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Definicja 1.1. Algebrg nazywamy przestrzen liniowg nad C z mnozeniem.

Mnozenie jest rozdzielne wzgledem dodawania (obustronnie) oraz

a(zy) = (ax)y = z(ay), a€C

Definicja 1.2. Algebrg unormowang nazywamy algebre z normg spetniajgcg
warunek podmultiplikatywnosci

Jesli algebra jest zupelna, to nazywamy jo algebrg Banacha.

[yl < [l lyll

*Wyklad opracowany na podstawie notatek Wiktora Malinowskiego
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Przyktady

(a) C[0,1]
[fllee = max |f(z)|, (fg)(x) = f(x)g(x)

0<z<1

tzn. mnozenie jest punktowe. Przedzial [0, 1] mozna zastapi¢ zwarta
przestrzenia topologiczna.

(b)
Co®) = {f € CR : lm f() =0}, [|fllo = max|f(x)

(¢) B(H) przestrzen operatoréw ograniczonych na przestrzeni Hilberta z

norma operatorowa: [|[AB| < ||A]l||B]|

Definicja 1.3. Algebre nazywamy przemiennq, jesli mnozenie jest przemien-
ne. Element e w algebrze A nazywamy jednosciq, jesli

eca=ae=a, a€A

Twierdzenie 1.4. Kazdg algebre unormowang (algebre Banacha) mozna
rozszerzyc¢ do algebry unormowanej (algebry Banacha) z jednoscig.

Dowdd. Niech A bedzie algebra Banacha bez jednosci. Okreslmy mnozenie
w przestrzeni liniowej A = A ® C wzorem

(a®N)(bdp) = (ab+ \b+ pa) ® Au

Okredlamy normg [la @ A|| = [[a|| +|A[. Wtedy element 0@ 1 jest jednoscia w
A, bo
Oel)(ecdA)=adA=(adN)(0@1)

Norma jest podmultiplikatywna, bo

(@@ )@ p)l| =llab+ b+ pall + Ayl
<l Ioll + [ATION 4 [l llall + [A] |l
=(llall + ADIBI + ul) = lla @ A0 © 4l

Jesli A jest zupelna, to réwniez A jest zupela. O

Przyktady
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(a) co - przestrzen ciagéw o wyrazach zespolonych zbieznych do 0, z norma
|z|| = sup,, |x,|. Wtedy

¢o = c={x : limz, istnieje}
n

(b) Co(R). Wtedy

—~—

ColR) = {f € C(R) : lim_f(x) = lim f(x)}

T—00

W obu przyktadach normy w A sa réwnowazne normom || ||s.
Jesli A # {0} jest algebra Banacha z jednoscia e, to e # 0 oraz

lell = fle-ell < llel[ flel]

zatem || > 1.
Odtad nie bedziemy rozwazaé algebr zerowych A = {0}.

Twierdzenie 1.5. Dla algebry Banacha z jednosciq istnieje norma na A
rownowazna normie wyjsciowej, dla ktorej norma jednosci wynosi 1.

Dowdd. Dla x € A rozwazamy odwzorowanie L, : A — A okreslone wzorem
L,y = xy. Wtedy L, jest operatorem liniowym na A oraz

ILeyll = llzyll < [zl [yl
Zatem L, jest operatorem ograniczonym. Mamy

]| = [| Lael] < [[La]l [[e]]
Zatem ||L|| = |le]|~t|z||. Tzn.

lell =l < Nl Zall < [l (1.1)

Okreslmy ||z||" := ||L.||. Wzbr okresla norme. Sprawdzimy podaddytywnos$é
i podmultiplikatywnosc.

7+ yll" = Loyl = 1La + Lyll < [Lall + 1Ly [l = [l + Iyl
lzyll" = [[Layll = 1 LaLyll < ILall 1Lyl = =l Tyl

Ponadto |le||' = || Le|]| = ||I|| = 1. Na podstawie (|1.1)) normy || || oraz || || sa
réwnowazne. L
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Przyktady

(a)

A={feC(D) : f— holomorficzna w int D},
If]l = max{[f(z)] : [2] =1}

A nazywamy algebrg dyskowa. Funkcja stale rowna 1 jest jednoscig.

