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Abstract

First we introduce the joint annihila-
tion, preservation, and creation oper-
ators (APC) of two random variables
that are not necessarily commuting.
We then define the notion of two di-
mensional non–degenerated Meixner
random vectors and classify them up
to an invertible linear transformation.
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1 Commutative Background

(Ω, F , P ) – probability space

X1, X2, . . ., Xd random var. on Ω.

E[|Xi|p] < ∞, ∀(p > 0, 1 ≤ i ≤ d).

For all n ≥ 0, let:

Fn := {P (X1, . . . , Xd) | deg(P ) ≤ n}

C = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ L2(Ω, P )
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C = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ L2(Ω, P )

Let G0 := F0, and for all n ≥ 1 let:

Gn := Fn 	 Fn−1.

For all 1 ≤ i ≤ d, let Xi : F → F ,

P (X1, . . . , Xd) 7→ XiP (X1, . . . , Xd)

Lemma: ∀(1 ≤ i ≤ d and n ≥ 0),

XiGn ⊥ Gk, (1.1)

for all k 6= n− 1, n, n + 1.
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Thus:

XiGn ⊂ Gn−1 ⊕Gn ⊕Gn+1

If f ∈ Gn, then ∃!fn−1 ∈ Gn−1,

fn ∈ Gn, and fn+1 ∈ Gn+1, s. t.:

Xif = fn−1 + fn + fn+1.

We define:

D−
n (i)f := fn−1,

D0
n(i)f := fn,

D+
n (i)f := fn+1
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Observe that:

D−
n (i) : Gn → Gn−1

D−
n (i) – annihilation operator

D0
n(i) : Gn → Gn

D0
n(i) – preservation operator

D+
n (i) : Gn → Gn+1

D+
n (i) – creation operator

Xi|Gn = D−
n (i) + D0

n(i) + D+
n (i)
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If F = ∪n≥0Fn, then for all f ∈ F ,

there exist f0 ∈ G0, f1 ∈ G1, . . . :

f = f0 + f1 + · · ·

We define:

a−(i)f = D−
0 (i)f0 + D−

1 (i)f1 + · · ·

a0(i)f = D0
0(i)f0 + D0

1(i)f1 + · · ·

a+(i)f = D+
0 (i)f0 + D+

1 (i)f1 + · · ·

Xi = a−(i) + a0(i) + a+(i).
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If d = 1, we have only one r. v. X .

For all n ≥ 0, dim(Gn) ≤ 1.

For all n ≥ 0, let fn(X) be the only
polynomial random variable from Gn,
having the leading coefficient 1.

There exist αn and ωn real numbers
such that:

Xfn(X)

= fn+1(X) + αnfn(X) + ωnfn−1(X)

Xfn = fn+1 + αnfn + ωnfn−1

{αn}n≥0, {ωn}n≥0 are called the Szegö–
Jacobi parameters of X .
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If X1, . . ., Xd are random var., then:

XiXj = XjXi,

for all 1 ≤ i, j ≤ d.

For all polynomial f , we have:

E[f (X1, . . . , Xd)] =
∫
Ω f (X1, . . . , Xd)dP

= 〈f (X1, . . . , Xd)1, 1〉.
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2 Non–Commutative Background

Let (H , 〈·, ·〉) be a Hilbert sp. over
R.

Let (Hc, 〈·, ·〉) be its complexifica-
tion.

Let X1, X2, . . ., Xd be d symmet-
ric dens. def. linear operators on H .

Let A the complex algebra generated
by X1, X2, . . ., Xd.
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We assume that there exists φ in H ,

s.t. φ belongs to the domain of g,

for any g ∈ A.

We fix φ and call it vacuum vector.
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Definition 2.1 We call any element

g of A, a random variable. For any

g in A, we define:

E[g] := 〈gφ, φ〉 (2.2)

and call the number E[g] the

expectation of the random var. g.

Finally, we call the pair (A, φ) a

probability space supported by H.
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Def. (A, φ) and (A′, φ′) prob. sp.
supported by H and H ′.

X1, X2, . . ., Xd operators from A,

X ′
1, X ′

2, . . ., X ′
d operators from A′.

