation, we will denote the space FIN(∥ · ∥F) by ZF .

The name combinatorial space comes from the weblog of Gowers (see [31]), although
such spaces were studied much earlier.
In 1930, Banach and Saks proved that every bounded sequence in Lp (for p > 1) has a
subsequence with norm convergent arithmetic means (see [10]). Such property is nowa-
days called the Banach-Saks property. They asked whether C([0, 1]) also satisfies this
property. The negative answer to this question was given in the same year by Schreier.
In [49], he constructed a sequence of continuous functions weakly convergent to 0 with-
out a subsequence whose arithmetic means are convergent in a norm. So, in particular,
he presented an example of a Banach space without the weak Banach-Saks property.
In his construction, Schreier used a family of subsets of N, which is now known as the
Schreier family, and its elements are called the Schreier sets. We say that F ∈ [N+]

<∞
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is the Schreier set, if F = ∅ or |F | ≤ min(F ).
In 1979, Beauzamy in his paper ([13]) used a notion of the Schreier family S (he called
its elements admissible) to construct a Banach space which is now known as the Schreier
space. He used this space to construct another Banach space, being an example of
a reflexive space without the Banach-Saks property (that all spaces with Banach-Saks
properties are necessarily reflexive was proved by Nishiura and Waterman in [42]). The
Schreier space was defined by Beauzamy as the completion of c00 with respect to the
norm

∥x∥S = sup
{∑
i∈A

|x(i)| : A is admissible
}

for x ∈ c00. So, in the light of our definition, it is a combinatorial Banach space associ-
ated with the Schreier family.

As authors of [4] stated, there is some inconsistency in the term combinatorial space.
The most common assumption is that family F ⊆ [N]<∞ is

• hereditary,

• compact,

• spreading, meaning that for every k ∈ N and every {m1, ...,mk} ∈ F , if mi ≤ ni
for each i ≤ k, then {n1, ..., nk} ∈ F .

In this case, the family F is called regular. Combinatorial Banach spaces associated
with regular families are quite well studied in the literature, as then they resemble the
Schreier space (e.g., all such spaces have a shrinking basis consisting of standard unit
vectors). However, as mentioned just before introducing the norm (1.4), we only assume
that our families are hereditary and covering N. Any additional assumption about F will
be clearly indicated.
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Chapter 2

The zoo of combinatorial Banach
spaces

This chapter is entirely devoted to the consideration of various examples of combi-
natorial Banach spaces. We will present how combinatorial properties of a family F
influence the properties of the induced Banach space.

2.1 c0 and ℓ1
We start with examples being the classical Banach spaces. Let F1 = [N]≤1. It is easy
to verify that in these cases, the standard basis of XF is isometrically equivalent to the
standard basis of c0 and thus these two spaces are isometrically isomorphic.
It is important that c0 can also be seen as a combinatorial space related to other families,
but only isomorphically. Namely, fix natural number n > 1 and let Fn = [N]≤n. Since
F1 ⊆ Fn, then ∥ · ∥F1 ≤ ∥ · ∥Fn . On the other hand, for every x ∈ c00 and every F ∈ Fn

we have ∑
i∈F

|x(i)| ≤ nmax
i∈F

|x(i)| ≤ n sup
k∈N

|x(k)| = n∥x∥F1 (2.1)

Since c00 is dense in combinatorial spaces, it is enough to conclude that for each n XFn
is isomorphic to c0.

It is quite obvious, but worth mentioning that the above inequality cannot be improved to
the isometric equivalence. One of the arguments is that in c0 endowed with a standard
sup norm (i.e. XF1), the unit ball has no extreme points, whereas for each n > 1
the standard unit vectors ei are extreme. Another reason for which the spaces XFn
and XFm are not isometrically isomorphic for n ̸= m is given by a result from the
paper of Brech, Ferenczi and Tcaciuc (see [21, Corollary 12]). The authors proved
that two combinatorial spaces related to the regular families F and G are isometrically
isomorphic if and only if there is a permutation π : N → N such that G = {π[F ] : F ∈

22
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F}. For each n, Fn is regular, but for n ̸= m, there is no permutation for which Fn and
Fm would be in such a relation.

The second classical Banach space from the title of this section can also be viewed as
a combinatorial space. If F = [N]<∞, then it is straightforward that the standard basis
of XF is isometrically equivalent to the standard basis of ℓ1. It is worth noting that if
we allowed infinite sets in the definition of a combinatorial norm, there would be one
more family that induces a space isometrically isomorphic to ℓ1. Indeed, one can easily
see that for I = P(N), the combinatorial norm ∥ · ∥I is isometrically equivalent to ℓ1-
norm. Note that I = F . Such a phenomenon is a general fact concerning combinatorial
spaces, namely for every family G XG ≡ XG , i.e., the family and its topological closure
give the same combinatorial space.
In further sections of this chapter, we will see many other examples of families related
isomorphically to ℓ1.

The heuristic and informal intuition about c0 and ℓ1 is that they are completely different
in many ways. This section confirms that these spaces have a different combinatorial
flavor, because they are induced by families coming from opposite ends of the spectrum.
One is given by singletons, whereas the other is associated with a power set of N. We
can, however, obtain a combinatorial space which is, in some sense, a mix of these two
spaces.
Let C = {Cn : n ∈ N} be a partition of the set of natural numbers such that |Cn| < ∞
for every n ∈ N. Let F be its hereditary closure, i.e. the smallest hereditary family
containing C. We show that the space XF is isometrically isomorphic to c0-direct sum
of the spaces ℓ|Cn|1 .
For every n, let σn denote an increasing bijection between |Cn| and Cn. Note that for
every m ∈ N there is exactly one nm and j < |Cn| such that

m = σnm(j) (2.2)

So define T :
(⊕∞

n=1 ℓ
|Cn|
1

)
c0
→ XF by

T ((xn))(m) = xnm
(
σ−1
nm(m)

)
,

where m and nm are in the correspondence (2.2). By the assumption, ∥xn∥1
n→∞−−−→ 0,

thus T is well-defined. Also we have

∥T ((xn))∥F = sup
F∈C

∑
k∈F

|T ((xn))(k)| = sup
n∈N

∑
k∈Cn

|xn(k)| = sup
n∈N

∥xn∥1.

Hence, T is an isometry. T is also surjective, because for every y ∈ F using (2.2) we
can build in a natural way an element x ∈

(⊕∞
n=1 ℓ

|Cn|
1

)
c0

such that T (x) = y.
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2.2 Schreier spaces and compact families
The notion of the Schreier family was mentioned in the previous chapter. Recall that it
is defined as follows

S = {∅} ∪ {A ⊆ N+ : |A| ≤ min(A)}. (2.3)

The Schreier space is the best-known and most studied combinatorial space in the liter-
ature. For example, it was proved (see [49]) that this space has no weak Banach-Saks
property. Also, in [22], the authors prove that the Schreier space is c0-saturated. In fact,
even more is true - E.Odell proved in [43] that every quotient of the Schreier space is
c0-saturated.
Alspach and Argyros in their paper [3] generalized Schreier families by the following
inductive procedure. Let S0 = [N]≤1. If α < ω1 is a successor ordinal and α = β + 1
let

Sα =
{ k⋃
i=1

Fi : k ≤ F1 < F2 < ... < Fk and Fi ∈ Sβ for every i ≤ k
}
∪
{
∅
}
.

For α being a limit ordinal, let αn be an increasing sequence convergent to α. Then

Sα =
{
F ⊆ N+ : there is n ≥ 1 with F ∈ Sαn and n ≤ F

}
∪
{
∅
}
.

The family Sα is called the Schreier family of order α and the Banach space associated
with it is called the Schreier space of order α. Note that, in particular, the standard
Schreier family is a Schreier family of order 1. In most cases we denote it rather by S
(like above) than S1.

The Schreier families are examples of regular families of subsets of N, a notion of
which was introduced in Preliminaries. Some of the results concerning the Schreier
space can be upgraded to any combinatorial space associated with regular families. For
instance, for any regular family F , XF is c0-saturated. In fact, the assumption of F ⊆
[N]<∞ being spreading can be omitted and only its compactness and being hereditary
are important (see [17, Theorem 6.3]). Thus, we obtain a convenient characterization
expressed topologically: XF is c0-saturated if and only if F ⊆ [N]<∞ is compact in
P(N).
There is also another equivalent condition for a combinatorial space to be c0-saturated.
Namely, XF is c0-saturated if and only if it does not contain an isomorphic copy of
ℓ1 (i.e. the standard basis of XF is shrinking, see [16, Proposition 3.10]). Hence,
it is natural to ask whether there is a similar characterization for ℓ1-saturated spaces.
Obviously, the lack of compactness of F implies the existence of a subspace isomorphic
to ℓ1; however, it can be given explicitly. Indeed, one can easily see that if F is not
compact, then there is an infinite setA in F . As we mentioned in the previous section, F
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and F generate the same combinatorial space. Since (en)n∈A is isometrically equivalent
to the standard basis of ℓ1, thus [en] is a copy of ℓ1 in XF .
Thus, a natural question arises: is it true that F is not compact if and only if it is
ℓ1-saturated? That would mean that also being ℓ1-saturated and having no copy of c0
is the same for combinatorial Banach spaces. There are, however, many examples of
non-compact families for which the associated combinatorial Banach space is not ℓ1-
saturated. We will present them even in the next section.

2.3 Chains and Antichains
The following examples concern the families living on 2<N, i.e., the set of all finite 0−1
sequences. For any s, t ∈ 2<N we say that t extends s if s(k) = t(k) for every k < |s|
and |s| ≤ |t|, where |s|, |t| stands for the length of sequences s and t. This notion defines
the natural order on 2<N:

s ⪯ t⇔ t extends s

Then consider the following families with respect to the order ⪯

A = {A ⊆ 2<N : A is a finite antichain}

and
C = {C ⊆ 2<N : C is a finite chain}

The spaces XA and XC were introduced by H. Rosenthal, and in literature they are
usually denoted by S and B, respectively.
The space S is called the (dyadic) stopping time space. The name comes from the
equivalent definition of this space expressed in the martingale language (see [11]). There
is no unified name for the spaceB, however, we will call it the chain space in this thesis.

Unlike the Schreier families, A and C are far from being regular, and so S and B are
not c0-saturated. In fact, these spaces contain many copies both of ℓ1 and c0. Indeed, if
D is an antichain (chain), then (en)n∈D is isometrically equivalent to the standard basis
of ℓ1 (c0) in S and isometrically equivalent to the standard basis of c0 (ℓ1) in B.
One may deduce that, in general, combinatorial Banach spaces are {c0, ℓ1}-saturated.
Recall that it means that each infinite-dimensional subspace has copies of either c0 or
ℓ1. However, S and B are counterexamples to that.
Namely, it was proved both by Schechtman and Rosenthal (both works were unpub-
lished manuscripts) that S contains isomorphic copies of ℓp for each p ∈ [1,∞). The
only proof of this fact seems to be presented by N. Dew in his PhD thesis (see [25, Sec-
tion 7.6]). The proof involves machinery of probability theory and stochastic processes.

27:61023



26

On the other hand, H. Bang and E. Odell proved that the space B is universal (for the
definition see Section 2.6) for Banach spaces with unconditional basis (see [11, Theorem
2]).
Therefore, it shows that combinatorial Banach spaces can have way richer structure than
one can expect, and it is not just a simple amalgamation of c0 and ℓ1.

The following fact from [11] presents an interesting relationship between stopping time
space and the chain space.

Proposition 2.3.1 ([11]). S∗ is isometrically isomorphic to the space ZC , and B∗ is
isometrically isomorphic to ZA.

So, in some sense, families A and C are dual to each other.

2.4 Farah spaces
In this section, we introduce a certain family of sets and its modifications that provide
many examples of combinatorial spaces. This class of families is motivated by the defi-
nition of an analytic P-ideal due to Farah (see [28]).

For each n ∈ N, let In = [2n, 2n+1). That is, I0 = {1}, I1 = {2, 3}, I2 = {4, 5, 6, 7}
etc. The Farah family F is defined by

F =
{
A ∈ [N]<∞ : ∀n ∈ N+

|A ∩ In|
|In|

≤ 1

n

}
. (2.4)

In other words, elements of F can take at most 1
n

of interval In. This family can be
slightly generalized in the following way. Fix function g : N → [1,∞). Then we
consider g-Farah family Fg given by

Fg =
{
A ∈ [N]<∞ : ∀n ∈ N |A ∩ In| ≤ g(n)

}
.

In particular, the Farah family F is given by a function g(n) = 2n

n
(here the domain is

N+, instead of N). The class of spaces XFg is called the Farah spaces.
Note that for every function g, Fg is not compact and thus it contains a copy of ℓ1. What
is more, we can obtain an isometrically isomorphic copy of ℓ1 as a g-Farah family.
Namely, for a function given by g(n) = 2n, we have Fg = [N]<∞, thus XFg ≡ ℓ1.
In fact, we can show even a stronger result.

Theorem 2.4.1. The Farah spaces have the Schur property.

The proof for the standard Farah space XF is presented in [17]. We present it here for
any g-Farah space, with slight modifications.
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Proof. Fix g : N → [1,∞). Suppose that (xn) ∈ XFg is such that ∥xn∥Fg ≥ ε for
some ε > 0 and for infinitely many (without loss of generality - for all) n’s (i.e. (xn)
is not convergent to 0 in the norm). Without loss of generality we can assume that (xn)
is a block sequence, and thus An := supp(xn) satisfy |An| < ∞ for every n ∈ N, and
An < An+1. There is a subsequence (xnk) such that for every n ∈ N there exists at
most one k ∈ N such that In ∩ Ank ̸= ∅. Define a sequence of sets (Bn) as follows. If
there is k such that In ∩ Ank ̸= ∅, then let Bn(= Bk

n) be such subset of In ∩ Ank that
|Bn| ≤ g(n) and ∥xnk∥Fg =

∑
j∈Bn |xnk(j)|. If there is no such k, put Bn = ∅. Let

B =
⋃
n∈NBn and note that B ∈ Fg Define φ : XFg → R given by

φ(x) =
∑
j∈B

∞∑
k=1

sgn(xnk(j))x(j)

Note that φ is linear and for every x ∈ XFg |φ(x)| ≤ ∥x∥Fg , hence φ ∈ X∗
Fg

. However,
for every l ∈ N we have

φ(xnl) =
∑
j∈B

∞∑
k=1

sgn(xnk(j))xnl(j) =
∑
j∈Bln

|xnl(j)| = ∥xnl∥Fg ≥ ε.

Thus φ is not weakly null.

In particular, we have an immediate corollary.

Corollary 2.4.2. For every g : N → [1,∞), XFg = ZFg .

Now fix functions g, h : N → [1,∞). We present some relations between values of g
and h, and an isomorphic structure of their Farah spaces. However, before we show this
result, we introduce briefly the notions that will be used in the proof.
Recall that ⌊·⌋ : R → Z is a function called a floor function and it is defined by

⌊r⌋ = max{k ∈ Z : k ≤ r}.

For every x ∈ RN consider such bijection σ : N → N that for every n ∈ N and every
k ∈ In |x(σ(k))| ≥ |x(σ(k + 1))|. Let y be a sequence defined by y(k) = x(σ(k)).
Note that y restricted to every interval In is non-increasing and for every function ψ :
N → [1,∞) ∥x∥Fψ = ∥y∥Fψ . For every n ∈ N and 0 ≤ k < 2n let

ank = |y(2n + k)|.

Then

∥y∥Fψ =
∑
n∈N

⌊ψ(n)⌋∑
k=0

ank
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Proposition 2.4.3. Let g, h : N → [1,∞) be such that there exist positive constants
c1 ≤ c2 such that for every n ∈ N

c1 ≤
⌊g(n)⌋
⌊h(n)⌋

≤ c2

Then XFg and XFh are isomorphic.

Proof. We use notions introduced above. For convenience, we distinguish three cases.

(a) Case 1. If c2 ≥ c1 ≥ 1, then for every n ⌊h(n)⌋ ≤ ⌊g(n)⌋, and thus ∥y∥Fh ≤ ∥y∥Fg .
On the other hand, for every n ∈ N we have

an1 + ...+ an⌊g(n)⌋ ≤ c2(a
n
1 + ...+ an⌊h(n)⌋),

hence ∥y∥Fg ≤ c2∥y∥Fh .

(b) Case 2. c1 ≤ 1 and c2 ≤ 1. This case is symmetric to Case 1. Here we have
∥y∥Fg ≤ ∥y∥Fh , because ⌊g(n)⌋ ≤ ⌊h(n)⌋. Also,

an1 + ...+ an⌊h(n)⌋ ≤
1

c1
(an1 + ...+ an⌊g(n)⌋),

and so ∥y∥Fg ≥ c1∥y∥Fh .

(c) Case 3. Let c1 ≤ 1 and c2 ≥ 1. Let M0 = {n ∈ N : ⌊g(n)⌋ ≤ ⌊h(n)⌋} and
M1 = N \M0. Then, for every n ∈ M0 we repeat the step from Case 1, and for
n ∈M1 - the step from Case 2.

These three cases combined yield

c1∥y∥Fh ≤ ∥y∥Fg ≤ c2∥y∥Fh . (2.5)

This implies that XFg and XFh are equal as sets and that the identity operator is an
isomorphism.

It is natural to ask whether the opposite theorem holds or, at least, whether there is any
relation between g and h. We do not know the answer, hence we formulate the following
problem.

Problem 2.4.4. Given functions g and h, supposeXFg andXFh are isomorphic. Is there
any relation between the values of g and h? In particular, are there 0 < c1 ≤ c2 such
that c1 ≤ ⌊g(n)⌋

⌊h(n)⌋ ≤ c2
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Note that, if there is an isomorphism T : XFh → XFg , then for every x ∈ XFh

a∥x∥Fh ≤ ∥T (x)∥Fg ≤ b∥x∥Fh ,

for some positive numbers a ≤ b. Thus, a and b would be natural candidates for con-
stants in the Problem 2.4.4.
Also, note that there are examples of Farah spaces which indicate a positive answer to
the question. Indeed, consider g = 1 and h defined by h(n) = 2n, i.e. g(n)

h(n)
can be

arbitrarily small. As it was mentioned earlier, XFh is isometrically isomorphic to ℓ1. If
XFg were isomorphic to ℓ1, then its basis would be equivalent to the standard unit vector
basis of ℓ1 (as ℓ1 has a unique unconditional basis, see [38]). However, for every N ∈ N
∥
∑

k<N ek∥Fh = N , whereas ∥
∑

k<N ek∥Fg = max{⌊log2N⌋, 1}. Hence, these bases
cannot be equivalent, and thus XFg and XFh are not isomorphic.