A = (Y(Z). Dla a = {a,}_. mamy [la]| = Y |a,|. Okreslamy

n=—oo

mnozenie (splot) wzorem

o0

c=axb, c¢,= Z b1

k=—00

Wspélezynniki ¢, sa dobrze okreslone bo ciag b, jest ograniczony. Mno-
zenie jest przemienne. Reguta mnozenia powstata poprzez analogie z
mnozeniem szeregéw Laurenta w 0.

(5 0} (£ 05) - (£ a)em § wi

n=-—00 n=—00 n=—o00 k=—00

Sprawdzamy podmultiplikatywnosé normy.

oo oo oo oo
lell = > 1> awbai| < Do D faw [basl
n=—00 |k=—o0 n=—00 k=—o00
oo oo
= > lal D2 [ba—kl = lla]l[|5]
k=—00 n=-—0oo

czyli ||a % b]| < ||al| ||b]|. Ciag e = dp(n) jest jednoscia.

Definicja 1.6. W algebrze A z jednoscia e element x nazywamy odwracalnym
jesli istnieje element y € A spelniajocy xy = yxr = e. Element y nazywamy

odwrotnym do x 1 oznaczamy symbolem x=".

1

Element odwrotny do x, o ile istnieje, jest jedyny.
Symbolem G(A) oznaczamy grupe elementéw odwracalnych w algebrze
Banacha A.

Twierdzenie 1.7. Dla algebry Banacha z jednoscia G(A) jest otwartym pod-
zbiorem w A. Ponadto odwzorowanie x — x~1 z G(A) w siebie jest ciggle.
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Dowéd. Dla y # 0 okredlamy y° = e. Jedli ||y|| < 1, to element e — y jest
odwracalny, bo

[e o]

(e—y)> y"=> y'(le—y) =Dy —> y=e
n=0 n=0 n=0 n=1

Zatem jedli |le — z]] < 1 to element x jest odwracalny, bo z = e — y dla
y=e—x.

lz=H =20y < Do il = =
D A T I e

Zatézmy, 7e 19 € G(A). Dla x € A mamy z = x¢(z; ‘). Wystarczy pokazad,
ze x5 'z jest odwracalny jesli 2 jest dostatecznie blisko xo. Mamy

le = zg ] = 2o (zo — 2)|| < 2 || [l — 2ol

Jesli ||z — o] < ||zg ]| 7Y, to element x5 'z jest odwracalny, co koficzy dowdd
otwartoéci. Ponadto 271 = (x5'2) tay!. Przy zalozeniu ||z — x| < [|ag ]|~
otrzymujemy

o™ 1 = [l (g ) " g | < g (g ")~

S Tl I
T= e =y el ~ 1=l e — o

[El

Sprawdzamy ciagto$é. Niech z, o € G(A). Wtedy

=gl =l (o — @)z < T gl — ol

[l

1= [l [} Iz — ol

2

< [ = ol

]

Definicja 1.8. Dla elementu x € A okreslamy spektrum
o(z) ={A € C : Xe — z jest nieodwracalny }
Zbiorem rezolwenty dla x oznaczamy o(x) = C\ o(z), czyli

o(x) ={A € C : Xe — z jest odwracalny}
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Przyktady

(a) A = M,(C)- macierze kwadratowe wymiaru n X n z norma operatorowa
na C", z normg euklidesowa. Wtedy

0(A) ={ e C : det(A\ — A) =0}
czyli o(A) jest zbiorem wartosci whasnych.
(b) A=C[0,1]. Dla f € C0,1] mamy
o(f) ={reC: flx) #X 0<z <1} =C\ f([0,1])
(c) Algebra dyskowa A(D). Dla f € A(D) zachodzi o(f) = f(D).
Twierdzenie 1.9.

(a) Dla elementu x algebry Banacha z jednoscia istnieje granica lim 2™ ||*/n
oraz

inf fla”|/* = lim [|o"[[/" = sup{|A| : A € o(x)}
(b) o(x) jest zwartym i niepustym podzbiorem w C.
Dowdd. Dow6éd mozna przeprowadzié podobnie jak dla przestrzeni B(X),

gdzie X jest przestrzeniag Banacha. O]

Zauwazmy, ze o(x) C {\ : |\ < ||z]|}. Istotnie dla [A] > ||z|| mamy |A\"'z| <
1, wiec element
e —x = Ne—\"1n)

jest odwracalny.
Twierdzenie 1.10. Dla dowolnych elementow x,y algebry Banacha z jed-
nosciqg mamy

o(zy) U{0} = o(yx) U{0}

Uwaga. Wzor o(zy) = o(yz) nie musi by¢ spetniony. Na przyktad roz-

wazmy operator S : (2(Ny) — ¢?(Ny) okreslony wzorem

S(zo, x1,...) = (x1,22,...)
Wtedy

S*(l’o, L1,y ) = (O, Lo, L1,y . - )