We say that (X1, X2, . . ., Xd) and

(X ′
1, X ′

2, . . ., X ′
d) are moment equal

(X1, . . ., Xd) ≡ (X ′
1, . . ., X ′

d),

if for any pol. p(x1, x2, . . ., xd) of

non–commutative variables, we have:

E [p (X1, . . . , Xd)] = E′
[
p

(
X ′

1, . . . , X
′
d

)]
.
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We can do the same construction

as before and get:

Xi = a−(i) + a0(i) + a+(i).

The domain of Xi, a−(i), a0(i), and

a+(i) is understood to be Aφ.

If Y and Z are two operators, then

we define their commutator [Y , Z] as:

[Y, Z] := Y Z − ZY.
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The operators X1, X2, . . ., Xd

commute among themselves if and only

if the following three conditions hold,

for any i, j ∈ {1, 2, . . ., d}:

[
a−(i), a−(j)

]
= 0

a−(i), a0(j)
 =

a−(j), a0(i)


[
a−(i), a+(j)

]
−

[
a−(j), a+(i)

]
=

a0(j), a0(i)


[Xi, Xj] : Gn → Gn−2 ⊕Gn−1 ⊕Gn

⊕ Gn+1 ⊕Gn+2,
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Definition 2.2 We define the

number operator N as the linear

operator whose domain is Aφ,

defined by the formula:

Nu = nu, (2.3)

for all n ≥ 0 and all u ∈ Gn.
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3 Meixner random vectors of class ML

A Meixner random variable X ,

with infinite support,

has the Szegö–Jacobi parameters:

αn = αn + α0, (3.1)

ωn = βn2 + (t− β)n, (3.2)

for all n ≥ 1,

where α, β, and t are real numbers,

such that β ≥ 0 and t > 0.
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The Meixner r.v.,

with infinite support, are divided,

up to a re–scaling, into five sub–classes:

Gaussian,

Poisson,

negative binomial,

gamma,

two parameter hyperbolic secant r.v..
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Since αn = αn + α0, and

a0fn(X) = αnfn(X), we have:

a0 = αN + α0I

Since ωn = βn2 + (t − β)n, for all
n ≥ 1,

[a−, a+] = 2βN + tI,

Also,

[a−, a0] = αa−.
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If α 6= 0, then:

N =
1

α
a0 − α0

α
I.

Let ML be the class of Meixner

random variables with α 6= 0 or α =
β = 0.
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Proposition 3.1 The Meixner

random variables of class ML, are

exactly those random variables

X = a− + a0 + a+, having finite

moments of all orders and infinite

support, for which the vector space

W spanned by a−, a0, a+, and I,

equipped with the commutator [·, ·],

forms a Lie algebra, where I

denotes the identity operator.
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Definition 3.2 Let (A, φ) be a non–

commutative probability space and

X and Y two random variables from

A. Let {a−u , a0
u, a+

u }u∈{x,y} be their

joint (APC) decomposition. We say

that the pair (X, Y ) is a Meixner

random vector of class ML if the real

vector space W spanned by the

operators a−x , a0
x, a+

x , a−y , a0
y, a+

y ,

and I, equipped with the bracket
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[·, ·] given by the commutator, forms

a Lie algebra.

Definition 3.3 Let X and Y be two

random variables in a non–commutative

probability space (A, φ) supported

by the Hilbert space H. We say that

the random vector (X, Y ) is

non–degenerated if the vectors

Xφ, Y φ, and φ are linearly

independent in H.
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Proposition 3.4 If (X, Y ) is a non–
degenerated random vector, then the
annihilation operators a−x and a−y ,
of X and Y , are linearly indepen-
dent.
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Example 1. Let X and Y be two

independent centered Meixner random

variables of class ML defined on the

same probability space (Ω, F , P ).

X := a−x + a0
x + a+

x

Y := a−y + a0
y + a+

y .

Since X and Y are independent, we

know from [1], that [aε1
x , aε2

y ] = 0, for

all (ε1, ε2) ∈ {−, 0, +}2.