2.5 Modifications of Farah families
Theorem 2.4.1 provides a family of Banach spaces with the Schur property, and there-
fore with the ℓ1-saturation property. Moreover, many of these spaces are not isomorphic
to ℓ1. More precisely, every g-Farah space with g satisfying limn→∞

g(n)
2n

= 0 serves as
an appropriate exmaple. In particular, classical Farah space is not isomorphic to ℓ1 (see
[17]).
In this section, we present some modifications of Farah families whose combinatorial
spaces differ from g-Farah spaces. As the choice of the function g is not crucial in these
constructions, we fix in this section a function g associated with the classical Farah fam-
ily F for simplicity (see the Definition 2.4).

2.5.1 F with intervals
Consider the following family

IF =
{
F ∪ E : F ∈ F, and E ⊆ In for some n ∈ N

}
.

So this family is created by adding some interval to the Farah. It may look like a cos-
metic modification, but this extension changes the resulting combinatorial space quite
fundamentally. Namely, XIF contains an isomorphic copy of c0.
To see this, consider sequence x =

∑
n∈N xn, where

xn =
1

22n
χI2n
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Then

∥x∥IF =
∥∥∑
n∈N

xn
∥∥
IF

≤ 1 +
∑
n∈N

1

22n
· 2

2n

2n
= 1 +

∑
n∈N

1

2n
= 3 <∞,

so x ∈ ZIF. However, since for every n ∈ N In ∈ IF, then ∥PN\n(x)∥IF ≥ 1, and so
x /∈ XIF. Thus XIF contains a subspace isomorphic to c0 (see [17, Theorem 5.4]).

2.5.2 The rapid Farah
Let D ⊆ NN+

+ consists of all strictly increasing sequences. For every σ ∈ D define a
function sσ : N+ → [0,∞) in the following way

sσ(m) =


2σ(k)

k
, if there exists k ∈ N such that m = σ(k)

0, otherwise.

Next, define the family Aσ given by

Aσ =
{
A ∈ [N]<∞ : ∀n ∈ N+ |A ∩ In| ≤ sσ(n)

}
.

Finally, we define a family RF, called the rapid Farah family, in the following way

RF =
{
F ∈ [N]<∞ : ∃σ ∈ D ∃A ∈ Aσ F ⊆ A

}
(2.6)

The formal definition of this family does not seem to be friendly; however, the intuition
is clear. The finite set F is an element of RF if and only if for some increasing bijection
of natural numbers σ, F can take the whole interval Iσ(1), a half of the interval Iσ(2) and
so on. Note that for every n ∈ N+, In is an element of RF - in (2.6) it suffices to take
any σ ∈ D such that σ(1) = n. Also notice that F ⊆ RF (consider σ(n) = n).

The rapid Farah space XRF turns out to be another example of an ℓ1-saturated Banach
space without the Schur property.

Proposition 2.5.1. XRF does not have the Schur property.

Proof. For every n ∈ N+ let xn =
1

2n
χIn . Since In ∈ RF for every n, then ∥xn∥RF =

1. However, we show that (xn)n∈N+ is weakly null.
Fix x∗ ∈ X∗

RF. Then x∗(x) =
∑

k∈N+
αkx(k). Suppose there exists ε > 0 and A ∈

[N+]
∞ such that for every n ∈ A |x∗(xn)| > ε. It means that for each n ∈ A we have∣∣∑

j∈In

αj
∣∣ > 2nε.
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Denote A = {n1, n2, n3, ...} and assume that ni < ni+1 for every i. For every n ∈ N let
Mn =

⋃n
k=1 Ink . Put w =

∑
k∈N+

sgn(αk)xk and yn = PMn(w). Then we have

∥yn∥RF ≤ 1 +
1

2
+ ...+

1

n
≤ log2(n+ 1).

On the other hand,

|x∗(yn)| =
∣∣ ∑
j∈Mn

αjyn(j)
∣∣ = ∣∣ n∑

k=1

∑
j∈Ink

αj
sgn(αj)

2nk

∣∣ ≥ n∑
k=1

1

2nk

∣∣ ∑
j∈Ink

αj
∣∣ > nε

Hence
|x∗(yn)|
∥yn∥RF

>
nε

log2(n+ 1)
, and so x∗ is unbounded, which is a contradiction.

To prove that XRF is ℓ1-saturated, we need to introduce some notation. For 1 ≤ l ≤ 2n

we define the formula ∥ · ∥n,l on RN by

∥x∥n,l = max

{∑
i∈F

|x(i)| : F ⊆ In and |F | ≤ |In|
l

}
.

Of course, ∥ · ∥n,l is a norm on {x ∈ RN : supp(x) ⊆ In} ≃ RIn . For example,
∥x∥F =

∑∞
n=1 ∥x∥n,n and

∥x∥RF = sup

{ ∞∑
k=1

∥x∥nk,k : (nk) ∈ NN is strictly increasing
}
.

We prove an easy observation basically saying that the sequence ∥x∥n,l does not de-
crease too fast in l under a certain condition.

Lemma 2.5.2. If x ∈ RN, 1 ≤ l ≤ l′, and (l′ + 1)2 ≤ 2n, then

∥x∥n,l′ ≥
l

l′ + 1
∥x∥n,l. (2.7)

Proof. It is easy to see that if 1 ≤ K ′ ≤ K, v ∈ RK , and v(1) ≥ v(2) ≥ · · · ≥ v(K) ≥
0, then (v(1) + · · ·+ v(K ′))/(v(1) + · · ·+ v(K)) ≥ K ′/K. It follows that

∥x∥n,l′
∥x∥n,l

≥⌊2n/l′⌋
⌊2n/l⌋

≥ 2n/l′ − 1

2n/l
=
l

l′
− l

2n

≥ l

l′
− l

(l′ + 1)2
>
l · l′ · (l′ + 1)

l′ · (l′ + 1)2
=

l

l′ + 1
.

Theorem 2.5.3. The space XRF is ℓ1-saturated.
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Proof. Applying the Selection Principle (see e.g. [27, Theorem 4.26]), it is enough to
find copies of ℓ1 in subspaces of the form [(xm)] where (xm) is a normalized block basic
sequence. We can assume that the sets Dm = {n : supp(xm)∩ In ̸= ∅} are consecutive
and fix

{
nm1 < nm2 < · · · < nmlm

}
⊆ Dm such that 1 = ∥xm∥RF =

lm∑
k=1

∥xm∥nmk ,k.

The proof is based on the following technical statement:
Claim. Let s ∈ N. Then there is a y ∈ [(xm)] such that the following holds:

(a) supp(y) ⊆ N \
⋃s
n=1 In is finite and ∥y∥RF = 1.

(b) If z ∈ c00, supp(z) ⊆
⋃s
n=1 In, and β ∈ R, then

∥z + βy∥RF ≥ ∥z∥RF + |β|/2.

Let us first show that this implies the theorem. We can construct inductively a normal-
ized block basic sequence yk ∈ [(xm)] the following way: Let y1 = x1 and in general,
let yk+1 be y from the claim above to an s satisfying supp(yk) ⊆

⋃s
n=1 In. To finish

the argument, we show that (yk) is equivalent to the standard basis of ℓ1. If K ∈ N and
θ ∈ RK then∥∥∥∥ K∑

k=1

θ(k)yk

∥∥∥∥
RF

≥
∥∥∥∥K−1∑
k=1

θ(k)yk

∥∥∥∥
RF

+
|θ(K)|

2

≥
∥∥∥∥K−2∑
k=1

θ(k)yk

∥∥∥∥
RF

+
|θ(K − 1)|

2
+

|θ(K)|
2

≥ . . .

≥ |θ(1)|+ |θ(2)|
2

+ · · ·++
|β(K)|

2
≥ 1

2

K∑
k=1

|θ(k)|.

Regarding the claim, we distinguish two cases.
Case 1. max{∥xm∥nmi ,1 : i = 1, . . . , lm}

m→∞−−−→ 0.
We show that y = xm is as required if m is large enough. Take an arbitrary m ∈ N such
that s ≤ min(Dm)−4. Then s ≤ nm1 −4 and hence s+i+1 ≤ nm1 +(i−1)−2 ≤ nmi −2
for every i ∈ [1, lm]. It follows that (s+ i+ 1)2 ≤ 2n

m
i −1 for every such i. The point is

that, assuming s ≤ min(Dm)− 4 and 1 ≤ i ≤ lm,

(i) ∥xm∥nmi ,s+i is defined, and

(ii) Lemma 2.5.2 applies with x = xm, l = i, l′ = s+ i, and n = nmi .
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By the definition of ∥ · ∥RF, we know that

∥z + βxm∥RF ≥ ∥z∥RF + |β|
lm∑
i=1

∥xm∥nmi ,s+i.

Therefore, given any r ∈ [1, lm),

∥z + βxm∥RF − ∥z∥RF − ∥βxm∥RF ≥ |β|
( lm∑

i=1

∥xm∥nmi ,s+i −
lm∑
i=1

∥xm∥nmi ,i
)

≥ |β|
( lm∑
i=r+1

∥xm∥nmi ,s+i −
lm∑
i=1

∥xm∥nmi ,i
)
. (2.8)

Now, we need to specify m a little further. Fix first r, then m from N such that

(r) r/(s+ r + 1) ≥ 3/4;

(m) s ≤ min(Dm)− 4 and ∥xm∥nmi ,1 ≤ 1/4r for every i ∈ [1, lm].

Applying Lemma 2.5.2 as in (ii) above, for every i ∈ (r, lm] we have

∥xm∥nmi ,s+i ≥
i

s+ i+ 1
∥xm∥nmi ,i ≥

r

s+ r + 1
∥xm∥nmi ,i ≥

3

4
∥xm∥nmi ,i,

and hence the last difference of sums in (1) can be estimated as follows:

lm∑
i=r+1

∥xm∥nmi ,s+i −
lm∑
i=1

∥xm∥nmi ,i ≥ −1

4

lm∑
i=r+1

∥xm∥nmi ,i −
r∑
i=1

∥xm∥nmi ,i

≥ −1

4
∥xm∥RF − r∥xm∥nmi ,1 ≥ −1

4
− r

1

4r
= −1

2
. (2.9)

Combining (2.8) and (2.9), ∥z + βxm∥RF − ∥z∥RF − |β| ≥ −|β|/2, hence y = xm is
as desired.
Case 2. There are a δ > 0, an S ∈ [N]∞, and for every m ∈ S an im ∈ [1, lm] such that
∥xm∥nmim ,1 ≥ δ.
Fix J ∈ N andE = {m1 < m2 < · · · < mJ} ⊆ S \{1, 2, 3}. Then, with nj = n

mj
imj

, we
know that 1 ≤ m1−3 ≤ nm1

1 −3 ≤ n1−3, it follows that j+1 ≤ n1+(j−1)−2 ≤ nj−2,
and hence (j + 1)2 ≤ 2nj−1 and we can apply (⋆) with l = 1, l′ = j, and n = nj:∥∥∥∥ ∑

m∈E

xm

∥∥∥∥
RF

≥
J∑
j=1

∥xmj∥nj ,j ≥
J∑
j=1

∥xmj∥nj ,1
j + 1

≥
J∑
j=1

δ

j + 1
.
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Therefore, we can pick finite subsets E1 < E2 < . . . of S such that ∥
∑

m∈Ek xm∥RF ≥
k for every k and define

x̃k =

∑
m∈Ek xm

∥
∑

m∈Ek xm∥RF

∈ [(xm)],

a normalized block basic sequence. Instead of working with (xm), we switch to (x̃k) and
define everything as above, D̃k = {n : supp(x̃k) ∩ In ̸= ∅}, {ñki : i = 1, . . . , l̃k} ⊆ D̃k

such that 1 = ∥x̃k∥RF =
∑l̃k

i=1 ∥x̃k∥ñki ,i, etc. Then

max
{
∥x̃k∥ñki ,1 : i ∈ [1, l̃k]

}
≤

max
{
∥xm∥ñki ,1 : m ∈ Ek, i ∈ [1, l̃k]

}
k

≤ 1

k
,

therefore, we can apply Case 1 to find the desired y ∈ [(x̃k)] ⊆ [(xm)].

Remark 2.5.4. In fact, we obtained an even simpler example of an ℓ1-saturated space

without the Schur property. Consider X = [(xn)] ⊆ XRF where xn =
1

2n
χIn . Then

(xn) witnesses the failure of the Schur property, and, by the last theorem, X is ℓ1-
saturated. Considering X ⊆ RN along the 1-unconditional basis (xn), the norm is of the
following very simple form:

∥a∥ = sup

{ ∞∑
k=1

|a(nk)|
k

: (nk) ∈ NN is strictly increasing
}
.

In other words, X is the completion of c00 with respect to ∥ · ∥. Alternatively, ∥ · ∥ is an
extended norm on RN and a ∈ X if and only if ∥a∥ <∞, if and only if ∥PN\n(a)∥ → 0,
because XRF does not contain copies of c0, hence nor does X , therefore its basis is
boundedly complete.
The space X is a special case of the so-called Garling sequence space. The Garling
norm ∥ · ∥w,p, where w is a decreasing sequence of positive numbers and 1 ≤ p <∞, is
defined by the formula

∥x∥w,p = sup
ϕ∈O

( ∑
n∈N+

|x(ϕ(n))|pw(n)
) 1

p

,

where O is the set of all increasing sequences of natural numbers. The Garling space
g(w, p) is defined as

g(w, p) = {x ∈ RN : ∥x∥w,p <∞}.

Hence, X = g(h, 1), where h(n) = 1
n

for n ≥ 1.
For further details on Garling spaces, we refer the reader to [1].
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2.5.3 Combinatorial spaces with prerequisite subspaces
Examples presented in the Subsection 2.3 witness that combinatorial spaces can contain
any Banach space with an unconditional basis. However, it is rather difficult to track
down and really see e.g., a copy of ℓ2 in these examples. We will show that for every
Banach space Y with an unconditional basis, there is a natural family F such that a
complemented block basic sequence in XF is equivalent to the basis of Y . The point
is that we may encode a given “geometric” structure in the definition of F . The idea is
due to A. Pelczar-Barwacz and it is presented in the paper [18].

The family from this example is defined on the set Ω = N \ {0, 1}. Fix a Banach space
Y with normalized 1-unconditional basis (bn)n≥2. We consider Y ⊆ RΩ along this
basis (that is, y =

∑∞
n=2 y(n)bn), also, we consider Y ∗ ⊆ RΩ along (b∗n). As (bn) is

1-unconditional, if σ ∈ Y ∗ then ∥σ∥Y ∗ ≤
∑∞

n=2 |σ(n)|. Define

F(Y ) =

{
F ∈ [Ω]<∞ :

(
|F ∩ In|
|In|

)
∈ BY ∗

}
(2.10)

and notice that it is a hereditary cover of Ω.

Theorem 2.5.5. With Y and F = F(Y ) as above, the sequence xn = 1
|In|χIn is a

complemented normalized block basic sequence in XF that is equivalent to (bn).

Proof. If y ∈ c00(Ω), then∥∥∥∥ ∞∑
n=2

y(n)xn

∥∥∥∥
F
= sup

{ ∞∑
n=2

|F ∩ In|
|y(n)|
|In|

: F ∈ F
}

= sup

{∣∣∣∣〈(εn |F ∩ In|
|In|

)
, y

〉∣∣∣∣ : εn = ±1 and F ∈ F
}

≤ sup
{
|⟨σ, y⟩| : σ ∈ BY ∗

}
= ∥y∥Y .

Conversely, given σ ∈ BY ∗ , for each n ≥ 2 we can fix an Fn ⊆ In such that

|Fn|
|In|

≤ |σ(n)| < |Fn|+ 1

|In|
.

Then Aσ =
⋃∞
n=2 Fn ∈ F and∥∥∥∥σ −

(
sgn(σ(n))

|Aσ ∩ In|
|In|

)∥∥∥∥
Y ∗

≤
∞∑
n=2

∣∣∣∣σ(n)− sgn(σ(n))
|Fn|
|In|

∣∣∣∣ < ∞∑
n=2

1

|In|
=

1

2
.
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Therefore, if y ∈ c00(Ω), then

∥y∥Y = sup
{
|⟨σ, y⟩| : σ ∈ B(Y ∗)

}
≤ sup

{∣∣∣∣〈(εn |F ∩ In|
|In|

)
, y

〉∣∣∣∣+ ∥y∥Y
2

: εn = ±1 and F ∈ F
}

=

∥∥∥∥ ∞∑
n=2

y(n)xn

∥∥∥∥
F
+

∥y∥Y
2

,

and hence ∥y∥Y ≤ 2∥
∑∞

n=2 y(n)xn∥F .
To show that [(xn)] is complemented in XF , define T : RΩ → RΩ as follows: For
x ∈ RΩ and k ∈ In let

T (x)(k) =
∑
i∈In

x(i)

2n
.

In other words, T (x) on In replaces the values of x with its arithmetic mean over In.
Clearly, T is linear, T ↾[(xn)] is the identity, and T 2 = T . It remains to show that
T [XF ] ⊆ XF (i.e. T [XF ] ⊆ [(xn)]) and that T is continuous.
Given x ∈ XF and F ∈ F , let E ⊆ Ω be such that

(a) |E ∩ In| = |F ∩ In| for every n (hence E ∈ F), and

(b)
∑

k∈E |x(k)| is maximal with respect to (a).