Mamy SS* = I ale S*S jest rzutem na &y . Zatem o(SS*) = {1}, 0(S*S) =
{0,1}.
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Dowéd. Rozwazmy liczbe niezerowag A\ ¢ o(xy). Chcemy pokazaé, ze \ ¢
o(yz). Bez straty ogdlnosci mozemy przyjaé, ze A = 1. Chcemy znalezé wzor
na (e — yx)~! za pomoca (e — xy)~'. Nieformalnie mamy

(e—yo) ' = S (ya) = ety [i(acy)"] r=etyle—wy) e

n=0 n=0

Sprawdzimy, ze faktycznie element e+ y(e — xy) 'z jest odwrotny do e — yu.

(e —yz)le+yle—ay) 'zl =e—yz+yle — ay) 'z — yay(e — ay) 'z

= e—yr+y [(e —zy) Tt —ayle — a:y)_l} r = e—yr+r(e—xy)(e—zy) 'x =c

O
Whniosek 1.11. Nie istniejg elementy x,y € A spelniajgce xy — yr = e.
Dowod. Zatézmy, ze xy — yxr = e. Wtedy
o(zy) =o(yr+e) =o(yr)+1

Stad
[o(yx) + 1] U{0} = o(zy) U{0} = o(yz) U{0}

Oznaczmy C' = o(yz). Zbiér C jest niepusty, ograniczony i spetnia (C' + 1)U
{0} = CU{0}. Otrzymujemy sprzecznos¢. Rzeczywiscie jesli C' zawiera liczbe
niecatkowitg ¢ lub nieujemng liczbe catkowity, to ¢ +n € C dla wszystkich
n. Zatem C' jest skonczonym podzbiorem ujemnych liczb catkowitych. Niech
¢ oznacza najmniejszg z nich. Wtedy najmniejsza liczbg w C' 4 1 jest liczba
¢+ 1, co prowadzi do sprzecznosci. O]

Przyktad Dla przestrzeni funkcji rézniczkowalnych w przedziale [0, 1]
mamy

d d
%(tf) —tgf =f

Zatem operatory (M f)(t) = tf(t) oraz D f = df /dt spelniaja DM —MD = I.

Twierdzenie 1.12 (Gelfand-Mazur). Jesli algebra Banacha A jest pierscie-
niem z dzieleniem, tzn. kazdy niezerowy element jest odwracalny, to A jest
izomorficzna z C.
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Dowdd. Zalézmy, ze A jest cialem. Dla a € A mamy o(a) # (). Niech \ €
o(a). Tzn. element Ae — a jest nieodwracalny. Stad Ae —a = 0, czyli a = Xe.
Zatem A = Ce. m

Uwaga Rozwazmy algebr¢ A, ktéra jest przestrzenia nad ciatem liczb
rzeczywistych. Rozwazamy kompleksyfikacje A = A @& A zadana poprzez
mnozenie

(@ + i) (2" +y/i) = (22’ — yy') ® (2 + 2'y)i
Wtedy A jest algebra zespolong, poprzez okreslenie
0@ i) (2 DY) = (—y) & i

Dla kazdego element = € A jego spektrum w A jest niepuste, tzn. element
x — (a + bi)e jest nieodwracalny dla pewnych a,b € R. Wtedy element

(x —a)* +b%e = [z — (a +bi)e] [z + (a + bi)e]
jest nieodwracalny. Zatem
(z—a)*+b%e=0
Jesli b= 0, to x = a. W przeciwnym wypadku

x — ae?

b +e=0

Réwnanie 22 +e = 0 ma dwa rozwiazania. Rzeczywidcie, jesli 22 +e = y?+e =
0, to
(—y)x+y)=0
W ostattnim wzorze wykorzystalismy przemiennosé algebry. Uzyskujemy x =
y lub x = —y. Oznaczmy symbolem f jedno z tych rozwiazan. Wtedy
T — ae
b

stad x = aetbf. Zatem A = C, albo A = R, o ile b = 0 dla kazdego elementu
x € A

=4f

Definicja 1.13. Podprzestrzen I w algebrze A nazywamy prawostronnym
(odpowiednio lewostronnym) ideatem, jesli ab € I (odpowiednio ba € I) dla
wszystkich a € A oraz b € 1. Podprzestrzen nazywamy ideatem dwustronnym,
jesli jest ideatem zaréwno prawo jak i lewostronnym.
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Przyktady
(a) Dla algebry dyskowej podprzestrzen
I={f€AD): f(0) =0}
jest ideatem dwustronnym.

