Two dimensional non-commutative random vectors in terms of $A P C$ operators

Aurel Iulian Stan

The Ohio State University at Marion

Bedlewo, August 21, 2009

Abstract

First we introduce the joint annihilation, preservation, and creation operators (APC) of two random variables that are not necessarily commuting. We then define the notion of two dimensional non-degenerated Meixner random vectors and classify them up to an invertible linear transformation.

1 Commutative Background
(Ω, \mathcal{F}, P) - probability space
$X_{1}, X_{2}, \ldots, X_{d}$ random var. on Ω.
$E\left[\left|X_{i}\right|^{p}\right]<\infty, \forall(p>0,1 \leq i \leq d)$.

For all $n \geq 0$, let:
$F_{n}:=\left\{P\left(X_{1}, \ldots, X_{d}\right) \mid \operatorname{deg}(P) \leq n\right\}$

$$
\mathbf{C}=F_{0} \subset F_{1} \subset F_{2} \subset \cdots \subset L^{2}(\Omega, P)
$$

$$
\mathbf{C}=F_{0} \subset F_{1} \subset F_{2} \subset \cdots \subset L^{2}(\Omega, P)
$$

Let $G_{0}:=F_{0}$, and for all $n \geq 1$ let:
$G_{n}:=F_{n} \ominus F_{n-1}$.

For all $1 \leq i \leq d$, let $X_{i}: F \rightarrow F$, $P\left(X_{1}, \ldots, X_{d}\right) \mapsto X_{i} P\left(X_{1}, \ldots, X_{d}\right)$

Lemma: $\forall(1 \leq i \leq d$ and $n \geq 0)$,

$$
\begin{equation*}
X_{i} G_{n} \perp G_{k} \tag{1.1}
\end{equation*}
$$

for all $k \neq n-1, n, n+1$.

Thus:

$$
X_{i} G_{n} \subset G_{n-1} \oplus G_{n} \oplus G_{n+1}
$$

If $f \in G_{n}$, then $\exists!f_{n-1} \in G_{n-1}$,
$f_{n} \in G_{n}$, and $f_{n+1} \in G_{n+1}$, s. t.:

$$
X_{i} f=f_{n-1}+f_{n}+f_{n+1}
$$

We define:

$$
\begin{aligned}
D_{n}^{-}(i) f & :=f_{n-1}, \\
D_{n}^{0}(i) f & :=f_{n}, \\
D_{n}^{+}(i) f & :=f_{n+1}
\end{aligned}
$$

Observe that:

$$
D_{n}^{-}(i): G_{n} \rightarrow G_{n-1}
$$

$D_{n}^{-}(i)$ - annihilation operator

$$
D_{n}^{0}(i): G_{n} \rightarrow G_{n}
$$

$D_{n}^{0}(i)$ - preservation operator

$$
D_{n}^{+}(i): G_{n} \rightarrow G_{n+1}
$$

$D_{n}^{+}(i)-$ creation operator

$$
X_{i} \mid G_{n}=D_{n}^{-}(i)+D_{n}^{0}(i)+D_{n}^{+}(i)
$$

If $F=\cup_{n \geq 0} F_{n}$, then for all $f \in F$,
there exist $f_{0} \in G_{0}, f_{1} \in G_{1}, \ldots$:

$$
f=f_{0}+f_{1}+\cdots
$$

We define:

$$
\begin{aligned}
a^{-}(i) f & =D_{0}^{-}(i) f_{0}+D_{1}^{-}(i) f_{1}+\cdots \\
a^{0}(i) f & =D_{0}^{0}(i) f_{0}+D_{1}^{0}(i) f_{1}+\cdots \\
a^{+}(i) f & =D_{0}^{+}(i) f_{0}+D_{1}^{+}(i) f_{1}+\cdots \\
X_{i} & =a^{-}(i)+a^{0}(i)+a^{+}(i)
\end{aligned}
$$

If $d=1$, we have only one r. v. X.
For all $n \geq 0, \operatorname{dim}\left(G_{n}\right) \leq 1$.
For all $n \geq 0$, let $f_{n}(X)$ be the only polynomial random variable from G_{n}, having the leading coefficient 1.