It follows that
∑

k∈F |T (x)(k)| ≤
∑

k∈E |x(k)| ≤ ∥x∥F holds for every F ∈ F , hence
∥T (x)∥F ≤ ∥x∥F . Applying this inequality, if x ∈ XF and n ≥ 2 then

∥P[2n,∞)(T (x))∥F = ∥T (P[2n,∞)(x))∥F ≤ ∥P[2n,∞)(x)∥F ,

therefore, T (x) ∈ XF , and so T : XF → XF is bounded.

Example 2.5.6. Let Y = ℓ2 and let F be the associated family above. Then XF con-
tains an isomorphic copy of ℓ2 and thus it is not ℓ1-saturated. However, we will show
that it also does not contain an isomorphic copy of c0. Hence, this example provides an
asymmetry - being c0-saturated and having no copy of ℓ1 is equivalent in the realm of
combinatorial spaces, but if we replace c0 and ℓ1, then the statement is not true anymore.

We know that a normalized basic sequence (xn) in a Banach space X is equivalent to
the usual basis of c0 if and only if

∃K > 0 ∀n ∀ a ∈ Rn

∥∥∥∥ n∑
i=1

a(i)xi

∥∥∥∥ ≤ K max
i=1,...,n

|a(i)|.

If X has an unconditional basis (bn) and X contains a copy of c0, then, assuming (bn)
is normalized, there is a normalized block basic (nbb) sequence (xn) with respect to
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(bn) which is equivalent to the canonical basis of c0 (see [2, Theorem 3.3.2]). Since nbb
sequences in such a space is unconditional, it follows that such a sequence is equivalent
to the basis of c0 if and only if

∃K > 0 ∀n
∥∥∥∥ n∑
i=1

xi

∥∥∥∥ ≤ K. (2.11)

If X = XF , bn = en, and, for a normalized block basic sequence (xn), s((xn)) stands
for

∑∞
n=1 xn, then (2.11) is equivalent to ∥s((xn))∥F < ∞. Furthermore, in this case,

we can always assume that such a normalized block basic sequence is F-supported,
that is, supp(xn) ∈ F for every n, because if ∥PFn(xn)∥F = 1 with some Fn ∈ F
and yn = PFn(xn), then (yn) is an F-supported normalized block basic sequence and
∥s((yn))∥F ≤ ∥s((xn))∥F .
Of course, there are other natural ways to express ∥s((xn))∥F :

∥s((xn))∥F = sup
H∈H

∥PH(s((xn)))∥F = sup
H∈H

∞∑
n=1

∥PH(xn)∥F

where F ⊆ H ⊆ F and, in this case, ∥PH(x)∥F = ∥PH(x)∥1 for every x ∈ RN.
Reformulating the above, XF does not contain a copy of c0 if and only if the following
holds:

∀F-supported nbb sequence (xn) in XF sup
A∈F

∞∑
n=1

∥PA(xn)∥F = ∞. (2.12)

Hence, to show that XF does not have a copy of c0, we use the condition 2.12. The
main idea of the proof and the above remarks are due to B. Farkas, and they come from
the joint work [18].

Let (xn) be an F-supported normalized block basic sequence in XF , supp(xn) = Fn ∈
F ; by thinning our sequence, we can assume that the sets Dn = {k ≥ 2 : Fn ∩ Ik ̸= ∅}
are consecutive and

∞∑
n=1

16

2min(Dn)
<

1

4
. (2.13)

For k ∈ Dn, let Fn,k = Fn ∩ Ik and pick an En,k ⊆ Fn,k such that

|En,k| =
⌈
|Fn,k|
2n

⌉
and ∥PEn,k(xn)∥F ≥

∥PFn,k(xn)∥F
2n

. (2.14)

We show that

A =
∞⋃
n=1

⋃
k∈Dn

En,k ∈ F
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and that
∑∞

n=1 ∥PA(xn)∥F = ∞ (hence (2.12) holds).
We have

∞∑
k=3

|A ∩ Ik|2

|Ik|2
=

∞∑
n=1

∑
k∈Dn

|En,k|2

|Ik|2
≤

∞∑
n=1

∑
k∈Dn

(
|Fn,k|
2n

+ 1

)2
1

|Ik|2

=
∞∑
n=1

(
1

(2n)2

∑
k∈Dn

|Fn,k|2

|Ik|2
+

1

n

∑
k∈Dn

|Fn,k|
|Ik|2

+
∑
k∈Dn

1

|Ik|2

)
where we know the following:

∑
k∈Dn

|Fn,k|2

|Ik|2
=

∞∑
k=3

|Fn ∩ Ik|2

|Ik|2
≤ 1 because Fn ∈ F . (1)

1

n

∑
k∈Dn

|Fn,k|
|Ik|2

≤ 1

n

∑
k∈Dn

1

2k−1
≤ 1

n

∞∑
k=min(Dn)

1

2k−1
=

4

n · 2min(Dn)
<

16

2min(Dn)
. (2)

∑
k∈Dn

1

|Ik|2
≤

∞∑
k=min(Dn)

1

22k−2
=

16

3 · 22min(Dn)
<

16

2min(Dn)
. (3)

Now, substituting (1), (2), and (3) in the estimation above and applying (2.13):

∞∑
k=3

|A ∩ Ik|2

|Ik|2
<

∞∑
n=1

(
1

(2n)2
+

16

2min(Dn)
+

16

2min(Dn)

)
<
π2

24
+

1

4
+

1

4
< 1.

Thus A ∈ F . The second statement follows easily from (2.14):

∞∑
n=1

∥PA(xn)∥F =
∞∑
n=1

∑
k∈Dn

∥PEn,k(xn)∥F ≥
∞∑
n=1

∑
k∈Dn

∥PFn,k(xn)∥F
2n

=
∞∑
n=1

∥PFn(xn)∥F
2n

=
∞∑
n=1

1

2n
= ∞.

2.6 Universal spaces
We will finish this chapter with a construction which will provide another classical Ba-
nach space of the form XF .

Let A be a family of Banach spaces. We say that a Banach space Z is (complementably)
universal for the class A if for every X ∈ A there exists a (complemented) subspace of
Z that is isomorphic to X . The classical example is C([0, 1]) being a universal Banach
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space for the class of all separable Banach spaces. On the other hand, W. Szlenk in
his paper [51] proved that there is no separable reflexive space that is universal for all
separable reflexive Banach spaces.
A. Pełczyński in [46] constructed a Banach space U , called Pełczyński’s space, that is
complementably universal for the class of Banach spaces with unconditional basis. We
will show that there is a combinatorial Banach space XP having this same property, and
so being isomorphic to Pełczyński’s space. An appropriate family P will be obtained
as a result of Fraïssé type construction. This result is part of the joint work [18], but the
proof presented here is slightly different.

Let K be a countable (up to isomorphism) class of finite structures. We say that K is a
Fraïssé class if it

• is hereditary, that is for any A ∈ K, if B is a substructure of A, then B ∈ K,

• has joint embedding property, i.e. any A,B ∈ K can be embedded in some
C ∈ K.

• has amalgamation property, i.e. for anyA,B,C ∈ K and embeddings f : A→ B
and g : A→ C, there are D ∈ K and embeddings F : B → D, G : C → D such
that F ◦ f = G ◦ g.

A classical Fraïssé’s theorem says that there exists a unique (up to isomorphism) count-
able structure K containing structures from K, and being homogeneous, which means
that any isomorphism φ : A → B for A,B ∈ K can be extended to an automorphism
Φ : K → K. It is called the Fraïssé limit of K.
One can also see that homogeneity of Fraïssé limit implies so-called extension property,
meaning that for any finite A ⊆ K, any B ∈ K such that A is a substructure of B, and
any embedding φ : A→ K, there exists an embedding φ̃ : B → K that extends φ.
To prove this, consider B ∈ K. Then there is an embedding j : B → K. Now, fix an
embedding φ : A → K. Then φ : A → φ[A] and j|A : A → j[A] are isomorphisms
between finite substructures of K. Hence, the isomorphism ψ = φ ◦ (j|A)−1 : j[A] →
φ[A] extends to an automorphism Ψ on K. Then φ̃ = Ψ ◦ j : B → K is an embedding
and for every a ∈ A

φ̃(a) = Ψ(j(a)) = ψ(j(a)) = φ(a).

Proposition 2.6.1. The class F of all finite families of finite sets is a Fraïssé class.

Proof. Clearly, F is hereditary and, up to isomorphism, countable. If F ,G ∈ F, then
both can be embedded into F ∪ G ∈ F. To prove that F has amalgamation property,
consider F0,F1,G ∈ F and embeddings fi : G → Fi for i ∈ {0, 1}. Since fi are
injective, consider bijection ψ : f1[G] → f0[G] given by ψ(f1(G)) = f0(G) for G ∈ G.
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In such a way, we identify an image of G under f0 with an image under f1. Consider
family U = F0 ∪ F1 and maps Fi : Fi → U given by F0(C) = C and

F1(C) =

{
ψ(C), if C ∈ f1[G]
C, otherwise.

It is easy to see that Fi are embeddings and we have

(F0 ◦ f0)(G) = f0(G),

and
(F1 ◦ f1)(G) = F1(f1(G)) = ψ(f1(G)) = f0(G).

Let H denote the Fraïssé limit of F and let P be its hereditary closure. One can easily
deduce that P is a unique (up to isomorphism) homogeneous family containing all finite
hereditary families of finite sets. However, an even stronger condition is satisfied.

Proposition 2.6.2. Every infinite hereditary family F of finite sets embedds in P , i.e.
there is M ⊆ N and a bijection b : (N,F) → (M,P) such that F ∈ F ⇔ b[F ] ∈ P .
Then we say that P is universal.

Proof. Fix an infinite hereditary family F . We construct an embedding of F into P by
finite-stage extension.
For every n ∈ N, let Fn denotes a restriction of F to the initial segment [0, n), that is

Fn = {A ∈ F : A ⊆ n}.

Note that for every n, Fn is hereditary. Let b0 : ({0},F0) → (M,P) be any embedding
and suppose we have defined embeddings bn : ([0, n),Fn) → (M,P). Then, using
extension property of Fraïssé limit, we define bn+1 : ([0, n + 1),Fn+1) → (M,P)
as an extension of bn. Then the final embedding of F → P is given by a bijection
b =

⋃
n∈N bn.

What follows is that for every hereditary family F , its combinatorial Banach space XF
is isomorphic to the complemented subspace of XP .

Theorem 2.6.3. Let P be the hereditary closure of the Fraïssé limit of the class of
all finite families of finite sets. Then XP is complementably universal for the class
of all Banach spaces with unconditional basis. Consequently, XP is isomorphic to
Pełczyński’s space U .
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Proof. Let Y be a Banach space with an unconditional basis. Theorem 2.5.5 gives us
a family F such that XF contains a complemented copy of Y . The space XP contains
a complemented copy of XF , and hence of Y as well. By [46, Corollary 4] XP is
isomorphic to Pełczyński’s universal space U .

Remark 2.6.4. The above example provides a solution for one of Pełczyński’s ques-
tions, [46, Problem 4], which seems to be still open. The canonical basis (en) of XP ,
where P is as in Theorem 2.6.3, is not permutatively equivalent to Pełczyński’s univer-
sal unconditional basis (un) of his universal space (see [46, Problem 4]), i.e. there is
no permutation π such that (eπ(n)) is equivalent to (un). Indeed, contrary to the case of
(un), the basis of our space is not universal. E.g., no subsequence of (en) is equivalent
to the canonical basis of ℓ2. To see this, let H ⊆ N be infinite and denote by PH the
restriction of P to H , i.e.

PH = {A ∈ P : A ⊆ H}.

Then, either XPH = [(en)n∈H ] contains a copy of ℓ1 or XPH is c0-saturated.
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Chapter 3

On the dual to combinatorial Banach
spaces

The main motivation of this chapter is an attempt to study Banach spaces dual to com-
binatorial Banach spaces. Even in the case of the Schreier space, not much seems to be
known about its dual. Perhaps the reason lies in the lack of a nice description of the dual
norm. Here we present the candidate for such a description.

3.1 Introduction
For a family F ⊆ [N]<∞ we denote by PF the family of all such partitions of P of N
that P ⊆ F . For x ∈ c00 consider the following function

∥x∥F = inf
P∈PF

∑
F∈P

sup
i∈F

|x(i)|. (3.1)

Perhaps this formula does not look tempting at first glance, but in a ’combinatorial’
sense it is dual to ∥·∥F . Indeed, we can think about evaluating ∥x∥F as partitioning N
into pieces from F , summing up |x(i)| for i from one piece of the partition and then
maximizing the result, for all partitions and all pieces. On the other hand, evaluating
∥x∥F comes down to partitioning N into pieces from F , taking a maximum of |x(i)| for
i from one piece of the partition, summing up those maxima, and then minimizing the
result for all possible partitions.

If P is a partition of N, then for x ∈ c00 by ∥x∥P we will denote ∥x∥F , where F is a
hereditary closure of P . Note that in this case

∥x∥P =
∑
P∈P

sup
k∈P

|x(k)|.

42
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So, for a family P ⊆ [N]<∞ we have

∥x∥F = inf
P∈PF

∥x∥P .

Note that in general, (3.1) does not define a norm.

Example 3.1.1. Let S be the Schreier family. Consider the finitely supported sequences
x = (0, 1, 1, 0, 0, 0, ...), y = (0, 0, 1, 1, 1, 0, 0, 0, ...). We can easily check that ∥x∥S =
∥y∥S = 1, but ∥x+ y∥S = 3, so the triangle inequality is not satisfied.

The lack of triangle inequality is not something welcomed in the theory of Banach
spaces. However, there are still good reasons to study ∥·∥F . It turns out that it is a
quasi-norm, at least if F is a compact family of finite sets. Moreover, it is a nice quasi-
norm (in the sense of definition 1.3.12).

Instead of showing that ∥·∥F is a quasi-norm and then showing that it is nice, we will
do the opposite: first, we will check that ∥·∥F satisfies all the conditions of definition
1.3.12. The reason is that lower semicontinuity will allow us to focus on finitely sup-
ported sequences.
It is easy to check that if F is a family covering N, then ∥·∥F is monotone and non-
degenerated (in the sense of Definition 1.3.12). However, it is not necessarily lower
semicontinuous. Consider e.g. the family F of all finite subsets of N and x defined by
x(k) = 1 for each k. Then ∥Pn(x)∥F = 1 for each n but ∥x∥F = ∞. We will show that
if we additionally assume that F is compact, then ∥·∥F is lower semicontinuous and so
it is nice.

Theorem 3.1.2. If F ⊆ P(N) is compact, hereditary and covering N, then ∥·∥F is a
nice quasi-norm.

Before we start the proof, we recall some definitions and facts about the Vietoris topol-
ogy.
Fix a compact F ⊆ P(N). Every partition can be considered as a subset of 2N and thus
we can treat the set PF as a subset of the power set of 2N. We can endow this set with
the Vietoris topology.

Definition 3.1.3. LetX be a compact topological space. By K(X), let denote the family
of all closed subsets ofX . The Vietoris topology is the one generated by sets of the form〈

U1, U2, ..., Un
〉
= {K ∈ K(X) : K ⊆

⋃
i≤n

Ui ∧ ∀i ≤ n K ∩ Ui ̸= ∅}, (3.2)

where Ui are open subsets of X .
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Note that if X is a compact space, then K(X) endowed with the Vietoris topology is
compact as well. Also, K(X) is metrizable (by the Hausdorff metric).
In our case, the role of X is played by F . According to the above, we would like to
consider PF as a subspace of K(F). Notice that according to our definition of partition,
it contains ∅ and so it is a closed subset of F (in fact, it forms a sequence converging to
∅).

Lemma 3.1.4. PF is closed in K(F). Consequently, PF is a compact subspace of K(F).

Proof. Let G ∈ PF . We need to prove that G is a partition, i.e.

(i) ∅ ∈ G,

(ii)
⋃

G = N,

(iii) All elements of G are pairwise disjoint.

Of those (i) is straightforward.
Suppose now that there exists n ∈ N such that n /∈

⋃
G. Put U = {x ∈ 2N : x(n) = 0}.

The set U is an open subset of 2N. Take the basic (in Vietoris topology) set KU =
{K ∈ K(F) : K ⊆ U}, being an open neighborhood of G. Then KU ∩PF = ∅. Indeed,
otherwise, there would be a partition P such that P ⊆ U , which is impossible, because
there is A ∈ P such that n ∈ A. The set KU , therefore, testifies that G /∈ PF , which is a
contradiction. It proves (ii).

To prove (iii), suppose that there are A,B ∈ G such that A∩B ̸= ∅ and A \B ̸= ∅. Let
n ∈ A ∩B and m ∈ A \B. Consider the following open subsets in 2N

U1 = {x ∈ 2N : x(n) = 1 ∧ x(m) = 1},
U2 = {x ∈ 2N : x(n) = 1 ∧ x(m) = 0},

U3 = 2N,

and the basic set
〈
U1, U2, U3

〉
. Then G ∩U1 ̸= ∅, because A ∈ U1 and G ∩U2 ̸= ∅, since

B ∈ U2. So the set
〈
U1, U2, U3

〉
is an open neighborhood of G. If PF ∩

〈
U1, U2, U3

〉
̸=

∅, then there is a partition P and sets K,L ∈ P such that n,m ∈ K, n ∈ L, and
m /∈ L. But it is impossible, since elements of P are pairwise disjoint. It implies that
PF ∩

〈
U1, U2, U3

〉
= ∅, which is a contradiction.

Proof of Theorem 3.1.2. As we have mentioned, it is enough to show lower semiconti-
nuity. Fix x ∈ RN.
Assume that ∥x∥F = D (possibly D = ∞). Then for every partition P we have
∥x∥P ≥ D. For each n ∈ N put xn = Pn(x). Suppose that there existsM < D such that
∥xn∥F < M for each n. Then for every n there is a partition Pn such that ∥xn∥Pn < M .
By compactness, we may assume (passing to a subsequence if needed) that (Pn)n∈N
converges (in the Vietoris topology) to a partition P . Since ∥x∥P ≥ D, there is N ∈ N
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such that ∥xN∥P ≥ D. There are only finitely many elementsR1, R2, ..., Rj of P having
non-empty intersection with {1, 2, ..., N}. For k ≤ j put

Uk = {x ∈ 2N : ∀i ∈ Rk ∩ [1, . . . , N ] x(i) = 1}

and consider the basic open set
〈
U1, U2, ..., Uj, Uj+1

〉
, where Uj+1 = 2N. Then

P ∈
〈
U1, U2, ..., Uj, Uj+1

〉
.