(b) W algebrze B(H) operatory zwarte, operatory Hilberta-Schmidta oraz
operatory $ladowe sg idealami dwustronnymi.

(c) Dla algebry A = (!(Z) podprzestrzen

[e.e]
]:{(an) : Z an:()}
n=—o0
jest ideatem dwustronnym. Rzeczywiscie, teza wynika ze wzoru

S e (£ ) (S 1)

n=—oo n=—0o0 n=—0oo

Twierdzenie 1.14. Niech A bedzie algebrg Banacha (niekoniecznie z jedno-
$cig) oraz I domknietym ideatem dwustronnym w A. Wtedy algebra ilorazowa
A/I jest algebrg Banacha z normg

la]ll = inf fla + ull

Jesli A posiada jednosé e oraz I C A, to [e] jest jednosciq w AJI oraz ||[e]]| =
1 o ile|le]| = 1.

Dowdd. 7 kursu Analizy Funkcjonalnej 1 wiemy, ze A/I jest przestrzenia
Banacha z normg okre$long w tresci twierdzenia. Z kursy z algebry wiadomo,
ze A jest algebra z dzialaniami

[a] +[b] = [a+ 0], [a] - [b] = [a- b], Ala] = [Ad]
Pozostaje sprawdzi¢ podmultiplikatywnosé normy. Mamy
I[al[6]]] = ||[ab]]| = 113 lab + ul| < iné llab 4+ aw + bv + vw||
= nf fl(a +v)(b+w)l| < inf fla+ o[ {|b+w]| = [[a]|l | [b]]

Z kursu algebry wiadomo, ze jesli e jest jednoscia w A, I C A, to [e] jest
jednoscia w A/I oraz [e] # 0. Mamy ||[e]|] = inf,es |le + v]| < [le|| = 1. Ale
I[e]ll > 1, zatem ||[e]|| = 1. O
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2 Teoria Gelfanda

Definicja 2.1. Ideal I (lewo, prawo-, dwustronny) nazywamy maksymalnym,
jesli I jest wlasciwym podzbiorem A oraz nie istnieje ideal J (lewo, prawo-,
dwustronny) taki, ze I C J C A.

Twierdzenie 2.2. Kazdy ideal maksymalny w algebrze Banacha z jednoscig
jest domkniety.

Dowdd. Zalézmy, ze I jest ideatem maksymalnym. Wtedy TNG(A) = 0, czyli
I c A\ G(A). Poniewaz drugi zbiér jest domkniety, to I € T C A\ G(A).
Zbiér T jest ideatem, wiec z maksymalnoéci otrzymujemy I = 1. O

Definicja 2.3. Funkcje ¢ : A — C nazywamy homomorfizmem algebry A w
algebre C jesli ¢ jest funkcjonatem liniowym oraz p(ab) = ¢(a)p(b).

Uwaga. Dla homomorfizmu ¢ : A — Czbiérkerp ={a € A : p(a) =0}
jest ideatem dwustronnym. Rzeczywiscie, jesli ¢(a) = 0, to

p(ab) = @(a)p(b) = 0, p(ba) = p(b)p(a) =0

Twierdzenie 2.4. Kazdy homomorfizm algebry Banacha w C jest ciggly.
Ponadto norma tego odwzorowania liniowego nie przekracza wartosci 1.

Dowdd. Zatézmy, ze ¢ : A — C jest niezerowym homomorfizmem. Istnieje
element a taki, ze p(a) # 0. Jesli A ma jednosé e, to p(a) = ¢(e)p(a). Zatem
o(e) = 1. Jedli b jest elementem odwracalnym, to

1=p(e) = @(b'b) = e(b~")p(b)

Stad ¢(b) # 0. Dla dowolnego elementu a € A mamy pla — p(a)e] = p(a) —
o(a) = 0. Zatem element a — p(a)e nie jest odwracalny. Czyli

pla) e o(a) C{A e C : Al <lall}

Stad otrzymujemy [p(a)| < |[a]|, co pociaga ciagtos¢ ¢ oraz ||| < 1.
Jesli A nie ma jednosci, to rozwazamy A = A©C oraz p(a®A) = ¢(a)+A.
Wtedy ¢ jest homomorfizmem dla A. Rzeczywiscie
Plla® ) (6@ p)]

e(ab 4+ \b+ pa) + A\
p(a)p(d) + Ap(b) + pp(a) + A
= [p(a) + Al [p(b) + p] = Pla © N)@(b D p)
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Z pierwszej czeéci dowodu wynika, ze @ jest ciagly zatem ¢ = @ |40} tez
jest ciagly.