There exist α_{n} and ω_{n} real numbers such that:

$$
\begin{aligned}
& X f_{n}(X) \\
= & f_{n+1}(X)+\alpha_{n} f_{n}(X)+\omega_{n} f_{n-1}(X) \\
X & f_{n}=f_{n+1}+\alpha_{n} f_{n}+\omega_{n} f_{n-1}
\end{aligned}
$$

$\left\{\alpha_{n}\right\}_{n \geq 0},\left\{\omega_{n}\right\}_{n \geq 0}$ are called the SzegöJacobi parameters of X.

If X_{1}, \ldots, X_{d} are random var., then:

$$
X_{i} X_{j}=X_{j} X_{i}
$$

for all $1 \leq i, j \leq d$.

For all polynomial f, we have:

$$
\begin{aligned}
E\left[f\left(X_{1}, \ldots, X_{d}\right)\right] & =\int_{\Omega} f\left(X_{1}, \ldots, X_{d}\right) d P \\
& =\left\langle f\left(X_{1}, \ldots, X_{d}\right) 1,1\right\rangle
\end{aligned}
$$

2 Non-Commutative Background
Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert sp. over R.

Let $\left(H_{c},\langle\cdot, \cdot\rangle\right)$ be its complexification.

Let $X_{1}, X_{2}, \ldots, X_{d}$ be d symmetric dens. def. linear operators on H.

Let \mathcal{A} the complex algebra generated by $X_{1}, X_{2}, \ldots, X_{d}$.

We assume that there exists ϕ in H,
s.t. ϕ belongs to the domain of g, for any $g \in \mathcal{A}$.

We fix ϕ and call it vacuum vector.

Definition 2.1 We call any element
g of \mathcal{A}, a random variable. For any
g in \mathcal{A}, we define:

$$
\begin{equation*}
E[g]:=\langle g \phi, \phi\rangle \tag{2.2}
\end{equation*}
$$

and call the number $E[g]$ the
expectation of the random var. g.
Finally, we call the pair $(\mathcal{A}, \phi) a$ probability space supported by H.

Def. (\mathcal{A}, ϕ) and $\left(\mathcal{A}^{\prime}, \phi^{\prime}\right)$ prob. sp. supported by H and H^{\prime}.
$X_{1}, X_{2}, \ldots, X_{d}$ operators from \mathcal{A},
$X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{d}^{\prime}$ operators from \mathcal{A}^{\prime}.
We say that $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ and
$\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{d}^{\prime}\right)$ are moment equal
$\left(X_{1}, \ldots, X_{d}\right) \equiv\left(X_{1}^{\prime}, \ldots, X_{d}^{\prime}\right)$,
if for any pol. $p\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ of non-commutative variables, we have:

$$
E\left[p\left(X_{1}, \ldots, X_{d}\right)\right]=E^{\prime}\left[p\left(X_{1}^{\prime}, \ldots, X_{d}^{\prime}\right)\right] .
$$

We can do the same construction as before and get:

$$
X_{i}=a^{-}(i)+a^{0}(i)+a^{+}(i) .
$$

The domain of $X_{i}, a^{-}(i), a^{0}(i)$, and $a^{+}(i)$ is understood to be $\mathcal{A} \phi$.

If Y and Z are two operators, then we define their commutator $[Y, Z]$ as:

$$
[Y, Z]:=Y Z-Z Y
$$

The operators $X_{1}, X_{2}, \ldots, X_{d}$
commute among themselves if and only
if the following three conditions hold,
for any $i, j \in\{1,2, \ldots, d\}$:

$$
\begin{gathered}
{\left[a^{-}(i), a^{-}(j)\right]=0} \\
{\left[a^{-}(i), a^{0}(j)\right]=\left[a^{-}(j), a^{0}(i)\right]} \\
{\left[a^{-}(i), a^{+}(j)\right]-\left[a^{-}(j), a^{+}(i)\right]=\left[a^{0}(j), a^{0}(i)\right]} \\
{\left[X_{i}, X_{j}\right]: G_{n} \rightarrow} \\
\\
\oplus G_{n-2} \oplus G_{n-1} \oplus G_{n} \\
\oplus G_{n+1} \oplus G_{n+2},
\end{gathered}
$$

Definition 2.2 We define the

 number operator \mathcal{N} as the linear operator whose domain is $\mathcal{A} \phi$, defined by the formula:$$
\begin{equation*}
\mathcal{N} u=n u \tag{2.3}
\end{equation*}
$$

for all $n \geq 0$ and all $u \in G_{n}$.