Indeed, trivially P ∩ Uj+1 = P and for k ≤ j we have Rk ∈ P ∩ Uk ̸= ∅. Since Pn
converges to P , there is k > N such that Pk ∈

〈
U1, U2, ..., Uj, Uj+1

〉
. It means that

{P ∩ {1, . . . , N} : P ∈ Pk} = {P ∩ {1, . . . , N} : P ∈ P}.

So,
∥xk∥Pk ≥ ∥xN∥Pk = ∥xN∥P > M,

a contradiction.

Now we can prove that ∥·∥F is indeed a quasi-norm.

Theorem 3.1.5. Let F be a compact hereditary family. Then for every x, y ∈ RN

(a) if x, y have disjoint supports, then ∥x+ y∥F ≤ ∥x∥F + ∥y∥F ,

(b) ∥x+ y∥F ≤ 2(∥x∥F + ∥y∥F), and so ∥·∥F is a quasi-norm.

Proof. Of the above (a) is clear. We will check (b).
Let x, y ∈ RN. By lower semicontinuity of ∥·∥F it is enough to consider the case when
x and y are finitely supported. Moreover, we will assume that x(k), y(k) ≥ 0 for every
k (since ∥x + y∥ ≤ ∥|x| + |y|∥ and ∥x∥ = ∥|x|∥ for each x, y ∈ XF ) (by |x| we mean
a sequence defined by |x|(k) = |x(k)| for each k ∈ N).
Now, let P , Q ⊆ F be partitions witnessing ∥x∥F and ∥y∥F respectively (here we
take partitions of the supports of x and y). Enumerate P = {P1, P2, . . . , Pk} and Q =
{Q1, Q2, . . . , Ql}. Let ai = max{x(j) : j ∈ Pi} for i ≤ k, and bi = max{y(j) : j ∈
Qi} for i ≤ l. Re-enumerating P and Q, if needed, we may assume that (ai) and (bi)
are non-increasing.
Now we will define a partition R of supp(x+y), intertwining P and Q in the following
way:

R2n+1 = Pn \
⋃
i≤2n

Ri for 0 ≤ n ≤ k, and R2n = Qn \
⋃
i<2n

Ri for 1 ≤ n ≤ l.

Then max{x(i) + y(i) : i ∈ R1} ≤ a1 + b1, max{x(i) + y(i) : i ∈ R2} ≤ a2 + b1 and
so on. Therefore, the partition R witnesses that

∥x+ y∥F ≤ (a1 + b1) + (b1 + a2) + (a2 + b2) + (b2 + a3) + · · · ≤
≤ a1 + 2(a2 + · · ·+ ak) + 2(b1 + · · ·+ bl) ≤ 2(∥x∥F + ∥y∥F). (3.3)
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Hence, for a compact family F , we denote by XF the completion of c00 with respect
to the quasi-norm ∥·∥F . Moreover, analogously to combinatorial spaces, FIN(∥·∥F) is
denoted by ZF .

Theorem 3.1.6. If F is a compact, hereditary family and F covers N, then ZF and XF

are quasi-Banach spaces.

Proof. We prove it by mimicking the proof from [17].

That ∥·∥F is a nice quasi-norm follows directly from Theorem 3.1.5 and from Theorem
3.1.2.
We are going to show that ZF is complete and then that XF is its closed subspace.
For simplicity denote φ = ∥·∥F . We use in this proof the symbol FIN(φ) for ZF and
EXH(φ) for XF .

First, we will prove that FIN(φ) is complete. Let (xn) be a Cauchy sequence in FIN(φ).
Applying monotonicity, φ(P{k}(xn − xm)) ≤ φ(xn − xm) for every k, n,m, and hence
(P{k}(xn))k∈N is a Cauchy sequence in the kth 1-dimensional coordinate space of RN

(which is a quasi-Banach space, as φ is finite on c00), P{k}(xn)
n→∞−−−→ yk for some yk.

Put y = (yk). We will first show that y ∈ FIN(φ). The sequence {xn : n ∈ N} is
bounded, let say φ(xn) ≤ B for every n. We show that φ(y) ≤ 4B, i.e. (by the lower
semicontinuity of φ) φ(PM(y)) ≤ 4B for every M ∈ N. Fix an M > 0. If n is large

enough, say n ≥ n0, then φ(P{k}(y − xn)) ≤
B

M
for every k < M and hence

φ(PM(y)) ≤ 2(φ(PM(y−xn))+φ(PM(xn))) ≤ 2(
∑
k<M

φ(P{k}(y−xn))+φ(xn)) ≤ 4B.

The first inequality follows from Theorem 3.1.5(c) and the second from Theorem 3.1.5(a).
Now we will prove that xn → y. If not, then there are ε > 0 and n0 < n1 < · · · < nj <
. . . such that φ(xnj − y) > ε, that is, φ(PMj

(xnj − y)) > ε for some Mj ∈ N \ {0} for

every j. Pick j0 such that φ(xnj0 − xn) <
ε

2
for every n ≥ nj0 and then pick j1 > j0

such that φ(P{k}(xnj1 − y)) ≤ ε

2Mj0

for every k < Mj0 . Then, using Theorem 3.1.5(a)

ε < φ(PMj0
(xnj0 − y)) ≤ φ(PMj0

(xnj0 − xnj1 )) +
∑
k<Mj0

φ(P{k}(xnj1 − y)) < ε,

a contradiction.
Now we will show that EXH(φ) = c00. The space c00 is dense in EXH(φ) because
φ(x − Pn(x)) = φ(PN\n(x))

n→∞−−−→ 0 for every x ∈ EXH(φ). We have to show
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that EXH(φ) is closed. Let x ∈ FIN(φ) be an accumulation point of EXH(φ). For
any ε > 0 we can find y ∈ EXH(φ) such that φ(x − y) < ε, and then n0 such that
φ(PN\n(y)) < ε for every n ≥ n0. If n ≥ n0 then φ(PN\n(x)) ≤ 2(φ(PN\n(x − y)) +
φ(PN\n(y))) < 4ε.

The main corollary of this section is the following reformulation of (a part of) Theorem
3.1.6:

Theorem 3.1.7. If F is compact, hereditary and covering N, thenXF is a quasi-Banach
space.

The following is a simple consequence of (a) of Theorem 3.1.5.

Corollary 3.1.8. If a family F is a hereditary closure of a partition P , then the formula
(3.1) defines a norm.

As we already know, in general, the formula (3.1) does not need to define a norm, but
we can consider the Banach envelope of XF . Let F be a compact, hereditary family.
Let

~x~F = inf

{ n∑
i=1

∥xi∥F : n ∈ N, x1, ..., xn ∈ X, x =
n∑
i=1

xi

}
. (3.4)

Since ∥·∥F is a quasi-norm, this formula defines a norm. The space X̂F = EXH(~ ·~F)
is caled the Banach envelope of XF (see [37]).

Remark 3.1.9. Clearly, for every compact, hereditary family F and for x ∈ c00 we have

~x~F ≤ ∥x∥F .

If there is C > 0 such that for each sequence (xi) of vectors in c00∥∥∥ n∑
i=1

xi

∥∥∥F
≤ C

n∑
i=1

∥xi∥F , (3.5)

then
C ~x~F ≥ ∥x∥F .

Property (3.5) is called 1-convexity and it is equivalent to the normability of a quasi-
Banach space (by ~·~F ). In the next section, we will show that in general ∥·∥F does not
have to be 1-convex.
Also, we will prove that the Banach space induced by ~·~F is isomorphic to X∗

F .

The following theorem shows that the quasi-Banach spaces XF and ZF are identical.
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Proposition 3.1.10. If F ⊆ [N]<N is a compact hereditary family covering N, then

XF = ZF

Proof. For each x ∈ RN and for fixed n we can write x = xn + x′n, where xn = Pn(x)
and x′n = PN\n(x). Thus if x ∈ XF then ∥x′n∥F → 0 and

∥x∥F ≤ 2(∥xn∥F + ∥x′n∥F) <∞,

because xn is finitely supported. It shows thatXF ⊆ ZF . On the other hand, if x ∈ ZF ,
then there is a partition G = {Gk : k ∈ N} ⊆ F such that

∑
k∈N

sup
j∈Gk

|x(j)| < ∞. It

implies that ∑
k≥n

sup
j∈Gk

|x(j)| n→∞−−−→ 0.

Let ε > 0 and fix m such that
∑
k≥m

sup
j∈Gk

|x(j)| < ε. Let n > max(
⋃
i<m

Gi). Then

∥x′n∥F ≤ ∥x′n∥G ≤
∑
k≥m

sup
j∈Gk

|x(j)| < ε.

It finishes the proof.

3.2 XF and the dual of XF

In this section, we will examine how close XF is to X∗
F , the space dual to XF .

In case F is simple enough (i.e., it is generated by a partition), it is not hard to see that
XF is isometrically isomorphic to X∗

F (Proposition 3.2.1). In general, this is not true.
However, X∗

F is always the Banach envelope of XF .
We start with the aforementioned result for spaces generated by partitions.

Proposition 3.2.1. Suppose P is a partition of N (into finite sets) and F is its hereditary
closure. Then X∗

F is isometrically isomorphic to XF .

Proof. Enumerate P = {F1, F2, . . . }. It is known that for F being generated by parti-
tion, XF is isometrically isomorphic to

⊕
c0
ℓ
|Fn|
1 and so its dual space is isometrically

isomorphic to
⊕

ℓ1
c
|Fn|
0 .

Let y ∈ XF . Then ∥y∥F =
∑
n∈N

max
k∈Fn

|y(k)|. Taking yn = PFn(y) for each n, we

can see yn as element of R|Fn|. Thus ∥y∥F =
∑
n∈N

∥yn∥∞, which gives us the norm on⊕
ℓ1
c
|Fn|
0 .
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Let F be a compact, hereditary family covering N. Define T : c00 → X∗
F , a linear

operator given by
T (y)(x) =

∑
k∈N

x(k)y(k) (3.6)

for x ∈ XF . It is plain to check that T is injective. Also, let T0 : c00(∥·∥F) → X∗
F and

T1 : c00(~ · ~F) → X∗
F denote the operators given by the same formula as T .

Proposition 3.2.2. T0 and T1 are continuous with the norm 1.

Proof. To prove that T0 is continuous, take finitely supported y and let P be such that
∥y∥F =

∑
F∈P

max
k∈F

|y(k)|. Then for every x ∈ XF with ∥x∥F ≤ 1 we have

∣∣∑
k∈N

x(k)y(k)
∣∣ = ∣∣∑

F∈P

∑
k∈F

x(k)y(k)
∣∣ ≤ ∑

F∈P

max
k∈F

|y(k)|
∑
k∈F

|x(k)| ≤ ∥y∥F .

Thus
∥T (y)∥∗F ≤ ∥y∥F , (3.7)

and so T0 is continuous.
To show that T1 is continuous, we use (3.7). Notice that for y =

∑
i≤n

yi we have

∥T (y)∥∗F ≤
∑
i≤n

∥T (yi)∥∗F ≤
∑
i≤n

∥yi∥F .

It implies that ∥T (y)∥∗F ≤ ~y~F , hence T1 is continuous.

Note that by above proposition, as X∗
F is complete, we can extend the operator T0 to a

continuous injective linear operator XF → X∗
F , denoted also by T0. The same holds

true for T1 and X̂F .

We now state the main theorem of this section.

Theorem 3.2.3. Let F ⊆ [N]<N be a compact, hereditary family covering N. Then X̂F

is isometrically isomorphic to X∗
F .

In the proof, we will use some general facts about the spaces of the form X∗
F and the

extreme points of the unit ball in X∗
F and XF .

Recall that in a quasi-Banach space X which is not a Banach space, the unit ball is not
convex. Although the notion of an extreme point is usually considered in the context of
convex sets, the definition itself does not require convexity a priori. Thus, we can also
consider extreme points of non-convex sets.
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Now we introduce the notion which is very useful in the proof of Theorem 3.2.3.
We say that a quasi-Banach spaceX has convex series representation property (CSRP) if
for every x ∈ BX there exists a sequence (λn) of positive real numbers with

∑
n∈N λn =

1 and a sequence (un) of extreme points of BX such that

x =
∑
n∈N

λnun. (3.8)

The combinatorial spaces and their duals were studied geometrically in the context of
extreme points. Note that if F is a compact, hereditary family of finite sets, then all the
extreme points of the unit ball of X∗

F are finitely supported and there are only finitely
many extreme points with a given support (see [5], [21]). It is known (see [5]) that X∗

F
has CSRP, for F as above. We will also show that the same holds in XF .

In [5], the authors provide proof of Gowers’s theorem regarding the characterization of
extreme points of the unit ball in X∗

F . In his blog [31], Gowers states (without proof)
that the set of extreme points is of the form{∑

i∈F

εie
∗
i : F ∈ FMAX, εi ∈ {−1, 1}

}
(3.9)

where

• (e∗i ) are biorthogonal functionals for the canonical Schauder basis (ei),

• FMAX is a family of maximal sets from F , i.e. these sets F for which F∪{k} /∈ F
for every k ∈ N.

Actually, the fact that Ext(X∗
F) is given by (3.9) was proven only for the Schreier space

and for higher order Schreier spaces. However, that result also holds for a general
compact, hereditary family F ⊆ [N]<N (see [5, Remark 4.4] and [21, Proposition 5]).
We will show that XF has basically the same extreme points, that is T0(Ext(XF)) =
Ext(X∗

F).

Proposition 3.2.4. Assume that F ⊆ [N]<N is a compact, hereditary family covering N.
A vector y ∈ XF is an extreme point of the unit ball of XF if and only if it is of the form

y(i) =

{
εi, if i ∈ F

0 otherwise,
(3.10)

for some F ∈ FMAX and εi ∈ {−1, 1}.

Proof. First, assume that |y(k)| = 1 for each k ∈ F for some F ∈ FMAX.
Suppose y is not extreme and y = (1− t)x+ tz for some 0 < t < 1 and x, z ∈ BXF . In
particular, absolute values of x and z do not exceed 1. Suppose that e.g. |x(k)| < 1 for
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some k ∈ F . Then 1 = |y(k)| ≤ (1− t)|x(k)| + t|z(k)| < 1, which is a contradiction.
So |x(k)| = |z(k)| = 1 for each k ∈ F . On the other hand, if x(k) ̸= 0 for k /∈ F , then
by maximality of F it follows that ∥x∥F > 1. It implies that x(k) = 0 for every k /∈ F .
Hence x = y. This is a contradiction, and so y must be an extreme point.
Now suppose that y ∈ Ext(XF). Then ∥y∥F = 1. Let P ∈ PF for which ∥y∥F = ∥y∥P .
For each P ∈ P we have |y(i)| = |y(j)| for every i, j ∈ P . Indeed, suppose otherwise.
Then there is P ∈ P and i, j ∈ P such that |y(j)| < |y(i)| and so for η < |y(i)|− |y(j)|
we would have ∥y± ηej∥F ≤ ∥y± ηej∥P ≤ 1, hence y would not be an extreme point.
It follows, that if supp(y) ∈ F , then y needs to be of the promised form (in particular
supp(y) is a maximal set in F , otherwise ∥y ± ei∥= 1 for i ̸∈ supp(y) with supp(y) ∪
{i} ∈ F). If supp(y) /∈ F , then we may find distinct P0, P1 ∈ P and a0, a1 ̸= 0 such
that y(i) = aj for i ∈ Pj , j ∈ {0, 1}. Since ∥y∥F = 1, |a0|, |a1| < 1. But then for
sufficiently small η > 0 and for u ∈ BXF defined by

u(i) =


η, if i ∈ P0

−η, if i ∈ P1

0 otherwise,
(3.11)

we would have
∥y ± u∥F ≤ ∥y ± u∥P = ∥y∥P = 1.

So, y has to be of the form (3.10).

Proof of Theorem 3.2.3. We shall use the natural identification of X∗
F with a subspace

of RN by the map X∗
F ∋ f 7→ (f(en))

∞
n=1 ∈ RN (see Remark 1.3.7). In this setting

the extended mapping T1 of Proposition 3.2.2 (see the remark after Proposition 3.2.2)
becomes the formal inclusion X̂F ↪→ X∗

F , and, by the fact that (e∗i ) is a basis for X∗
F

(as XF has a shrinking basis), X∗
F is the completion of (c00, ∥ · ∥∗F).

By Proposition 3.2.2 we have ∥·∥∗F ≤ ~ · ~F on X̂F . We will prove that ~ · ~F ≤ ∥·∥∗F
on c00, which implies equality of ~ · ~F and ∥ · ∥∗F on c00. Then the definition of X̂F

yield X̂F = X∗
F and equality of ~ · ~F and ∥·∥∗F on X̂F = X∗

F .
We will prove that ~ · ~F ≤ ∥ · ∥∗F on c00 by showing that BX∗

F
∩ c00 ⊆ BX̂F .

Fix finitely supported x ∈ BX∗
F

and let A = supp(x). Since X∗
F has CSRP, we have

x =
∑

k∈N λkuk for uk ∈ Ext(X∗
F) and λk such that

∑
k∈N λk = 1.

By continuity of PA we have x =
∑

k∈N λkPA(uk). By the form of extreme points (see
(3.9)) the set {PA(uk) : k ∈ N} is finite and so we may enumerate it as {vi : i ≤ n} for
some n ∈ N. Also, there are αi > 0, i ≤ n, such that

∑n
i=1 αi = 1 and x =

∑n
i=1 αivi.