Moreover, one can see that:
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[
a−x , a+

x

]
∈ RI + Ra0

x,[
a−y , a+

y

]
∈ RI + Ra0

y,a−x , a0
x

 ∈ Ra−x ,a0
x, a

+
x

 ∈ Ra+
x ,a−y , a0

y

 ∈ Ra−y ,a0
y, a

+
y

 ∈ Ra+
y .

Hence (W , [·, ·]) is a Lie algebra,

where W is the real vector space spanned

by I , a−x , a0
x, a+

x , a−y , a0
y, and a+

y .

Thus (X , Y ) is a commutative Meixner

random vector of class ML.
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Example 2. Let T and Z be two

independent centered Meixner r.v. of

class ML, having the same numbers

α = 1 and t = 1, and

βT := (1/2)(cp + dr), and

βZ := (1/2)(js′ + kv), where

cs′ + dv = 0

and

jp + kr = 0.

27



That means

βT =
1

2
(c, d) · (p, r),

βZ =
1

2
(j, k) · (s′, v),

(c, d) ⊥ (s′, v),

(j, k) ⊥ (p, r).

T = a−t + a0
t + a+

t and

Z = a−z + a0
z + a+

z .

Let us consider the following symmet-
ric operators:

X := a−t + (pa0
t + s′a0

z) + a+
t

and

Y := a−z + (ra0
t + va0

z) + a+
z .
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Then (X , Y ) is a non–commutative

Meixner random vector of class ML.

We call X and Y independent Meixner

random variables with mixed

preservation operators.
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Theorem 3.5 If (X, Y ) is a non–

degenerated centered Meixner

random vector, then there exists an

invertible linear transformation

S : R2 → R2, such that the ran–

dom vector (X ′, Y ′) := S(X, Y )

is equivalent (moment equal) to a

random vector of two independent

Meixner random variables with mixed
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preservation operators of classML.

Equivalently, the vector space spanned

by the identity operator and the joint

(APC) operators of X and Y is

isomorphic, as a Lie algebra, to the

vector space spanned by the identity

operator and the joint (APC)

operators of two independent Meixner

random variables of classML, with

mixed preservation operators.
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In particular if X and Y commute,

then X ′ and Y ′ are independent.

32



References

[1] Accardi, L., Kuo, H.–H., and Stan,
A.I.: Characterization of probabil-
ity measures through the canon-
ically associated interacting Fock
spaces; Infin. Dimens. Anal.
Quantum Probab. Relat. Top., 7,
No. 4 (2004) 485–505

[2] Accardi, L., Kuo, H.-H., and
Stan, A.I.: Moments and com-
mutators of probability measures:
Infin. Dimens. Anal. Quantum
Probab. Relat. Top., 10, No. 4,
2007, 591–612

[3] Chihara, T.S.: An Introduction
to Orthogonal Polynomials, Gor-
don & Breach, New York, 1978

33



[4] Janson, S.:
Gaussian Hilbert Spaces, Cam-
bridge University Press, 1997

[5] Kuo, H.–H.: White Noise Distri-
bution Theory, CRC Press, Boca
Raton, Florida, 1996

[6] Meixner, J.: Orthogonale Poly-
nomsysteme mit einer besonderen
Gestalt der erzeugenden Funktion;
J. London Math. Soc. 9 (1934) 6–
13

[7] Obata, N: White Noise Calculus
and Fock Space, Springer–Verlag,
Berlin Heidelberg, 1994

[8] Stan, A.I. and Whitaker, J.J.:
A study of probability measures
through commutators; J. Theor.
Prob., to appear.

34



[9] Sunder, V.S.: An invitation to
von Neumann Algebras, Univer-
sitext, Springer–Verlag, New York,
1986

[10] Szegö, M.: Orthogonal Poly-
nomials, Coll. Publ. 23, Amer.
Math. Soc., 1975

[11] Voiculescu, D.V., Dykema, K.J.,
and Nica, A.: Free Random Vari-
ables, Vol. 1, CRM Monograph Se-
ries, American Mathematical So-
ciety, Providence, Rhode Island
USA, 1992

35