3 Meixner random vectors of class \mathcal{M}_{L}
A Meixner random variable X, with infinite support,
has the Szegö-Jacobi parameters:

$$
\begin{equation*}
\alpha_{n}=\alpha n+\alpha_{0}, \tag{3.1}
\end{equation*}
$$

$$
\omega_{n}=\beta n^{2}+(t-\beta) n, \quad \text { (3.2) }
$$

for all $n \geq 1$,
where α, β, and t are real numbers,
such that $\beta \geq 0$ and $t>0$.

The Meixner r.v.,
with infinite support, are divided,
up to a re-scaling, into five sub-classes:
Gaussian,
Poisson,
negative binomial,
gamma,
two parameter hyperbolic secant r.v..

Since $\alpha_{n}=\alpha n+\alpha_{0}$, and
$a^{0} f_{n}(X)=\alpha_{n} f_{n}(X)$, we have:

$$
a^{0}=\alpha \mathcal{N}+\alpha_{0} I
$$

Since $\omega_{n}=\beta n^{2}+(t-\beta) n$, for all $n \geq 1$,

$$
\left[a^{-}, a^{+}\right]=2 \beta \mathcal{N}+t I
$$

Also,

$$
\left[a^{-}, a^{0}\right]=\alpha a^{-}
$$

If $\alpha \neq 0$, then:

$$
\mathcal{N}=\frac{1}{\alpha} a^{0}-\frac{\alpha_{0}}{\alpha} I .
$$

Let \mathcal{M}_{L} be the class of Meixner
random variables with $\alpha \neq 0$ or $\alpha=$ $\beta=0$.

Proposition 3.1 The Meixner

random variables of class \mathcal{M}_{L}, are
exactly those random variables
$X=a^{-}+a^{0}+a^{+}$, having finite
moments of all orders and infinite
support, for which the vector space
W spanned by a^{-}, a^{0}, a^{+}, and I,
equipped with the commutator $[\cdot, \cdot]$,
forms a Lie algebra, where I
denotes the identity operator.

Definition 3.2 $\operatorname{Let}(\mathcal{A}, \phi)$ be a noncommutative probability space and
X and Y two random variables from
A. Let $\left\{a_{u}^{-}, a_{u}^{0}, a_{u}^{+}\right\}_{u \in\{x, y\}}$ be their
joint (APC) decomposition. We say
that the pair (X, Y) is a Meixner
random vector of class \mathcal{M}_{L} if the real
vector space W spanned by the
operators $a_{x}^{-}, a_{x}^{0}, a_{x}^{+}, a_{y}^{-}, a_{y}^{0}, a_{y}^{+}$,
and I, equipped with the bracket
$[\cdot, \cdot]$ given by the commutator, forms a Lie algebra.

Definition 3.3 Let X and Y be two
random variables in a non-commutative
probability space (\mathcal{A}, ϕ) supported
by the Hilbert space H. We say that
the random vector (X, Y) is
non-degenerated if the vectors
$X \phi, Y \phi$, and ϕ are linearly
independent in H.

Proposition 3.4 If (X, Y) is a nondegenerated random vector, then the annihilation operators a_{x}^{-}and a_{y}^{-}, of X and Y, are linearly independent.

Example 1. Let X and Y be two
independent centered Meixner random
variables of class \mathcal{M}_{L} defined on the same probability space (Ω, \mathcal{F}, P).

$$
\begin{aligned}
& X:=a_{x}^{-}+a_{x}^{0}+a_{x}^{+} \\
& Y:=a_{y}^{-}+a_{y}^{0}+a_{y}^{+} .
\end{aligned}
$$

Since X and Y are independent, we
know from [1], that $\left[a_{x}^{\epsilon_{1}}, a_{y}^{\epsilon_{2}}\right]=0$, for all $\left(\epsilon_{1}, \epsilon_{2}\right) \in\{-, 0,+\}^{2}$.

