Remarks on the non-commutative Khintchine inequalities

Gilles Pisier U. Pierre et **Marie Curie** (Paris VI) and Texas A&M U.

Będlewo, August 18, 2009

Gilles Pisier U. Pierre et Marie Curie (Paris VI) and Texas A&M Remarks on the non-commutative Khintchine inequalities

Applications to Operator Spaces and Questions

Gilles Pisier U. Pierre et Marie Curie (Paris VI) and Texas A&M Remarks on the non-commutative Khintchine inequalities The non-commutative Khintchine inequalities are mainly due to Françoise Lust-Piquard [LP1986] (see also [LPP1992]) They play a very important rôle in the recent developments in Operator Space Theory and non-commutative L_p -spaces, central tool to understand unconditional convergence in non-commutative L_p (e.g. martingale ineq. P.-Xu). also (cf. Maurey) in connection with Grothendieck's Theorem The operator space analogues of Grothendieck's Theorem also close connection with some form of Khintchine inequalities (cf. e.g. P. -Shlyakhtenko, Invent. 2002, Haagerup-Musat 2008). Further motivation in Random Matrix Theory and Free Probability. The Rademacher functions in classical L_p (i.e. i.i.d. ± 1 -valued independent random variables) satisfy the same inequalities as the freely independent ones in non-commutative L_p for $p < \infty$. Let (ε_k) be the coordinate functions on $\{-1, 1\}^{\mathbb{N}}$ equipped with the uniform probability μ on $\{-1, 1\}^{\mathbb{N}}$ (equivalently the Rademacher functions on $\Omega = [0, 1]$). Recall the classical Khintchine inequalities : For any 0 $there are constants <math>A_p > 0$ and $B_p > 0$ such that for any sequence $x = (x_n)$ in ℓ_2 we have

$$A_{p}\left(\sum|x_{n}|^{2}\right)^{1/2} \leq \left(\int\left|\sum x_{n}\varepsilon_{n}\right|^{p}d\mu(\varepsilon)\right)^{1/p} \leq B_{p}\left(\sum|x_{n}|^{2}\right)^{1/2}$$
(1)

Note $A_p = 1$ if $p \ge 2$ and $B_p = 1$ if $p \le 2$. Note that the best possible A_p , B_p are known (Szarek, Haagerup,...) e.g. $A_1 = 1/\sqrt{2}$. Suppose now that $x = (x_n)$ is a sequence in $L_p(\Omega, \nu)$ then after integration (1) yields

$$A_{p} \left\| \left(\sum |x_{n}|^{2} \right)^{1/2} \right\|_{p} \leq \left(\int \left\| \sum x_{n} \varepsilon_{n} \right\|_{p}^{p} d\mu \right)^{1/p} \leq B_{p} \left\| \left(\sum |x_{n}|^{2} \right)^{1/2} \right\|_{p}$$
(2)
where $\|.\|_{p}$ is relative to $L_{p}(\Omega, \nu)$.

Consider now a sequence $x = (x_n)$ in $L_p(M, \tau)$ where (M, τ) is a non-commutative semi-finite measure space. The non-commutative Khintchine inequalities say, when $1 \le p \le 2$, that there is a constant $A'_p > 0$ independent of $x = (x_n)$ such that

$$A'_{p}|||x|||_{p} \leq \left(\int \left\|\sum \varepsilon_{n} x_{n}\right\|_{p}^{p} d\mu\right)^{1/p}$$
(3)

where

$$|||x|||_{p} \stackrel{\text{def}}{=} \inf_{x_{n}=a_{n}+b_{n}} \left\{ \left\| \left(\sum a_{n}^{*}a_{n}\right)^{1/2} \right\|_{p} + \left\| \left(\sum b_{n}b_{n}^{*}\right)^{1/2} \right\|_{p} \right\}.$$
(4)

Note : converse easy, with constant 1 (by operator concavity of $t \mapsto t^{p/2}$)

Ref: LP for 1 , LP and P for <math>p = 1. Recently (JFA 08) Haagerup and Musat showed that $A'_1 = 1/\sqrt{2}$ (best) if one uses the complex version of (ε_n) , i.e. the coordinates on $\mathbf{T}^{\mathbb{N}}$. $\begin{array}{l} \mbox{Khintchine inequalities}\\ \mbox{The case 0} < \rho < 1\\ \mbox{Applications to Operator Spaces and Questions} \end{array}$