It means that x ∈ conv(PA[Ext(BX∗
F
)]), where conv(K) denotes the convex hull of a

set K. Since each ui is an extreme point, we have that ε0PA(ui) + ε1PN\A(ui) is an

extreme point for ε0, ε1 ∈ {−1, 1}. In particular, as vi =
1

2

(
ui+ (PA(ui)−PN\A(ui)

)
,

we have x ∈ conv(Ext(X∗
F)) and thus BX∗

F
∩ c00 = conv(Ext(X∗

F)).
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On the other hand, by Proposition 3.2.4 we know that Ext(X∗
F) ⊆ BXF ⊆ BX̂F and,

since BX̂F is convex, we obtain that BX∗
F
∩ c00 ⊆ BX̂F .

Now we present the aforementioned result that XF , same as X∗
F , has a CSRP.

Theorem 3.2.5. For any compact, hereditary family F ⊆ [N]<N covering N, the space
XF has CSRP.

Proof. We have to show that for every x ∈ BX there exists an appropriate sequence
of extreme points and coefficients. First, we will prove it assuming that supp(x) ∈ F .
Then we will generalize it for the case x ∈ c00 and at the end we will show the final
result.

1) supp(x) ∈ F
Assume supp(x) ⊆ F0 for some F0 ∈ FMAX. Put α = min{|x(k)| : k ∈ supp(x)}.

Define λ0 = min{α, 1 − α} and λn =
1− λ0
2n

for n ≥ 1. Let u0 be an extreme point
defined by

u0(k) =


sgn(x(k)), if k ∈ supp(x)

1, if k ∈ F0 \ supp(x)
0 otherwise.

Put v0 = λ0u0 and define S0 = {k ∈ N : x(k) = v0(k)}. Note that, a priori, it is
possible for S0 to be empty. If not, let G0 ⊆ N be such that F0 < G0 and F1 :=
(F0 \ S0) ∪G0 ∈ FMAX (for S0 = ∅ we take G0 = ∅ as well).
We iterate this construction for n ≥ 1, i.e., we put

un(k) =


sgn(x(k)−

∑
j<n

vj(k)), if k ∈ Fn−1

1, if k ∈ Fn \ Fn−1

0, otherwise,

(3.12)

let vn = λnun, Sn = {k ∈ N : x(k) −
∑

j<n vj(k) = vn(k)} and let Gn be such a set
that Fn < Gn and Fn+1 := (Fn \Sn)∪Gn is maximal (again, if Sn = ∅, then Gn = ∅ as
well). Note that on each step of the construction, the sequence x −

∑
j≤n

vj is supported

on a subset of the maximal set Fn.
Now we show that the sequences (λn) and (un) are as desired by the definition of CSRP.
It is clear that

∑
n∈N λn = 1 and for every n the vector un is an extreme point in XF

(by Lemma 3.2.4). It remains to check that the series
∑

n∈N λnun is convergent to x in
the quasi-norm ∥·∥F .

Claim. For every k ∈ N rn(k) :=
∣∣∣x(k)−∑

j≤n vj(k)
∣∣∣ ≤ 1− λ0

2n
.

54:80488



53

Proof of claim. We prove it by induction with respect to n. If n = 0 and k ∈ supp(x)
then we have −λ0 < x(k) − λ0 ≤ 1 − λ0 for x(k) > 0. Since λ0 ≤ 1 − λ0 by
the definition, the inequality holds for x(k) > 0. The definition of λ0 implies also
immediately that r0(k) ≤ 1 − λ0 for k /∈ supp(x). Finally, if x(k) < 0, then v0(k) =
−λ0 and then −1 + λ0 ≤ x(k)− v0(k) < λ0 ≤ 1− λ0.

Now suppose that rn(k) ≤ 1− λ0
2n

for some n. If x(k) −
∑

j≤n vj(k) > 0, then

vn+1(k) = λn+1, if k ∈ Fn, and thus

−1− λ0
2n+1

= −λn+1 ≤ x(k)−
∑
j≤n+1

vj(k) ≤
1− λ0
2n

− 1− λ0
2n+1

=
1− λ0
2n+1

If x(k) −
∑

j≤n vj(k) < 0 then vn+1(k) = −λn+1 and the case is symmetric. Thus for

k ∈ Fn, rn+1(k) ≤
1− λ0
2n+1

. If k ∈ Fn+1 \Fn then x(k)−
∑

j≤n+1 vj(k) = −vn+1(k) =

−λn+1 which finishes the proof of the claim.

Note that the above claim implies that
∑

n∈N λnun is convergent to x since

∥x−
∑
j≤n

λnun∥F = max
k∈Fn

∣∣∣x(k)−∑
j≤n

vn(k)
∣∣∣ ≤ 1− λ0

2n
n→∞−−−→ 0

It finishes the proof for x having a support in F .

2) x ∈ c00.

If x is a finitely supported sequence, then x =
m∑
i=1

xi for some m ∈ N, where xi are

sequences with supports contained in some Fi ∈ FMAX. Then, we make a similar
construction as in the previous case for each xi separately. Put M = ∥x∥F , and for each
1 ≤ i ≤ m let αi = mink∈Fi |x(k)|, βi = maxk∈Fi |x(k)|. Next, define a sequence
(λin)n by taking

λi0 = min{αi,
βi
M

− αi} and λin =
βi
M

− λi0
2n

for n ≥ 1.

For each i,
∑

n∈N λ
i
n =

βi
M

and thus
∑m

i=1

∑
n∈N λ

i
n = 1.

The sequence of extreme points (uin)n is defined as in the first case. Then, repeating
arguments from the previous case for every i, we obtain

∥∥xi −∑
j≤n

λiju
i
j

∥∥F ≤
βi
M

− λi0
2n

.

Thus, for each n we get
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∥∥x− m∑
i=1

∑
j≤n

λiju
i
j

∥∥F ≤ 2m
m∑
i=1

∥∥xi −∑
j≤n

λiju
i
j

∥∥F ≤ 2m
m∑
i=1

βi
M

− λi0
2n

(3.13)

and the last expression tends to 0 when n → ∞. Hence, every finitely supported se-
quence can be expressed as a convex series of extreme points.

3) The general case.

For x ∈ XF , the result follows from the lower semicontinuity of ∥·∥F and the previous
cases. Indeed, for any ε > 0 find N ∈ N such that ∥x− PN(x)∥F <

ε

2
. For that N , we

can find a convex combination as in the second case, converging to PN(x). Namely, for
sufficiently big n ∈ N ∥∥PN(x)− m∑

i=1

∑
j≤n

λiju
i
j

∥∥F
<
ε

2

Thus, using quasi-triangle inequality, we have

∥x−
m∑
i=1

∑
j≤n

λiju
i
j

∥∥F ≤ 2
(∥∥x− PN(x)

∥∥F
+
∥∥PN(x)− m∑

i=1

∑
j≤n

λiju
i
j

∥∥F
)
< ε

It finishes the proof.

Now we will show a result which indicates that the connection between XF and X∗
F is

quite strong. For each compact family F the space XF is a (quasi-Banach) pre-dual of
(XF)

∗∗. In other words, XF andX∗
F have isometrically isomorphic dual spaces. In fact,

this is a direct corollary of Theorem 3.2.3 and [37, Chapter 2.4]. We enclose a detailed
proof.

Theorem 3.2.6. If F ⊆ [N]<N is a compact hereditary family covering N, then (XF)∗

is isometrically isomorphic to (XF)
∗∗.

Proof. By Proposition 1.3.10 the space (XF)
∗∗ is isometrically isomorphic to ZF . As in

the proof of Theorem 3.2.3 we use the natural identification of (XF)∗ with a subspace of
RN via the map (XF)∗ ∋ f 7→ (f(en))

∞
n=1 ∈ RN. We need to prove that ∥y∥F∗ = ∥y∥F

for any y ∈ RN, where ∥·∥F∗ denotes the functional norm on XF .
Take any y ∈ RN. For any set F0 ∈ F consider x0 ∈ XF given by

x0(n) =

{
sgn(y(n)), if n ∈ F0,

0, otherwise.

This is a vector of norm at most 1 in XF and thus

∥y∥F∗ ≥ |
∑
n∈F0

x0(n)y(n)| =
∑
n∈F0

|y(n)|
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As F0 ∈ F was arbitrary, we obtain ∥y∥F∗ ≥ ∥y∥F . To prove the reverse inequality,
take any x ∈ c00 such that ∥x∥F = 1. There exists a partition P = {F1, F2, ..., Fj} of
the support of x at which the infimum in the definition of the quasi-norm is attained,
namely

∥x∥F =

j∑
i=1

sup
k∈Fi

|x(k)|.

Let x′ be defined by x′(j) = ai ·sgn(y(j)) if j ∈ Fi, where ai = sup
k∈Fi

|x(k)| (if j /∈
⋃
i Fi,

then let x′(j) = 0). Then ∥x′∥F = ∥x∥F = 1 and∣∣∑
n∈N

x(n)y(n)
∣∣ ≤ ∑

n∈N

|x(n)y(n)| ≤
∑
n∈N

|x′(n)y(n)|.

Moreover∑
n∈N

|x′(n)y(n)| =
j∑
i=1

∑
n∈Fi

|x′(n)y(n)| =
j∑
i=1

ai
∑
n∈Fi

|y(n)| ≤
j∑
i=1

ai∥y∥F = ∥y∥F

which, as c00 is dense in XF , implies that ∥y∥F∗ ≤ ∥y∥F and finishes the proof.

Unfortunately, one cannot deduce from Theorem 3.2.3 that XF and X∗
F are isomorphic.

Below, we present an attempt to prove that these spaces are indeed isomorphic.

Fix a compact, hereditary family F and let φ ∈ X∗
F . Then

φ(x) =
∑
k∈N

x(k)y(k)

where y(k) = φ(ek). It is straightforward that

∥φ∥ ≤ ∥y∥F . (3.14)

Indeed,

∥φ∥ = sup
x∈XF\{0}

|
∑

k∈N x(k)y(k)|
∥x∥F

= sup
x∈XF\{0}

|
∑

k∈N x(k)y(k)|
supP∈PF

∥x∥P
=

= sup
x∈XF\{0}

inf
P∈PF

|
∑

k∈N x(k)y(k)|
∥x∥P

≤ inf
P∈PF

sup
x∈XF\{0}

|
∑

k∈N x(k)y(k)|
∥x∥P

= ∥y∥F ,

(3.15)

where the last equality is a consequence of Proposition 3.2.1 and the only inequality
above comes from the fact that supx∈A infy∈B θ(x, y) ≤ infy∈B supx∈A θ(x, y), what-
ever A,B and θ are.
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The question is whether the other inequality in 3.14 holds or, at least, with some con-
stant c ∈ (0, 1)). In a very particular case, there is equality in (3.14). Namely, consider
F = S, the Schreier family and for fixed n ∈ N+ let y ∈ XS be given by y = χAn ,
where An =

⋃
0≤k≤n Ik and, recall, Ik = [2k, 2k+1). Then

∥y∥S =
∑
m∈N

max
k∈Im

|y(k)| =
∑
m≤n

max
k∈Im

|y(k)| = n

Now define x as follows. Let PIm(x) = 2n−mχIm for 0 ≤ m ≤ n, and for every
k ∈

⋃
m>n Im let x(k) = 0. Then x ∈ XS ,

∑
k∈N x(k)y(k) = n2n, and one can easily

see that ∥x∥S = supm∈N
∑

k∈Im |x(k)| = 2n. Hence, the functional φ ∈ X∗
S related to

the sequence y satisfies

∥φ∥ ≥ n2n

2n
= n = ∥y∥S

For an arbitrary non-increasing sequence, we do not have equality in (3.14). However,
the other inequality is satisfied with a constant equal to 1

2
.

Proposition 3.2.7. For the Schreier family S and a non-increasing sequence y with
positive coordinates, the following holds

∥y∥S ≥ ∥y∥∗S ≥ 1

2
∥y∥S .

Proof. Fix y ∈ c00 satisfying the assumptions. Since y is non-increasing, we observe
that in the definition of the norm ∥·∥S , the partition for which the infimum is attained is

G = {In : n ∈ N}.

Then ∥y∥S =
∑

k≤m y(2
k) for such m ∈ N that 2m ≤ max(supp(y)). Without loss of

generality, we can assume that max(supp(y)) = 2m+1 − 1. Distinct two cases:

Case 1. y(1) <
m∑
k=1

y(2k).

Then define a sequence x ∈ XS in such a way that for k ≤ m and j ∈ Ik put x(j) =
1

|Ik|
=

1

2k
, and for j /∈

⋃
k≤m Ik let x(j) = 0. We have ∥x∥S = 1 and also

∑
k∈N

x(k)y(k) =
m∑
k=0

2k+1−1∑
i=2k

y(i)

2k
.

Since y is non-increasing, for every k ≤ m and every i ∈ Ik we have y(i) ≥ y(2k+1).
Thus,
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∑
k∈N

x(k)y(k) ≥
m−1∑
k=0

2ky(2k+1)

2k
=

m∑
k=1

y(2k) =
1

2

( m∑
k=1

y(2k) +
m∑
k=1

y(2k)
)
>

1

2

( m∑
k=1

y(2k) + y(1)
)
=

∥y∥S

2

Case 2. y(1) ≥
m∑
k=1

y(2k).

Take x(1) = 1 and x(k) = 0 for k ̸= 1. Then ∥x∥S = 1 and∑
k∈N

x(k)y(k) = y(1) ≥ 1

2

(
y(1) +

m∑
k=1

y(2k)
)
=

∥y∥S

2

Hence we obtain that ∥y∥∗S ≥ 1

2
∥y∥S .

Unfortunately, a hope given by the result for non-increasing sequences was dashed,
since we found an example of a family for which XF and X∗

F are not isomorphic.

Example 3.2.8. In this example we will consider finite dyadic trees, i.e. the sets TN =
{0, 1}≤N of 0-1 sequences of length at most N . Notice that, identifying elements of TN
with natural numbers, using some fixed enumeration of TN , we may think of TN as a
subset of integers. For s ∈ {0, 1}N let Fs = {s↾k : k ≤ N} and let FN be the hereditary
closure of the family {Fs : s ∈ {0, 1}N}. So, FN is the family of chains in TN and each
Fs is a maximal chain (a branch). For each s ∈ {0, 1}N let xs be the vector in RTN

given by xs = χFs . Let x =
∑

s∈{0,1}N xs. Notice that x(t) = |{s : t ⊆ s}|. It can be
checked by a simple induction (on N ) that

∥x∥FN = 2N + 1 · 2N−1 + 2 · 2N−2 + 4 · 2N−3 + · · ·+ 2N−1 · 1

and so
∥x∥FN = 2N +N2N−1 = 2N(1 +N/2).

Let C > 0. Take N so that (1 +N/2) > C. Then∥∥∥ ∑
s∈{0,1}N

xs

∥∥∥FN
> C · 2N = C

∑
s∈{0,1}N

∥xs∥FN .

So, at this point, for every C > 0 we are able to find an example which violates the
inequality from Remark 3.1.9 for the chosen C. Now, we will amalgamate all those
FN ’s into one example.
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For each N fix an injection kN : TN → N in such a way that the images (kN [TN ])N is a
partition of N. Let

F =
⋃
N

{kN [F ] : F ∈ FN}.

Then F is a compact hereditary family of subsets of N covering N. But there is no
C > 0 such that ∥∥∥∑

i∈A

xi

∥∥∥F
≤ C

∑
i∈A

∥xi∥F

for every A ⊆ N and so, according to Remark 3.1.9, XF is not isomorphic to X∗
F .

Now, we will show that for the Schreier family the same phenomenon occurs, that is
there is no isomorphism between X∗

S and XS . The argument is more complicated and
it was presented by A.Pelczar-Barwacz in [19]. It indicates that if F is complicated
enough, XF is not isomorphic to X∗

F .

For any finite A ⊆ N let ϕ(A) be the minimal number of consecutive Schreier sets in A
covering A.

Lemma 3.2.9. For any N ∈ N there are sets F1, . . . , F2N ∈ S so that for x =
2N∑
j=1

χFj

we have the following

1. x(i) ∈ {2r : r = 0, . . . , N} for any i ∈ supp(x),

2. ϕ(Ar) ≥ 2N−r, where Ar = {i ∈ N : x(i) = 2r}, for any r = 0, . . . , N .

Proof. Fix N ∈ N. We shall again use the dyadic tree TN = {0, 1}≤N . This time we
will assign to each element of TN . First, we will linearize the inclusion ordering on TN :
define ⪯ on TN by

s ⪯ t if
(
t ⊆ s or (t is incomparable with s and (s ∩ t)⌢1 ⊆ s)

)
.

Notice that s∩ t is the longest element of TN which is extended by both s and t. Below
we enclose a drawing of T3 with the nodes enumerated according to ⪯.

15

14

13

12 11

10

9 8

7

6

5 4

3

2 1
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By t0 we will denote the smallest element of TN , i.e. the sequence constantly equal 1.
For s ∈ TN , s ̸= t0 denote by s− be the immediate predecessor of s and let s′ be the
smallest, with respect to ⪯, descendant of s. Note that s′ is always a terminal node. For
r ≤ N let Lr be the r’s level of TN , i.e. the set of elements TN of length r.
For every s ∈ TN we will define an interval Is inductively, with respect to ⪯. Let
It0 = {N + 1}. If s ̸= t0 is a terminal node, then let Is be an interval of length
2max |Is−| and such that min Is ≥ (2N + 1)max Is− . For a non-terminal node s let Is
be an interval of length |Is′ | and such that min Is > max Is− . In this way we will get a
sequence of intervals (Is) such that s ⪯ t iff Is < It.
Each (maximal) branch B of TN induces a set FB =

⋃
s∈B Is; the sets obtained in

this way form the family (Fj)
2N

j=1 defining the vector x promised in the statement. First,
notice that if s ∈ LN−r, then s belongs to 2r many branches. So, x satisfies the condition
(1) of the statement. By the same reason we have Ar =

⋃
s∈LN−r

Is for each r.
We will check that the family {FB : B is a branch} is as desired by proving two claims.

Claim 1. FB ∈ S for every branch B.