Moreover, one can see that:

$$
\begin{aligned}
& {\left[a_{x}^{-}, a_{x}^{+}\right] \in \mathbf{R} I+\mathbf{R} a_{x}^{0}} \\
& {\left[a_{y}^{-}, a_{y}^{+}\right] \in \mathbf{R} I+\mathbf{R} a_{y}^{0}} \\
& {\left[a_{x}^{-}, a_{x}^{0}\right] \in \mathbf{R} a_{x}^{-}} \\
& {\left[a_{x}^{0}, a_{x}^{+}\right] \in \mathbf{R} a_{x}^{+}} \\
& {\left[a_{y}^{-}, a_{y}^{0}\right] \in \mathbf{R} a_{y}^{-}} \\
& {\left[a_{y}^{0}, a_{y}^{+}\right] \in \mathbf{R} a_{y}^{+}}
\end{aligned}
$$

Hence $(W,[\cdot, \cdot])$ is a Lie algebra,
where W is the real vector space spanned
by $I, a_{x}^{-}, a_{x}^{0}, a_{x}^{+}, a_{y}^{-}, a_{y}^{0}$, and a_{y}^{+}.
Thus (X, Y) is a commutative Meixner
random vector of class \mathcal{M}_{L}.

Example 2. Let T and Z be two independent centered Meixner r.v. of
class \mathcal{M}_{L}, having the same numbers
$\alpha=1$ and $t=1$, and
$\beta_{T}:=(1 / 2)(c p+d r)$, and
$\beta_{Z}:=(1 / 2)\left(j s^{\prime}+k v\right)$, where $c s^{\prime}+d v=0$
and

$$
j p+k r=0
$$

That means

$$
\begin{aligned}
\beta_{T} & =\frac{1}{2}(c, d) \cdot(p, r) \\
\beta_{Z} & =\frac{1}{2}(j, k) \cdot\left(s^{\prime}, v\right), \\
(c, d) & \perp\left(s^{\prime}, v\right) \\
(j, k) & \perp(p, r) .
\end{aligned}
$$

$T=a_{t}^{-}+a_{t}^{0}+a_{t}^{+}$and
$Z=a_{z}^{-}+a_{z}^{0}+a_{z}^{+}$.
Let us consider the following symmetric operators:

$$
X:=a_{t}^{-}+\left(p a_{t}^{0}+s^{\prime} a_{z}^{0}\right)+a_{t}^{+}
$$

and

$$
Y:=a_{z}^{-}+\left(r a_{t}^{0}+v a_{z}^{0}\right)+a_{z}^{+} .
$$

Then (X, Y) is a non-commutative

Meixner random vector of class \mathcal{M}_{L}.

We call X and Y independent Meixner
random variables with mixed preservation operators.

Theorem 3.5 If (X, Y) is a nondegenerated centered Meixner
random vector, then there exists an
invertible linear transformation
$S: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, such that the ran-
dom vector $\left(X^{\prime}, Y^{\prime}\right):=S(X, Y)$
is equivalent (moment equal) to a
random vector of two independent
Meixner random variables with mixed
preservation operators of class \mathcal{M}_{L}.

Equivalently, the vector space spanned
by the identity operator and the joint
(APC) operators of X and Y is
isomorphic, as a Lie algebra, to the
vector space spanned by the identity
operator and the joint (APC)
operators of two independent Meixner
random variables of class \mathcal{M}_{L}, with
mixed preservation operators.

In particular if X and Y commute,
then X^{\prime} and Y^{\prime} are independent.

References

[1] Accardi, L., Kuo, H.-H., and Stan, A.I.: Characterization of probability measures through the canonically associated interacting Fock spaces; Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7, No. 4 (2004) 485-505
[2] Accardi, L., Kuo, H.-H., and Stan, A.I.: Moments and commutators of probability measures: Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10, No. 4, 2007, 591-612
[3] Chihara, T.S.: An Introduction to Orthogonal Polynomials, Gordon \& Breach, New York, 1978
[4] Janson, S.:

Gaussian Hilbert Spaces, Cambridge University Press, 1997
[5] Kuo, H.-H.: White Noise Distribution Theory, CRC Press, Boca Raton, Florida, 1996
[6] Meixner, J.: Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion; J. London Math. Soc. 9 (1934) 613
[7] Obata, N: White Noise Calculus and Fock Space, Springer-Verlag, Berlin Heidelberg, 1994
[8] Stan, A.I. and Whitaker, J.J.: A study of probability measures through commutators; J. Theor. Prob., to appear.
[9] Sunder, V.S.: An invitation to von Neumann Algebras, Universitext, Springer-Verlag, New York, 1986
[10] Szegö, M.: Orthogonal Polynomials, Coll. Publ. 23, Amer. Math. Soc., 1975
[11] Voiculescu, D.V., Dykema, K.J., and Nica, A.: Free Random Variables, Vol. 1, CRM Monograph Series, American Mathematical Society, Providence, Rhode Island USA, 1992