In the case $2 \le p < \infty$, the non-com Khintchine ineq. are different : we set

$$|||x|||_{p} \stackrel{\text{def}}{=} \max\left\{ \left\| \left(\sum x_{n}^{*} x_{n} \right)^{1/2} \right\|_{p}, \left\| \left(\sum x_{n} x_{n}^{*} \right)^{1/2} \right\|_{p} \right\}$$

Then LP proved (see also Buchholz Math.Ann. 2001) that

$$\left(\int \left\|\sum \varepsilon_n x_n\right\|_{\rho}^{\rho} d\mu\right)^{1/\rho} \leq B'_{\rho} |||x|||_{\rho} \leq C\sqrt{\rho} |||x|||_{\rho}$$

and again converse holds with constant = 1 The cases $1 and <math>2 < p' < \infty$ are dual to each other. The case p = 1 is essentially the dual equivalent (by LPP) to the little non-commutative Grothendieck ineq. ($p' = \infty$) The case 0 is still OPENbut we will report partial progress We will concentrate on the case $1 \le p < q < 2$. Let us call (K_p) the validity of the non-commutative Khintchine ineq. for a given fixed sequence (ξ_n) of non-commutative "random variables" in $L_p(\varphi)$

Our main result is the implication ("extrapolation")

$$(\xi_n)$$
 satisfies $(K_q) \Rightarrow (\xi_n)$ satisfies (K_p)

$$(\mathcal{K}_{p}) \quad \begin{cases} \exists \beta_{p} \text{ such that for any finite sequence} \\ x = (x_{n}) \text{ in } L_{p}(\tau) \text{ we have} \\ |||x|||_{p} \leq \beta_{p} \|\sum \xi_{n} \otimes x_{n}\|_{L_{p}(\varphi \times \tau)} \\ \text{where } ||| \cdot |||_{p} \text{ is defined as in (5).} \end{cases}$$

Examples

- If $\forall \pm 1$, dist $(\pm \xi_n) = \text{dist}(\xi_n)$ then (K_p) for all $1 \le p < \infty$
- (ε_n), i.i.d. real or complex Gaussian, Hadamard lacunary (or Sidon sets), free unitary, free circular or semi-circular, spin systems (CAR), *q*-free Gaussian ($-1 \le q \le 1$) all satisfy (K_p) for all $1 \le p < \infty$
- Harcharras (Studia 1999) gave for each integer k > 1 examples that satisfy $(K_{p'})\&(K_p)$ when p' = 2k but do not satisfy it for p' > 2k.

• Similar examples for arbitrary (non integer) k > 1 are an open problem (operator space analogue of the $\Lambda(p)$ set problem solved by Bourgain)

• Our main result shows in particular that the Harcharras examples satisfy (K_1) (Note : this special case can also be obtained by the Haagerup-Musat argument)

 $\begin{array}{l} \mbox{Khintchine inequalities} \\ \mbox{The case } 0$

When p < 2, let us say that a sequence (f_n) in classical L_p satisfies the classical Khintchine inequality (KI_p) if $\exists c_p$ such that for all finite scalar sequences (a_n)

$$(\sum |a_n|^2)^{1/2} \leq c_p \|\sum a_n f_n\|_p.$$

Assume (f_n) is orthonormal in L_2 , or merely that

$$\|\sum a_n f_n\|_2 \leq (\sum |a_n|^2)^{1/2}$$

Then it is easy and well known that if p < q < 2,

$$(f_n)$$
 satisfies $(KI_q) \Rightarrow (\xi_n)$ satisfies (KI_p)

Indeed, let $S = \sum a_n f_n$. Recall p < q < 2Let θ be such that $1/q = (1 - \theta)/p + \theta/2$. By Hölder

$$(\sum |a_j|^2)^{1/2} \leq c_q \|\mathcal{S}\|_q \leq c_q \|\mathcal{S}\|_{\rho}^{1- heta} \|\mathcal{S}\|_2^{ heta} = c_q \|\mathcal{S}\|_{\rho}^{1- heta} (\sum |a_j|^2)^{ heta/2},$$

and hence after a suitable division we obtain

$$(\sum |a_j|^2)^{1/2} \le (c_q)^{1/(1- heta)} \|S\|_{
ho}$$

and hence KI_p holds with $c_p = (c_q)^{1/(1-\theta)}$.

The heart of this simple argument is that for any q < 2

$$L_q - \operatorname{span} \{ f_n \mid n \ge 1 \} = L_2 - \operatorname{span} \{ f_n \mid n \ge 1 \}$$

with equivalent norms

In sharp contrast, the analogue of this fails for operator spaces, i.e. completely isomorphically

Nevertheless, the above extrapolation argument works, but requires a more sophisticated version of Hölder's inequality, that (apparently) forces us to restrict ourselves to $p \ge 1$.