Consider first the branch B0 containing t0. By definition |Is| = 1 for each s ∈ B0,
thus |FB0| ≤ N + 1 (and, clearly, minFB0 = minFt0 = N + 1, so FB0 ∈ S). Pick
now a branch B containing any other terminal node s ∈ TN . By definition, minFB =
min Is ≥ (2N + 1)max Is− . On the other hand, for every t ∈ B, t′ ⪯ s and so
|It| = |It′| ≤ |Is| = 2max Is− . It follows that

|FB| ≤ (2N + 1)max Is− ≤ minFB,

and so FB ∈ S.

Claim 2. ϕ(Ar) ≥ |LN−r| = 2N−r for each r.

Fix r < N and an interval I ∈ S in Ar =
⋃
s∈LN−r

Is (i.e. I = J ∩ Ar, where J is an
interval). If for some s1 ⪯ s2 ∈ LN−r we have I ∩ Is1 ̸= ∅, then max I < max Is2 .
Indeed, notice that |I| ≤ max Is1 . As s1 ⪯ s2, and s1, s2 belong to the same level,
s1 ⪯ s′2, hence 2max Is1 ≤ |Is′2| = |Is2| and so max I < max Is2 . But this means that
ϕ(Ar) ≥ |LN−r| = 2N−r

Theorem 3.2.10. The spaceXS is not isomorphic to X̂S (and, thus, it is not isomorphic
to X∗

S).

Proof. For every N ∈ N let xN =
2N∑
j=1

χFNj be as in Lemma 3.2.9. Then, we have

∥χFNj ∥
S = 1 for any j = 1, . . . , 2N and N ∈ N, as each FN

j is a Schreier set. Conse-
quently, ∑

j

∥χFNj ∥ = 2N .
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On the other hand, we will show that 2−N∥xN∥S → ∞ as N → ∞. Therefore, for each
C > 0 there is N such that

∥
∑
j

χFNj ∥ > C · 2N

and so, by Remark 3.1.9, we will be done.
Suppose, towards contradiction, that there is M ∈ N with ∥xN∥S ≤ 2M+N . For
a fixed N ∈ N pick Schreier sets (Bl)l witnessing ∥x∥S , i.e. such that ∥xN∥S =∑

lmax{xN(i) : i ∈ Bl}. Let

lr = |{l : max{xN(i) : i ∈ Bl} = 2r}|

for r = 0, . . . , N . Then

2N+M ≥
N∑
r=0

lr2
r. (3.16)

On the other hand, as Ar ⊆ Br :=
⋃
{Bl : max{xN(i) : i ∈ Bl} ≥ 2r},

2N−r ≤ ϕ(Ar) ≤ ϕ(Br) ≤ lr + lr+1 + · · ·+ lN for every r = 0, . . . , N − 1. (3.17)

The first inequality follows from Lemma 3.2.9, whereas the last one from the definition
of ϕ: the partition of a set into consecutive Schreier sets is the smallest in the sense of
cardinality of all the partitions into Schreier sets.
In order to simplify the notation, we write mr = lN−r, r = 0, . . . , N . Then

N∑
r=0

mr2
−r ≤ 2M , (3.18)

thus
mr ≤ 2M+r for every r = 0, . . . , N.

So, for r > M + 2 we have

m0 + · · ·+mr−M−2 ≤ 2M + · · ·+ 2M+r−M−2 = 2M + · · ·+ 2r−2 ≤ 2r−1. (3.19)

On the other hand 2N−r ≤ mN−r + · · ·+m0 for each r = 0, . . . , N , that is

2r ≤ mr + · · ·+m0 for any r = 0, . . . , N (3.20)

Therefore, for r > M + 2 we have, by (3.19) and (3.20),

2r ≤ mr + · · ·+mr−M−2 + · · ·+m0 ≤ mr + · · ·+mr−M−1 + 2r−1. (3.21)

Hence, for every r > M + 2 there is i ∈ {r −M − 1, . . . , r} with

mi ≥ 2r−1(M + 2)−1
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and so
mi2

−i ≥ 1

2(M + 2)
.

By diving (sufficiently big) N into intervals of size M + 2 and subsequently using the
above fact we see that

N∑
r=0

mr2
−r ≥ N

M + 2
· 1

2(M + 2)
=

N

2(M + 2)2
(3.22)

which yields a contradiction with (3.18) for sufficiently big N .

Remark 3.2.11. There is also another approach to producing a norm on the dual space
of combinatorial-like spaces, different from the one considered above. In [44] D. Ojeda-
Aristizabal proposed a formula for the norm of the original space constructed by Tsirelson,
which can also be adapted to the case of mixed Tsirelson spaces. The case of the orig-
inal Tsirelson space is somewhat similar to the case of duals to combinatorial spaces;
its (pre)dual norm can be derived from a precise formula, whereas the norm of the
very space does not possess an analogous expression. The formula proposed in [44]
is based on a dualization of the Figiel-Johnson norm (similar to our case), but yields a
norm, instead of just a quasi-norm, via including in the definition of ∥x∥ the expression
inf{∥y∥+ ∥z∥ : y + z = x}, which forces the triangle inequality. As it is noted in [44],
this definition does not permit calculating the norm of a vector in a way similar to the
case of Figiel-Johnson norm on the dual of the original Tsirelson space (see [29]). In
contrast, not including the above expression in our definition allows us to work with the
quasi-norm on duals of combinatorial spaces, as shown in the next section, at the price
of the lack of the triangle inequality.

3.3 On ℓ1-saturation of XF’s
In this section, we consider spaces XF for a family F satisfying an additional condition
(see definition 3.3.1).

In Preliminaries, we give references to the constructions of ℓ1-saturated Banach spaces
which do not have the Schur property. The result of Galego, González, and Pello in
[30] says that you do not have to construct such space: the dual to the Schreier space is
already a good example. Although the lack of Schur property in X∗

S is quite straightfor-
ward, the proof that it is ℓ1-saturated is rather difficult.

We will show that the same holds for XF , for any compact family F . We think that our
proof is considerably easier and it indicates that studying XF is easier than X∗

F . This is
why XF may be helpful.
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We will prove the lack of Schur property using Theorem 3.2.6 for families satisfying a
certain property introduced by J.Lopez-Abad and S.Todorcevic in [40].

Definition 3.3.1. A family F of subsets of N is called large when F ∩ [M ]n ̸= ∅ for
every infinite subset M of N and for every n ∈ N.

Proposition 3.3.2. Suppose that F is a large family of finite subsets of N. Then XF

does not have the Schur property.

Proof. Consider the sequence (en), the standard unit vector basis. We claim that this
sequence is weakly null, but it is not convergent to zero in the quasi-norm.
Indeed, fix φ ∈ (XF)∗ and denote y(n) = φ(en). By Theorem 3.2.6 we have y =
(y(n)) ∈ ZF , so ∥y∥F < ∞. If limn→∞ y(n) ̸= 0, then there is an infinite M ⊆ N
and c > 0 such that |y(m)| ≥ c for each m ∈ M . By the assumption, for each k ∈ N
there is F ∈ F such that F ⊆ M , |F | = k and so

∑
i∈F |y(i)| = c · k. Hence,

∥y∥F = supF∈F
∑

i∈F |y(i)| = ∞, a contradiction.
On the other hand, for every n ∈ N we have ∥en∥F = 1, so (en) is not convergent to
zero in the quasi-norm.

One can easily see that the Schreier family S is large in the sense of the Definition 3.3.1.
Hence, in particular, XS does not have the Schur property.

Definition 3.3.3. We say that the vector x ∈ XF is k-stable, k ∈ N, if ∥x∥∞ ≤
1

2k
∥x∥F .

Note that for any k-stable x ∈ XF and any F ∈ F we have ∥PF (x)∥F ≤ 1

2k
∥x∥F .

Lemma 3.3.4. Let x1, x2 ∈ c00 be such that supp(x1) < supp(x2). If P is a partition
such that for every P ∈ P we have P ∩ supp(x1) = ∅ or P ∩ supp(x2) = ∅, then

∥x1 + x2∥P = ∥x1∥P + ∥x2∥P .

Proof. Let P ∈ P . Then, either x1 or x2 vanishes on P , so for each k ∈ P , |x1(k) +
x2(k)| = |x1(k)|+ |x2(k)|. It implies immediately that ∥x1 + x2∥P = ∥x1∥P + ∥x2∥P .

Proposition 3.3.5. Let x, y ∈ c00 be such that

(i) supp(x) < supp(y),

(ii) y is k0-stable, where k0 = max supp(x).

Then for each scalar λ

∥x+ λy∥F ≥ ∥x∥F +
λ

2
∥y∥F .
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Proof. First, notice that if y is k-stable, then λy is k-stable and so we may assume that
λ = 1.
Since x+y is finitely supported, there exists partition P such that ∥x+y∥F = ∥x+y∥P .
Let A = {n ∈ supp(y) : ∀P ∈ P (n ∈ P ⇒ P ∩ supp(x) ̸= ∅)}. Note that the
sequences x, PN\A(y) and the partition P satisfy the assumption of Lemma 3.3.4. In
addition, there are pairwise disjoint sets F1, ..., Fk0 ∈ F such that A ⊆

⋃
i≤k0

Fi. So,

using the assumption of k0-stability (see the remark after Definition 3.3.3) and Lemma
3.1.5 (a) we obtain

∥PA(y)∥F ≤
∑
i≤k0

∥PFi(y)∥F ≤ 1

2
∥y∥F

and thus

∥x+ y∥F = ∥x+ y∥P ≥ ∥x+ PN\A(y)∥P = ∥x∥P + ∥PN\A(y)∥P

≥ ∥x∥F + ∥PN\A(y)∥F ≥ ∥x∥F +
∥y∥F

2
. (3.23)

Theorem 3.3.6. XF is ℓ1-saturated.

Proof. Let (xn) be a sequence in XF and let E be a subspace of XF . We are going
to show that E contains an isomorphic copy of ℓ1. By the standard arguments (see e.g.
[15]) we may assume that E = [xn], where for each n ∈ N we have xn ∈ c00, ∥xn∥F =
1 and supp(xn) is finite. Additionally, we assume that supp(xn) < supp(xn+1) for each
n ∈ N.
It is enough to construct a sequence (yn) of unit vectors in E which will be equivalent
to the standard ℓ1-basis, i.e. such that for each sequence (λi)i≤n of scalars∥∥∥ n∑

i=1

λiyi

∥∥∥F
≥ 1

2

n∑
i=1

|λi|.

The sequence (yn) will be of the form of a block sequence of (xn) We define by in-
duction sequences of natural numbers (kn), (ln) and the sequence of vectors (yn). Let
l1 = 1, y1 = x1 and k1 = max supp(x1). Next, let

(1) ln+1 ∈ N be such that
ln+1∑
i=ln+1

xi is kn-stable,

(2) yn+1 =

ln+1∑
i=ln+1

xi

∥∥∥ ln+1∑
i=ln+1

xi

∥∥∥F
, and
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(3) kn+1 = max supp(yn+1).

We will show that we are able to perform such a construction. Only condition (1) needs
some explanation.

Claim. For each l ∈ N and each k ∈ N there is L > l such that
L∑
i=l

xi is k-stable.

Suppose it is not true. Then there are k, l ∈ N such that for each L > l

∥
L∑
i=l

xi∥∞ >
1

2k
∥

L∑
i=l

xi∥F .

Denote x =
∞∑
i=l

xi. Then, for every L we have ∥PL(x)∥F < 2k∥x∥∞ ≤ 2k, and so, by

lower semicontinuity, ∥x∥F ≤ 2k. Thus, x ∈ ZF . On the other hand, for every i ∈ N
we have ∥xi∥F = 1, so ∥PN\L(x)∥F ≥ 1 for every L, which means that x /∈ XF . This
is a contradiction with Proposition 3.1.10.

Having this construction, fix n ∈ N and a sequence (λi)i≤n. Of course, ∥yi∥F = 1 for
each i and subsequently using Proposition 3.3.5 we have

∥∥∥ n∑
i=1

λiyi

∥∥∥F
=

∥∥∥ n−1∑
i=1

λiyi+λnyn

∥∥∥F
≥

∥∥∥ n−1∑
i=1

λiyi

∥∥∥F
+
|λn|
2

≥ ... ≥ |λ1|+
1

2

n∑
i=2

|λi| ≥
1

2

n∑
i=1

|λi|

and so (yn) is equivalent to the standard ℓ1-basis.
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Chapter 4

On the extreme points

This chapter is concerned with a geometric property of combinatorial spaces and those
related to them: the extreme points of the unit ball. The general question of this chapter
is as follows:

Problem 4.0.1. Given a hereditary family F covering N (or another countable set), what
is the shape of the set Ext(XF)?

It is a classical result that Ext(c0) = ∅ and Ext(ℓ1) = {±en : n ∈ N}. But ideally,
one would like to find a universal description of the set Ext(XF) for any family F .
This seems to be difficult, as the literature on this topic is rather sparse. For example,
not much is known about the set of extreme points in the Schreier space XS . It was
proved, for instance, that Ext(XS) ⊆ c00 and that its cardinality is ℵ0 (see [50]). This
result was later generalized to any combinatorial space associated with regular family
(see [12]). Nevertheless, there is still no full characterization of Ext(XS). In [50], the
authors present some examples of extreme points, but they do not appear to indicate any
clear pattern.
For non-compact families even less is known about this topic. For example, we do not
know whether each extreme point in related combinatorial spaces is necessarily finitely
supported. The argument presented in [12] for regular families does not seem to work;
however, we did not find any combinatorial space XF and its extreme point with an
infinite support.

Remark 4.0.2. Fix a family F . For every θ ∈ {−1, 1}N consider the linear map Tθ :
XF → XF given by

Tθ(x) = θ · x (4.1)

It is easy to check that Tθ is an isometric isomorphism, hence it maps extreme points
onto extreme points. It follows that if x ∈ Ext(XF), then for every θ ∈ {−1, 1}N, θ ·x ∈
Ext(XF). Thus, if we want to show that some x ∈ XF is or is not an extreme point,

65
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we may assume, without loss of generality, that each coordinate of x is nonnegative (we
will denote this fact by x ≥ 0). We make such an assumption unless stated otherwise.

Now we present two simple lemmas which will be useful in the following part of this
chapter.

Lemma 4.0.3. Let n ∈ N and let (λi)i≤n be a sequence of positive numbers with∑
i≤n λi = 1. Let (αi)i≤n be a sequence of real numbers such that∑

i≤n

|λi ± αi| ≤ 1.

Then |αi| ≤ λi for every i ≤ n.

Proof. To simplify the notation, for a setK ⊆ N and a sequence β, we denote
∑

k∈K β(k)
by S(β,K). Let A = {k ≤ n : |αk| > λk}, B = [0, n] \ A. Suppose A ̸= ∅. Let
A0 = {k ∈ A : αk > λk} and A1 = {k ∈ A : αk < −λk}. Then

S(λ,A0) < S(α,A0) and S(λ,A1) < −S(λ,A1) (4.2)

We have

1 ≥
∑
i≤n

|λi + αi| = S(|λ+ α|, [0, n]) =

= S(λ,A0) + S(α,A0)− S(λ,A1)− S(α,A1) + S(λ,B) + S(α,B) =

= 1− 2S(λ,A1) + S(α,A0) + S(α,B)− S(α,A1),

and thus
2S(α,A1) ≥ S(α,A0) + S(α,B)− S(α,A1). (4.3)

Furthermore, expanding S(|λ− α|, [0, n]) in a similar manner, we obtain

2S(λ,A0) ≥ S(α,A0)− S(α,A1)− S(α,B). (4.4)

Hence, summing up both sides of (4.3) and (4.4) we obtain

2S(λ,A0) + 2S(α,A1) ≥ 2S(α,A0)− 2S(α,A1)

which is a contradiction with (4.2).

Lemma 4.0.4. Let n ∈ N+ and let k < n. Suppose (λi)1≤i≤n is a sequence of real
numbers with the following property: for every A ∈ [n]k

∑
j∈A λj = 0. Then λi = 0 for

every 1 ≤ i ≤ n.
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Proof. Note that each i appears in exactly
(
n− 1
k − 1

)
subsets of size k. Hence, we have

0 =
∑
A∈[n]k

∑
i∈A

λi =

(
n− 1
k − 1

)∑
i≤n

λi,

and so
∑

i≤n λi = 0. Furthermore, for a fixed i and every S ∈ [n \ {i}]k (which exists,
because k < n) we have

∑
j∈S λj = 0. Hence, the sequence λ1, ..., λi−1, λi+1, ..., λn

also sums up to 0, which implies that λi = 0 and since i was arbitrary, this completes
the proof.

4.1 Extreme points in dual spaces
Although not much is known about extreme points in combinatorial spaces, it turns out
that in their dual spaces, there is a nice characterization. For compact families F , the
formula (3.9) presented in Chapter 3 describes an extreme point inX∗

F . Below, we show
that the same characterization works in the general setting.

Fix φ ∈ X∗
F and let α denotes its sequence representation, that is α(n) = φ(en) (see

Remark 1.3.7). If α ∈ BX∗
F

, then |α(n)| ≤ 1 for every n; conversely, if supp(α) ∈ F
and |α(n)| ≤ 1 for every n, then α ∈ BX∗

F
. In particular, if β ∈ {−1, 0, 1}N is such that

supp(β) ∈ F , then β ∈ BX∗
F

and, unless supp(β) = ∅, ∥β∥ = 1. Now, for H ⊆ F
define

W (H) =

{
β ∈ {−1, 0, 1}N : supp(β) ∈ H

}
Notice that W (H) ⊆ BX∗

F
and if F ⊆ H, then W (H) is a norming set, that is,

∥x∥F = sup
{∣∣⟨β, x⟩∣∣ : β ∈ W (H)

}
for every x ∈ XF .

It is easy to see that W (H) is symmetric. Then, by [21, Lemma 4], we have

convw
∗
(W (H)) = B(X∗

F).

Also, one can easily check that the weak∗ topology on W (H) coincides with the inher-
ited topology from the product {−1, 0, 1}N.

Proposition 4.1.1. For every hereditary family F covering N Ext(XF) = W (FMAX
).

Proof. By the Banach-Alaoglu theorem BX∗
F

= convw
∗
(W (F)) is weak∗ compact.

Since X∗
F with the weak∗ topology is locally convex, applying Milman’s theorem (see

[27, Theorem 3.66]) we obtain Ext(XF) ⊆ convw
∗
(W (F)) = W (F). Now suppose
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that β ∈ W (F) and that supp(β) is not maximal in F . Let k ∈ N \ supp(β) be such
that supp(β)∪ {k} ∈ F . It follows that ∥β ± e∗k∥ ≤ 1 and so β is not an extreme point.
To see that W (FMAX

) ⊆ Ext(XF), consider σ ∈ W (FMAX
) and suppose there are

α, β ∈ BX∗
F

, different than σ, such that σ = α+β
2

. It follows that for every n ∈ supp(σ)
α(n) = β(n) = σ(n), and hence there is k ∈ supp(α) \ supp(σ). As supp(σ) ∪ {k} /∈
F , we can pick a finite non-empty S ⊆ supp(σ) such that S∪{k} /∈ F . Define x ∈ XF

such that supp(x) = S ∪ {k} and x(n) = sgn(α(n))
|S| for every n ∈ supp(x). Then

∥x∥F = 1, but ⟨α, x⟩ = 1 + |α(k)|
|S| > 1, which is a contradiction.

4.2 Extreme points in Farah spaces
In this section, we present a full characterization of extreme points in g-Farah spaces.
The key fact turns out to be the following lemma.

Lemma 4.2.1. Let g : N → [1,∞) and let x ∈ XFg . If x ∈ Ext(XFg), then |{n ∈ N :
supp(x) ∩ In ̸= ∅}| = 1.

Proof. Following Remark 4.0.2, we assume that x(j) ≥ 0 for each j ∈ N. Suppose
there are n0 < n1 such that Bni = supp(x) ∩ Ini ̸= ∅ for i ∈ {0, 1}. Let A ∈ Fg be
such that 1 = ∥x∥Fg =

∑
j∈A x(j). Let Ani = A ∩ Ini . Then |Ani | ≤ ⌊g(ni)⌋ and,

without loss of generality, we can assume that Ani ⊆ Bni . For a sufficiently small ε > 0
define

z =
ε

|An0|
χBn0 −

ε

|An1|
χBn1 .

Then ∥z∥Fg ≤ 2ε and, since z is piecewise constant, then ∥x ± z∥Fg is attained on A.
In particular, if C = In0 ∪ In1 , then

∥PC(x± z)∥Fg =
∑
j∈An0

(x± z)(j) +
∑
j∈An1

(x± z)(j) =

∑
j∈An0

x(j)± ε+
∑
j∈An1

x(j)∓ ε =
∑
j∈An0

x(j) +
∑
j∈An1

x(j),

and so ∥x± z∥Fg = 1, a contradiction.

Hence, if x ∈ Ext(XFg), then supp(x) ⊆ In for some n.

Lemma 4.2.2. The vector ±en is an extreme point in XFg if and only if n ∈ Im, where
m is such that g(m) ≥ 2.
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Proof. Suppose en ∈ Ext(XFg) and let m be such that n ∈ Im. Then, if g(m) < 2,
then for every k ∈ Im \ {n} ∥en ± ek∥Fg = 1.
Now let m ∈ N be such that g(m) ≥ 2 and n ∈ Im. Suppose that en is not an extreme
point and let z ̸= 0 be such that ∥en ± z∥Fg ≤ 1. One can see that n /∈ supp(z) and
supp(z) ∩ Im ̸= ∅, because otherwise ∥en ± z∥Fg > 1. So there is j ∈ supp(z) ∩ Im
different from n. Since g(m) ≥ 2, then ∥en±z∥Fg ≥ 1+|z(j)| > 1, a contradiction.

It is natural to ask whether there are any other extreme points in XFg . If there is such x,
then there is m ∈ N such that |x(k)| < 1 for every k ∈ Im and x(k) ̸= 0 for some k.

Lemma 4.2.3. Suppose x ∈ Ext(XFg) and x ̸= ±en for every n. Then supp(x) = Im
for some m ∈ N.

Proof. Suppose that supp(x) ⊊ Im. Then, if | supp(x)| < ⌊g(m)⌋, there exists ε > 0
such that y = ε(ek − el), where k, l ∈ supp(x) with k ̸= l, yields ∥x ± y∥Fg = 1,
which is a contradiction. On the other hand, if | supp(x)| ≥ ⌊g(m)⌋, then choose
0 < δ < min{x(k) : k ∈ supp(x)} and define y = δej for some j ∈ Im \ supp(x).
Then clearly, ∥x± y∥Fg = ∥x∥Fg = 1, and thus x /∈ Ext(XFg).

Theorem 4.2.4.

Ext(XFg) =
{
± en : ∃m ∈ N

(
g(m) ≥ 2 ∧ n ∈ Im

)}
∪
{ 1

⌊g(n)⌋
θ · χIn : n ∈ g−1

[
[1, 2n)

]
, θ ∈ {−1, 1}N

}
.

Proof. Let E0 and E1 denote, respectively, the first and second sets in the union on the
right-hand side above. By Lemma 4.2.2 E0 ⊆ Ext(XFg), so now we will show that the
same holds for E1.
Suppose that for a fixedm x = 1

⌊g(m)⌋χIm is not an extreme point. Then there is nonzero
y ∈ XFg such that ∥x± y∥Fg ≤ 1. Let A ∈ Fg be such that |A∩ In| = ⌊g(n)⌋ for every
n. Then ∑

j∈A∩Im

|x(j)± y(j)|+
∑
n̸=m

∑
j∈A∩In

|y(j)| ≤ 1. (4.5)

Note that by Lemma 4.0.3 x(j)± y(j) ≥ 0. Hence, we can rewrite (4.5) as follows

1±
∑

j∈A∩Im

y(j) +
∑
n̸=m

∑
j∈A∩In

|y(j)| ≤ 1. (4.6)

Thus ∑
n ̸=m

∑
j∈A∩In

|y(j)| ≤ 0,
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hence for each n ̸= m and each j ∈ A ∩ In we have y(j) = 0, and what follows -
y(j) = 0 for every j /∈ Im. Having this, from (4.6) we obtain that∑

j∈A∩Im

y(j) = 0,

and by Lemma 4.0.4 (as A ∩ Im is an arbitrary subset of Im of size ⌊g(m)⌋ < 2m) we
conclude that y(j) = 0 for each j ∈ Im. This is a contradiction with y ̸= 0.
Now suppose that x ∈ Ext(XFg). Then, by Lemma 4.2.1, there is n ∈ N such that
supp(x) ⊆ In. If | supp(x)| = 1, then x = ±ek, and by Lemma 4.2.2 we know that in
this case g(n) ≥ 2, i.e. x ∈ E0. If | supp(x)| > 1, then by Lemma 4.2.3 supp(x) = In.
By Remark 4.0.2 we can assume that x(k) > 0 for each k ∈ In. Suppose that x /∈ E1,
that is, x is not constant on the In. Define B0 = {k ∈ In : x(k) < 1

⌊g(n)⌋} and
B1 = In \ B0. Notice that by the assumption these sets are non-empty and, in addition,
|B1| < ⌊g(n)⌋. Let A0 ⊆ B0 be such that

min
k∈A0

x(k) ≥ max
k∈B0\A0

x(k) (4.7)

and |A0|+ |B1| = ⌊g(n)⌋. Then we have

1 = ∥x∥Fg =
∑
k∈A0

x(k) +
∑
k∈B1

x(k).

There exists ε > 0 such that for every k ∈ B1 x(k) − ε > x(j) for every j ∈ B0 and,
what follows, x(j) + ε < 1

⌊g(n)⌋ for each j ∈ B0. Define

y = εek −
ε

|A0|
χB0 .

Then we have

∥x± y∥Fg =
∑
k∈A0

(
x(k)∓ ε

|A0|
)
+

∑
k∈B1

x(k)± ε = 1,

thus x /∈ Ext(XFg), a contradiction.

On the family determined by a fixed vector

Let x be a vector given by

x =
∑
n∈N

1

2n
χIn . (4.8)

In this short part of the chapter, we consider the family Fx determined by x in the
following way
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Fx = {A ∈ [N]<∞ :
∑
j∈A

x(j) ≤ 1}. (4.9)

Note that for every n ∈ N, an interval In is an element of Fx. In addition, Fx is not
compact, as it contains infinite sets in its closure, e.g., {2n : n ≥ 1} ∈ Fx.
For a family defined in such a way, the Banach space ZFx has an interesting property.
Namely, x is its extreme point.

Proposition 4.2.5. The vector x given by (4.8) is the extreme point of ZFx .

Proof. Suppose x is not an extreme point and let z be, as usual, a nonzero vector such
that ∥x± z∥Fx ≤ 1. Denote z(j) = εj for every j ≥ 1. In particular, for every maximal
element A (i.e. such that

∑
j∈A x(j) = 1) we have

∑
j∈A |x(j) ± εj| ≤ 1. Hence,

the assumptions of Lemma 4.0.3 are satisfied by A ∈ FMAX
x and numbers x(j), εj for

j ∈ A, and then we have
1±

∑
j∈A

εj ≤ 1,

and thus
∑

j∈A εj = 0 for every maximal set A. In particular, for every k ∈ N∑
j∈Ik

εj = 0 (4.10)

and for every m ∈ Ik ∑
j∈Ik\{m}

εj + ε2k+1 + ε2k+1+1 = 0, (4.11)

as Ik \{m}∪{l, l′} is a maximal set in Fx for every pair l, l′ ∈ Ik+1. Note that, combin-
ing (4.10) and (4.11), we obtain 2k+1 equations with 2k+2 variables ε2k , ε2k+1, ..., ε2k+1+1.
The matrix Mk of size (2k+1)× (2k+2) that corresponds to this system of linear equa-
tions is, up to permutation of rows or columns, of the following form. Its first row
consists of 2k consequtive 1’s and last two entries are equal to 0, and for 2 ≤ j ≤ 2k+1
the j-th row has only one 0 in (j − 1)-th column, and the rest of the entries are equal to
1. For example, for k = 2 the matrix M2 is equal to

1 1 1 1 0 0
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1

 .

In particular, one can see that the last two columns are equal. The rank of this matrix
is equal to 2k + 1. Indeed, one can see that submatrix Bk which is obtained from

73:14970



72

Mk by removing its last column, is a square matrix of dimension (2k + 1) and, up
to permuatation, its j-th row, for 1 ≤ j ≤ 2k + 1 is equal to 1 − ej , where 1 =

(1, 1, ..., 1) ∈ R2k+1 and ej is j-th standard unit vector in R2k+1. Hence, these rows are
linearly independent vectors, thus det(Bk) ̸= 0, and so rank(Mk) = 2k + 1.
It is also easy to see that

u =


0
0
...
1
−1

 ∈ ker(Mk).

Using the rank-nullity theorem, we obtain that dim(ker(Mk)) = (2k+2)−rank(Mk) =
1, so ker(Mk) is spanned by u. What follows, in particular, εi = 0 for every i ∈ Ik, and
ε2k+1 = ε2k+1+1. Since in (4.11) 2k+1 and 2k+1+1 can be exchanged for any l, l′ ∈ Ik+1,
we also obtain that εi = 0 for all i ∈ Ik+1. Since k was chosen arbitrarily, for every
j ∈ N we have εj = 0, and hence z = 0.

Remark 4.2.6. Note that, by the definition of x,

A ∈ Fx ⇔
∑
k∈N

∑
j∈A∩Ik

x(j) ≤ 1 ⇔
∑
k∈N

|A ∩ Ik|
2k

≤ 1 ⇔
(
|A ∩ Ik|
|Ik|

)
∈ Bℓ1 .

Hence, Fx is the family of the form (2.10), more precisely, Fx = F(c0).

4.3 Combinatorial spaces and graphs
In this section, we introduce a combinatorial norm ∥ · ∥G associated with a graph G.
We present it in this chapter because we will be mostly interested in extreme points in
a related combinatorial space. More precisely, we will study extreme points of the unit
ball in ZG. In many cases, G will be a finite graph, and thus ZG and XG will coincide
(as finite-dimensional spaces).

Let Ω be a countable, possibly finite, set and let G = (V,E) be a graph with V ⊆
Ω. Let CG and AG denote the set of all cliques and the set of all anticliques of G,
respectively. Then, a combinatorial Banach space associated with a graph G is defined
as a completion of c00 with respect to the following norm

∥x∥G = sup
C∈CG

∑
v∈C

|x(v)|.

Note that here we slightly abuse the notation compared to the previously defined com-
binatorial spaces. More precisely, in the subscript of the norm symbol, we should write
CG, but we only write the symbol G. This should not confuse the reader.
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It is worth mentioning that some of the families considered so far in this thesis can be
viewed as graphs, such as C and A from Section 2.3. Indeed, C = (2<N, E0), where E0

consists of pairs of comparable sequences, and A = (2<N, E1), where E1 is a comple-
ment of E0. These two graphs are perfect and dual in the sense that the cliques of C are
the anticliques of A and vice versa.

It turns out that the extreme points in the case of perfect and non-perfect graphs differ
significantly; hence, we divide the discussion into two subsections.

4.3.1 Extreme points and perfect graphs
The literature concerning perfect graphs is very rich. Recall that by Theorem 1.2.2 G
is perfect if and only if it contains neither an odd hole nor an odd antihole. We will
present an elegant characterization of the set of extreme points in ZG. In more general
settings, these results come from a manuscript by P. Borodulin-Nadzieja, B. Farkas, and
J. Lopez-Abad, which had not yet been published at the time of writing this thesis.

Recall that by Theorem 1.2.1 of L. Lovász, a graph G = (V,E) is perfect if and only
if its complement is perfect. It turns out that the following theorem of V.Chvátal (see
[24]) was an important part of Lovász’s proof.

Theorem 4.3.1. A graph G = (V,E) is perfect if and only if

conv{χA : A ∈ AG} =

{
x ∈ [0, 1]V :

∑
v∈C

x(v) ≤ 1 for every C ∈ CG
}
.

This theorem will also be an important part of our characterization of extreme points.
Note that the equality in the theorem above can be written as follows

conv{x ∈ W (AG) : x ≥ 0} = {x ∈ BXG : x ≥ 0},

where W (H) =

{
β ∈ {−1, 0, 1}N : supp(β) ∈ H

}
for a family H (see Section 4.1).

Theorem 4.3.2. For a graph G = (V,E) the following are equivalent

(1) G is perfect.

(2) W (AG) = BXCG
∩ c00.

(3) For every finite induced subgraph H of G BXCH
= BX∗

AH
.

(4) For every finite induced subgraph H of G Ext(XCH ) = W (AMAX
H ).

Note that here we use the notation with CH and AH in a subscript to emphasize that we
consider the spaces induced by cliques and anticliques, respectively.
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Proof. We will prove (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).
(1) ⇒ (2). Note that this implication follows immediately from Theorem 4.3.1, since
both sets in (2) are invariant under changing signs in coordinates.
(2) ⇒ (3). Note that (2) holds if and only if W (AH) = BXCH

for every finite induced
subgraph H . Then,

BX∗
AH

= conv(Ext(X∗
AH )) = conv(W (AMAX

H )) = conv(W (AH)) = BXCH
,

where the second equality follows from Proposition 4.1.1.
(3) ⇒ (4). This is an immediate consequence of Proposition 4.1.1.
(4) ⇒ (1). If G is not perfect, then it contains either an odd hole or an odd antihole.
Both of these cases are considered in the next section. Then, by Proposition 4.3.7 and
Proposition 4.3.9, we conclude that (4) is not satisfied.

The following corollary follows straightforwardly from the previous theorem.

Corollary 4.3.3. If G is a perfect graph, then Ext(ZG) = W (AMAX
G ).

It is important to mention that Theorem 4.3.2 does not allow us to draw such conclusions
about the shape of Ext(XG) for an infinite graph G. Indeed, F = [N]≤1 is a perfect
graph, but Ext(XF) = Ext(c0) = ∅. The same situation is with A, family of all
antichains on 2<N. Indeed, if x was in Ext(XA), then supp(x) would be some maximal
chain C, and for each α ∈ C |x(α)| = 1 . But this is impossible, because the norm of
tails of x should be convergent to 0.

Sierpiński coloring and combinatorial Banach spaces

This part of the chapter is an exception, which means we consider combinatorial Banach
spaces related to some graphs, but we do not focus on their extreme points. We present
a quite interesting family defined by a certain coloring. It is also considered in the
manuscript of Nadzieja, Farkas, and Lopez-Abad that was mentioned before.
A function c : [Ω]2 → {0, 1} is called a coloring. Every set A ⊆ Ω such that |c[[A]2]| =
1 is called monochromatic.
Having coloring c we can define a graph Gc = (Ω, E), where E = {{a, b} ∈ [Ω]2 :
c(a, b) = 1}. Then the set of finite cliques (anticliques) consists of monochromatic sets
of color 1 (0).
Fix a bijection f : N → Q. The Sierpiński’s coloring cf associated with this bijection
is a coloring defined on [N]2 in the following way: cf (m,n) = 1 if and only if (m <
n ⇔ f(m) < f(n)). Hence, the family of cliques consists of these sets A = {n0 <
n1 < ... < nk}, k ∈ N, such that f(n0) < f(n1) < ... < f(nk). Analogously,
anticliques are exactly these sets, on which f is decreasing. We denote by Gf a graph
for a given coloring associated to the bijection f and, for simplicity, byXf we denote the
combinatorial Banach space related to Gf . We call it the Sierpiński’s space associated
with f .
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Proposition 4.3.4. For every bijections f, g : N → Q, the graph Gf is isomorphic to
an induced subgraph of Gg, and vice versa.

The idea behind the proof is to mimic the order of f via the bijection g. For example,
if f and g restricted to [0, 3) are given by f(0) = 0, f(1) = −1, f(2) = 3, and
g(0) = −1, g(1) = −2, g(2) = 0, then we can say that they mimic each other, because
f(i) < f(j) ⇔ g(i) < g(j) for every pair (i, j).