In case p < 1 we are able to extend LP's result in special case

$$\sum_{i,j}arepsilon_{i,j}oldsymbol{x}_{i,j}oldsymbol{e}_{i,j}\in oldsymbol{S}_{oldsymbol{
ho}}$$

Corollary

Let $\lambda_{ij} \in \mathbb{C}$ be arbitrary complex scalars. The following are equivalent.

- (i) The matrix $[\varepsilon_{ij}\lambda_{ij}]$ belongs to S_p for almost all choices of signs $\varepsilon_{ij} = \pm 1$.
- (ii) Same as (i) for all choices of signs.
- (iii) There is a decomposition $\lambda_{ij} = a_{ij} + b_{ij}$ with

$$\sum_{i} \left(\sum_{j} |a_{ij}|^2
ight)^{p/2} < \infty \quad \textit{and} \quad \sum_{j} \left(\sum_{i} |b_{ij}|^2
ight)^{p/2} < \infty$$

Gilles Pisier U. Pierre et Marie Curie (Paris VI) and Texas A&M Remarks on the non-commutative Khintchine inequalities

Corollary

Let 0 . Let*r* $be such that <math>\frac{1}{r} = \frac{1}{p} - \frac{1}{2}$. Consider a Schur multiplier

$$u_{\varphi}: [\mathbf{x}_{ij}] \rightarrow [\mathbf{x}_{ij}\varphi_{ij}]$$

where $\varphi_{ij} \in \mathbb{C}$. The following are equivalent :

- (i) u_{φ} is bounded from S_2 to S_p .
- (ii) φ admits a decomposition as $\varphi = \psi + \chi$ with $\sum_{i} \sup_{j} |\psi_{ij}|^{r} < \infty \text{ and } \sum_{j} \sup_{i} |\chi_{ij}|^{r} < \infty.$

(iii) There is a sequence $f_i \ge 0$ with $\sum f_i < \infty$ such that $|\varphi_{ij}| \le f_i^{1/r} + f_j^{1/r}$.

In Studia 1999 Harcharras proved that there are subsets of $\{e^{int} \mid 0 \le n \le N\}$ with size $\approx N^{1/2}$ that satisfy (K_4) and hence (by duality) ($K_{4/3}$). In particular, this holds for the random subset. Our result shows they automatically satisfy (K_1). **Operator Space interpretation :**

 $R_{N^{1/2}} + C_{N^{1/2}} \subset \ell_1^N$ completely isomorphic embedding

Conjecture : This holds with size $\approx N$ instead of $N^{1/2}$ and the random subset should work, yielding

$$R_{\delta N}+C_{\delta N}\subset \ell_1^N \quad (\delta>0)$$

Kashin decomposition?

Conjectures (more explicitly) :

• There are subsets of $\{e^{int} \mid 0 \le n \le N\}$ with size $\approx N^{1-\varepsilon}$ that satisfy (K_1) with a fixed constant $c(\varepsilon)$ (indep. of N). Note : Probably randomly chosen subsets do the job ! cannot be proportional by Szemeredi's theorem (presence of arithmetic progressions)

• There is an orthonormal basis

 ξ_1, \cdots, ξ_N

in L_2^N (equipped with uniform proba) such that both

 $\{\xi_1, \cdots, \xi_{N/2}\}$ and $\{\xi_{N/2+1}, \cdots, \xi_N\}$

satisfy (K_1) with a constant *C* (indep. of *N*) in L_1^N . Note : Maybe a randomly chosen orthogonal decomposition does the job !

Gilles Pisier U. Pierre et Marie Curie (Paris VI) and Texas A&M Remarks on the non-commutative Khintchine inequalities

Corollary

There is a constant $c \ge 1$ such that, for any N, the usual "basis" $\{e_{ij}\}$ of S_1^N (N × N trace-class) contains a *c*-unconditional subset of size $\ge N^{3/2}$.

Conjecture : Same for $N^{2-\varepsilon}$...

Sketch of proof :

Assume (ξ_n) orthonormal in (non-commutative) $L_2(\varphi)$, or merely that

$$\|\sum a_n\xi_n\|_2 \leq (\sum |a_n|^2)^{1/2}.$$

This guarantees that

$$\|\sum \xi_n \otimes x_n\|_2 \leq (\sum \|x_n\|_2^2)^{1/2},$$

for all (x_n) in $L_2(M, \tau)$. Recall we want to prove :

Theorem

Let 1 < q < 2. Then (ξ_n) satisfies $(K_q) \Rightarrow (\xi_n)$ satisfies (K_p) for all $1 \le p < q$.

$$(K_{\rho}) \quad \begin{cases} \exists \beta_{\rho} \text{ such that for any finite sequence} \\ x = (x_{n}) \text{ in } L_{\rho}(\tau) \text{ we have} \\ |||x|||_{\rho} \leq \beta_{\rho} \|\sum \xi_{n} \otimes x_{n}\|_{L_{\rho}(\varphi \times \tau)} \end{cases}$$

where

$$|||x|||_{p} \stackrel{\text{def}}{=} \inf_{x_{n}=a_{n}+b_{n}} \left\{ \left\| \left(\sum a_{n}^{*}a_{n}\right)^{1/2} \right\|_{p} + \left\| \left(\sum b_{n}b_{n}^{*}\right)^{1/2} \right\|_{p} \right\}.$$
(5)

Gilles Pisier U. Pierre et Marie Curie (Paris VI) and Texas A&M Remarks on the non-commutative Khintchine inequalities

Sketch of proof :

$$S=\sum \xi_n\otimes x_n.$$

Let \mathcal{D} be the collection of all "densities," i.e. all f in $L_1(\tau)_+$ with $\tau(f) = 1$. Fix p with $0 . Then we denote for <math>x = (x_n)$

$$C_q(x) = \inf \left\{ \left\| \sum \xi_n \otimes y_n \right\|_q \right\}$$

where $\|\cdot\|_q$ is the norm in $L_q(\varphi \otimes \tau)$ and the infimum runs over all sequences $y = (y_n)$ in $L_q(\tau)$ for which there is f in \mathcal{D} such that

$$2x_n = f^{\frac{1}{p} - \frac{1}{q}}y_n + y_n f^{\frac{1}{p} - \frac{1}{q}}.$$

Again

$$C_q(x) = \inf_{f \in \mathcal{D}} \left\{ \left\| \sum \xi_n \otimes T(f^{\frac{1}{p} - \frac{1}{q}})^{-1} x_n \right\|_{L_q(\varphi \otimes \tau)} \right\}$$

where

$$T(g)y = (gy + yg)/2$$

Observe that on one hand

$$C_p(x) = \|S\|_p$$

and on the other

$$C_2(x) \simeq |||x|||_p$$

Variant of "Maurey's extrapolation principle" we emphasize that here *p* remains fixed while the index *q* $(p < q \le 2)$ in $C_q(x)$ is "interpolating" between the cases q = pand q = 2.

Recall

$$C_{\rho}(x) = \|S\|_{\rho}$$
 and $C_{2}(x) \simeq |||x|||_{\rho}$

Another rather simple observation is (p<q<2)

$$(K_q) \Rightarrow |||x|||_p \leq C'C_q(x).$$

Main point

(Ingredients Junge-Parcet Duke 08, + P. Pacific 92)

$$C_q(x) \leq C''' C_p(x)^{1-\theta} C_2(x)^{\theta}$$

where $\frac{1}{q} = \frac{1-\theta}{p} + \frac{\theta}{2}$. (Recall $p < q < 2$ so that $0 < \theta < 1$.)
The preceding points put all together yield
 $|||x|||_p \leq C' C''' C_p(x)^{1-\theta} (C''|||x|||_p)^{\theta}$

and hence

$$|||x|||_{p} \leq C^{''''}C_{p}(x) = C^{''''}||S||_{p}.$$

Can assume *f* diagonal with monotone coefficients λ_n then

$$T(f^{rac{1}{p}-rac{1}{q}})^{-1}x = \left[rac{1}{\lambda_{j}^{rac{1}{p}-rac{1}{q}}+\lambda_{j}^{rac{1}{p}-rac{1}{q}}}x_{ij}
ight]$$

main step uses lower+upper triangular (UT) decomposition

$$T(f^{\frac{1}{p}-\frac{1}{q}})^{-1}x = \left[1_{i < j}\frac{1}{\lambda_{i}^{\frac{1}{p}-\frac{1}{q}} + \lambda_{j}^{\frac{1}{p}-\frac{1}{q}}}x_{ij}\right] + \left[1_{i \ge j}\frac{1}{\lambda_{i}^{\frac{1}{p}-\frac{1}{q}} + \lambda_{j}^{\frac{1}{p}-\frac{1}{q}}}x_{ij}\right]$$

and
$$\mathcal{S}_q/UT_q = (\mathcal{S}_p/UT_p, \mathcal{S}_2/UT_2)_{ heta}$$

Thank you!