Proof. Without loss of generality, we can assume that f(0) = g(0) = 0. The isomor-
phism is a result of the following inductive procedure.
First note that there exists the smallest natural number n1 > 0 such that cg({0, n1}) =
cf ({0, 1}). At step k we find the smallest natural number nk > nk−1 such that cg({0, nk}) =
cf ({0, k}) and cg({nj, nk}) = cf ({j, k}) for every j < k. This is a formal expression
of the fact that every relation between any two values of f , restricted to [0, k] is exactly
the same as the relation between any two values of g.
In this way, we find an infinite set M = {0 < n1 < n2 < ...} such that the map
N ∋ j 7→ nj ∈ M is a graph isomorphism between Gf and a subgraph of Gg induced
by M .

As a consequence, we have the following corollary concerning combinatorial spaces
induced by Gf and Gg.

Corollary 4.3.5. For every bijections f, g : N → Q, Xf is isometric to a complemented
subspace of Xg and vice versa.

Proof. We find infinite sets M,N such that Gf is isomorphic to a subgraph of Gg in-
duced by M , and Gg is isomorphic to a subgraph of Gf induced by N . Then Xf is
isometric to [en : n ∈ M ] ⊆ Xg and Xg is isometric to [en : n ∈ N ] ⊆ Xf . Clearly,
these isometric copies are complemented.

However, the theorem of M. Wójtowicz (see [52]) states that if (xn) and (yn) are bases
in Banach spaces, (xn) is equivalent to a subbasis of (yn) and (yn) is equivalent to a
subbasis of (xn), then (xn) and (yn) are permutatively equivalent. Thus, we obtain the
following result.

Theorem 4.3.6. For any two bijections f, g : N → Q, Xf and Xg are isomorphic.

4.3.2 Extreme points and non-perfect graphs
In this subsection, we consider only non-perfect graphs. Recall that, by Theorem 1.2.2,
such graphs must contain odd holes or odd antiholes of size at least 5. We begin our
study of Ext(XG) with the case where G is an odd hole or an odd antihole. Then we
will extend it to some more complex non-perfect graphs.
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Proposition 4.3.7. If G = (V,E) is an odd hole then

Ext(XG) =

{
1

2
θ · χV : θ ∈ {−1, 1}V

}
Proof. Denote V = {v0, v1, ..., vk−1}, where k > 3 is an odd number. Suppose that
a vector x ∈ RV given by x(vj) = 1

2
for 0 ≤ j < k is not an extreme point (note

that ∥x∥G = 1, since all maximal cliques in G are of size 2). Take z ̸= 0 such that
∥x ± z∥G ≤ 1. Denote z(vj) = εj . Note that for every 0 ≤ j < k we have |εj| ≤ 1

2
,

hence {
1
2
+ εj +

1
2
+ εj+1 ≤ 1

1
2
− εj +

1
2
− εj+1 ≤ 1

,

where an addition in the subscript of ε’s is mod k. It implies that for every j we have
εj + εj+1 = 0. Hence z = ε0η · χV where η ∈ {−1, 1}V is given by η(vj) = (−1)j for
0 ≤ j < k. However, since k is odd, then η(v0) = η(vk−1), so ε0 = εk−1 = 0, and what
follows, z = 0.

Now let e ∈ Ext(XG) and assume that all values of e are non-negative. Note that
then e(vi) + e(vi+1) = 1 for every 0 ≤ i < k . Indeed, otherwise take a sufficiently
small positive number δ and define z ∈ RV as follows: if e(v0) + e(v1) = 1, then let
z(v0) = δ and z(v1) = −δ. Otherwise, put z(v0) = z(v1) = δ. Next, for any i ≥ 1,
put z(vi+1) = −z(vi), if e(vi) + e(vi+1) = 1 and z(vi+1) = z(vi), otherwise. Then z,
up to an absolute value, is equal δ and for every i |e(vi) + z(vi)| + |e(vi+1) + z(vi+1)|
is either equal 1 or equal to e(vi) + e(vi+1) + 2δ and the δ is chosen such that it does
not exceed 1. For |e(vi)− z(vi)| + |e(vi+1)− z(vi+1)| we have an analogous case, and
hence ∥e ± z∥G ≤ 1. Note that we did not use an assumption that k is odd, so this is
true for any hole.
Now suppose there is j such that e(vj) ̸= 1

2
. For simplicity, we can assume that j = 0.

Since e(vi) + e(vi+1) = 1 for every i, then we have

e(vi) =

{
e(v0), if i is even
1− e(v0), if i is odd.

However, since k − 1 is even we have e(vk−1) + e(v0) = 2e(v0) ̸= 1, which is a
contradiction.

Before we begin our analysis of extreme points in the antihole case, we need to introduce
some notation.

Recall that an antihole is the complement of a hole, meaning that each vertex is con-
nected to all the others except its two neighbors (in the original cycle). Below we present
a graphical representation of a 9-antihole.
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To describe the set of extreme points in the case of an odd antiholeG, we need to present
some facts about cliques in G.
We use the following notation. If V = {v0, v1, ..., vk−1} is the set of vertices of an
antihole G and {vi0 , vi1 , ..., vim} ⊆ V is a clique, then we denote C = ⟨i0, i1, ..., im⟩
and we always assume that j-th entry of C is smaller than (j + 1)-th.
It is easy to see that the size of a maximal clique in G is equal to ⌊k

2
⌋, since among

the numbers {0, 1, . . . , k − 1} there is at most k
2

pairs p, q such that |p − q| ≥ 2 (
mod (k − 1)). An interesting question is, how many of the maximal cliques are there
in G?
This can be reformulated as the following combinatorial problem. Find the cardinality
of B ⊆ {0, 1}2m+1 (k = 2m+ 1) of the sequences satisfying following properties

(1) Each element s of B has exactly m 1’s,

(2) For every s ∈ B there is no i < 2m such that s(i) = s(i+ 1) = 1, i.e. the distance
between 1’s needs to be at least 2,

(3) s(0) and s(2m) cannot be both equal 1.

Lemma 4.3.8. |B| = 2m+ 1

Proof. One can see that s ∈ B if and only if s satisfies condition (2) and there is
exactly one block of two zeros in s, i.e. there is exactly one j ∈ {0, 1, ..., 2m} such that
s(j) = s(j +1) = 0 (including the case that the first and last coordinates of s is a block
as well). Thus, we have 2m+1 many choices of such j and this choice, combined with
condition (2), determines the sequence s uniquely.
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We also need to introduce a certain type of matrix. Let n ∈ N+. We say that an n × n
matrix A is circulant (see [33]) if it is of the form

A =



a0 a1 . . . an−2 an−1

an−1 a0 . . . an−3 an−2

. . . . . . .

. . . . . . .

. . . . . . .
a2 a3 . . . a0 a1
a1 a2 . . . an−1 a0


. (4.12)

In other words, A is determined by a single vector (a0, a1, ..., an−2, an−1), meaning that
for every 1 < i ≤ n, the i-th row is a right shift of the first row by (i− 1) positions.
It is known (see [33]) that the eigenvalues λj of A, for 0 ≤ j < n are given by the
formula

λj =
n−1∑
k=0

akζ
−kj
n , (4.13)

where ζn = e
2πi
n is a primitive n-th root of unity. It is worth to mention that (4.13) is an

(j + 1)-th coordinate of a discrete Fourier transform of a sequence (a0, a1, ..., an−1).

Proposition 4.3.9. Let G = (V,E) be an odd antihole with |V | = 2m + 1, where
m ≥ 2. Then

Ext(XG) =

{
1

m
θ · χV : θ ∈ {−1, 1}V

}
.

Proof. First, we show that x given by x(v) = 1
m

, for v ∈ V is an extreme point.
Suppose otherwise, and let z be a nonzero vector for which ∥x ± z∥G ≤ 1. Then for
every maximal clique Ci, where 0 ≤ i < 2m + 1, we have

∑
v∈Ci(x(v) ± z(v)) ≤ 1

and, what follows,
∑

v∈Ci z(v) = 0. Fix a clockwise enumeration of V Then one can
see that we obtained a system of linear equations Az = 0, where A is a 0 − 1 square
matrix of dimension 2m + 1 such that each row consists of m 1’s, indicating a clique
of G (e.g. for m = 3, i.e. when G is an 7-antihole, there is a row (1, 0, 1, 0, 1, 0, 0)
which corresponds to the clique ⟨0, 2, 4⟩). Such A is a circulant matrix determined by
the vector a given by

a(k) =

{
1, if k is even and k ≤ 2(m− 1)

0, otherwise.

Claim. det(A) = m and so A is invertible.
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Proof of the Claim. By (4.13) we know that each eigenvalue λj of A is of the form

λj =
m−1∑
k=0

ζ−2kj
n ,

for n = 2m+ 1. Note that λ0 = m and for 1 ≤ j ≤ 2m we have

λj =
1− ζ−2mj

n

1− ζ−2j
n

.

Note that

ζ−2mj
n = (e

4mπi
2m+1 )−j = (e

2πi(2m+1)−2πi
2m+1 )−j = e2πi · (e

−2πi
n )−j = ζjn,

and thus

det(A) =
2m∏
j=0

λj = m

∏2m
j=1(1− ζjn)∏2m
j=1(1− ζ−2j

n )
= m

∏2m
j=1(1− ζjn)∏2m

j=1(1− ζ−jn )(1 + ζ−jn )
=

m∏2m
j=1(1 + ζjn)

,

where the last equality follows from the fact that the set of nth roots of unity forms a
group and, what follows {ζ−jn : 1 ≤ j ≤ 2m} = {ζjn : 1 ≤ j ≤ 2m}. It is known that
the product of roots of a polynomial P (z) =

∑N
k=0 akz

k is equal to (−1)N a0
aN

. Since
1+ ζjn is a root of C(z) = (z− 1)2m+1− 1 for every 0 ≤ j ≤ 2m, their product is equal
(−1)2m+1 · (−2) = 2. Hence

1∏2m
j=1(1 + ζjn)

=
1 + ζ0n

2
= 1,

and thus det(A) = m.

Thus z needs to be 0, which is a contradiction.
Now let e ∈ Ext(XG). Then for every maximal clique C we have∑

v∈C

e(v) = 1. (4.14)

Indeed, if for some i
∑

v∈Ci e(v) < 1, then one can find a nonzero vector z = A−1u,
where u is such that u(i) = 1−

∑
v∈Ci e(v) ̸= 0. This z is a witness for ∥e± z|G ≤ 1.

Since x that is constantly equal to 1
m

satisfies (4.14) and A defines a bijective linear
operator, we conclude that this is the only vector satisfying

Ax =


1
1
...
1

 .

It finishes the proof.
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Remark 4.3.10. One can deduce from Propositions 4.3.7 and 4.3.9 that in both cases the
set of extreme points can be described by a common formula. Namely, each coordinate
of an extreme point x ∈ XG is, up to absolute value, equal to 1

m
, where m is the size of

the maximal clique in G (equal to 2 when G is an odd hole, and equal to
⌊ |V |

2

⌋
when G

is an odd antihole). What is more, the proof of Proposition 4.3.7 can also be expressed
in a similar manner as the one above. The appropriate circulant matrix, associated with
an odd hole G, is determined by a vector (1, 1, 0, 0, ..., 0).

Let us now consider the following situation. Suppose that to the set of vertices V =
{v0, v1, ..., v2m} of an odd antihole (m > 1) we add an additional vertex w ̸= vi for
every 0 ≤ i ≤ 2m. Then, for a fixed non-maximal clique ⟨i0, i1, ..., ij−1⟩ ⊆ V , we
connect w to each of the vertices of this clique.

Proposition 4.3.11. For a fixed m and j < m, let G be the graph defined as above.
Then the vector x given by

x(vi) =
1

m
for all 0 ≤ i ≤ 2m, x(w) =

m− j

m

is an extreme point of XG.

Proof. If x was not in Ext(XG), then find a vector z ̸= 0 for which ∥x±z∥G ≤ 1. Then
we have one equation and one variable more than in the proof of Proposition 4.3.9.
More precisely, we obtain 0− 1 square matrix B of dimension 2m+ 2, which is of the
form [

A 0
u 1

]
, (4.15)

whereA is the matrix from the proof of Proposition 4.3.9, 0 is a column vector of 2m+1
zeros, and u is a row vector that corresponds to the clique ⟨i0, i1, ..., ij−1⟩. It is easy to
see that det(B) = det(A) = m. Thus, z = 0, which is a contradiction.

Hence, the above proposition states that, given a (2m+1)-antiholeG = (V,E) and some
w /∈ V , the vector that is constantly equal to 1

m
on V can be extended to an extreme point

x̃ ∈ RV ∪{w} in such a way that x(w) may take any value from { 1
m
, 2
m
, ..., m−1

m
}, where

the precise value depends on how w is connected to G.
Conversely, for any number m

n
with 0 < m < n, consider a graph consisting of a

(2n + 1)-antihole and a vertex w adjacent to n − m vertices of a fixed clique. Then
the vector x, defined to be 1

n
on the vertices of the antihole, and equal to m

n
on w, is

an extreme point in the space induced by such a graph. Thus, we have the following
corollary.

Corollary 4.3.12. For every rational number q ∈ (0, 1) there is a graph G = (V,E)
and x ∈ Ext(XG) such that q ∈ x[V ].
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Extensions to certain non-perfect graphs

It is natural to ask, what the extreme points look like for spaces related to more complex,
non-perfect graphs. In some trivial cases, the answers are straightforward. For example,
if G = ({v0, ..., v2k}, E) is an odd hole and we extend it to G̃ = (V ∪{w}, E∪{v0, w})
for some vertex w ̸= vi for every i and v0 ∈ V , then it is easy to see that x ∈ RG̃ equal
to 1

2
is an extreme point in ZG̃. It is also trivial that if we extend G by isolated vertices

w0, ..., wl for some j ∈ N, then x defined by x(vi) = 1
2

and x(wj) = 1 (0 ≤ i < 2m+1,
0 ≤ j ≤ l) is an extreme point in the space related to this extended graph.
These simple extensions led us to the interesting algorithm that allows us to produce
extreme points in spaces ZG generated by graphs containing an odd hole.
The procedure describing the graph G and defining an extreme point x is as follows.
Suppose that G contains an odd hole Ck for odd k > 3. Fix some enumeration {vn :
n ∈ M} of the set of vertices, where M can be either equal to an initial segment of
natural numbers, or equal to N. The algorithm has two parts.

• First, let D0 = Ck. For every vertex v ∈ Ck put x(v) = 1
2
.

• Next, let

k0 = min{j ∈M : there is v ∈ D0 such that vj ∈ G \D0 and {vj, v} ∈ E}.

If there is exactly one v ∈ D0 such that {vk0 , v} ∈ E, then put x(vk0) = 1
2
,

otherwise let x(vk0) = 0. Put D1 = D0 ∪ {vk0}.

• We proceed inductively, i.e., at step n+ 1 let

kn = min{j ∈M : there is v ∈ Dn such that vj ∈ G \Dn and {vj, v} ∈ E}.

We put x(vkn) = 1
2
, if there is exactly one v ∈ Dn such that {vkn , v} ∈ E,

otherwise we put x(vkn) = 0, and denote Dn+1 = Dn ∪ {vkn}.

• If there are no more such vertices, or we took infinitely many steps, we start the
second part of the algorithm.

• Let H0 =
⋃
Dn. Note that if w ∈ G \ H0 then it is not adjacent to any v ∈ V

with x(v) = 1
2
. Let

l0 = min{j ∈M : there is vj ∈ G \H0}.

We put x(vl0) = 1 and for every vertex u that is adjacent with vl0 let x(u) = 0.
Let H1 = H0 ∪ {vl0} ∪ {u ∈ V : {vl0 , u} ∈ E}.
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• We continue inductively, in a similar way as in the first part. At the step n+1, let
ln be the smallest natural number j for which vj /∈ Hn. We put x(vln) = 1 and
x(u) = 0 for every u with {vln , u} ∈ E.

Below we can see an example of a graph G with values of x ∈ RV (inside circles)
obtained in the described procedure.

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0

1
2

1
2

1
2

0 1

0

1

Proposition 4.3.13. x ∈ Ext(ZG).

Proof. Suppose there is z ̸= 0 such that ∥x± z∥G ≤ 1. For p ∈ {0, 1
2
, 1} let Vp denotes

x−1[{p}]. One can see that supp(z) ∩ V1 = supp(z) ∩ V0 = ∅. Indeed, every vertex v
with x(v) = 0 is either adjacent to w for which x(w) = 1, or forms an 3-clique with
v0, v1 ∈ V 1

2
. It is easy to verify that in both cases z(v) = 0. Similarly, every v with

x(v) = 1 is either adjacent to w, for which x(w) = 0 or v is isolated, and so z(v) needs
to be 0.
Thus supp(z) ⊆ V 1

2
. Let V 0

1
2

= Ck and for every n ≥ 1 put

V n
1
2
= {v ∈ V 1

2
: there exists w ∈ V n−1

1
2

such that {v, w} ∈ E}.

For every n ∈ N, fix a vertex vn with the following properties:

• vn ∈ V n
1
2

,

• {vn, vn+1} ∈ E.

Put εn = z(vn) for every n. Since {vn, vn+1} ∈ E, then we obtain εn+1 = −εn and,
what follows, εn = (−1)nε0 for every n ≥ 1. Since v0 ∈ Ck, then by Proposition
4.3.7 ε0 = 0, and thus εn = 0 for every n. Since the chain of vertices (vn) was chosen
arbitrarily, it implies that z = 0 and it finishes the proof.
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Remark 4.3.14. By Proposition 4.3.13, we can informally say that, starting from an
odd hole G and an extreme point x in ZG, and following the described procedure, we
can always extend G to any graph G̃ and x to some x̃ in such a way that x̃ ∈ Ext(ZG̃).
However, it is not clear whether a similar procedure exists when starting with an odd
antihole. We are able to construct some simple extensions, but no clear pattern emerges.
This may suggest that if such an algorithm exists, it is highly likely to be more compli-
cated than the one described above.
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