Jesli A ma jedno$¢, |le|| = 1 oraz ¢ # 0 to, p(e) = 1 = |le||. Zatem
el = 1. O

Definicja 2.5. Niezerowy homomorfizm algebry Banacha w C nazywamy
charakterem.

Twierdzenie 2.6 (Gelfand-Mazur). Istnieje wzajemnie jednoznaczna odpo-
wiedniosé pomiedzy charakterami przemiennej algebry Banacha z jednoscia a
tdeatami maksymalnymi tej algebry, poprzez przyporzgdkownaie charakterow:
jego jadra.

Dowdéd. Rozwazmy charakter ¢. Niech J = ker p. Wtedy J jest ideatem.
Mamy
a=[a—pla)e] +¢a)e C J & Ce

Zatem A = J @ Ce. Stad J jest ideatem maksymalnym, bo J jest podprze-
strzenig kowymiaru 1.

Odwrotnie, niech J bedzie idealem maksymalnym. Wtedy A/J jest al-
gebra Banacha z jednoscia. Z maksymalnosci J wynika, ze A/J jest ciatem.
Rzeczywiscie, zalézmy niewprost, ze 0 # [a] € A/J oraz [a] jest nieodwracal-
ny. Rozwazmy J = J 4+ aA. Wtedy J jest ideatem oraz J - J,bo a e J, ale
a ¢ J. Z maksymalnosci J otrzymujemy J=A=J+aA. W szczegdlnosci
e = j + ab, dla pewnych elementéw j € J oraz b € A. Zatem [e] = [a] [b]. To
oznacza, ze element [a] jest odwracalny w A/J, co prowadzi do sprzecznosci.

Z poprzedniego twierdzenia Gelfanda-Mazura wynika, ze A/J = Cle].
Rozwazmy odwzorowanie

A-L 4175
gdzie j jest odwzorowaniem ilorazowym j(a) = [a] oraz )(\[e]) = A. Zlozenie
jow: A— C jest charakterem oraz ker(j o) = J, (jop)9e) = 1.

Zatézmy, ze istnieja dwa charaktery o i @9 takie, ze ker ¢p; = ker p,.
Element a — ¢;(a)e lezy w ker ¢ = ker o. Zatem

0 = pola — pi(a)e] = p2(a) — ¢1(a)

Czyli 1 = ps. O]
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Twierdzenie 2.7. Kazda przemienna algebra Banacha z jednoscig posiada
charakter.

Dowaod. Jesli A jest ciatem, to A = Ce. Wtedy Ae — A jest charakterem.
Zatozmy, ze A nie jest cialem. Dla niezerowego elementu nieodwracalne-
go a € A zbior aA jest idealem wlasciwym, bo e ¢ aA. Rozwazmy rodzine
wszystkich wtasciwych ideatow zawierajacych aA. Rodzina jest niepusta i
uporzadkowana przez inkluzje. Rozwazmy laiicuch w tej rodzinie. Zaden z
idealéow tancucha nie zawiera e, zatem suma mnogosciowa tancucha (ktéra
jest ideatem) rowniez nie zawiera e. To oznacza, ze kazdy tancuch jest ograni-
czony (przez sume mnogosciowa ideatéw tancucha). Z lematu Kuratowskiego-
Zorna wynika, ze rodzina zawiera element maksymalny. O

Whniosek 2.8. W przemiennej algebrze Banacha z jednoScig element a jest
odwracalny wtedy i tylko wtedy, gdy p(a) # 0 dla kaZdego charakteru ¢ alge-
bry.

Dowdd. (=)

Z dowodu poprzedniego twierdzenia wynika, ze dla elementu nieodwra-
calnego a ideal aA jest zawarty w pewnym ideale maksymalnym /. Niech ¢
oznacza charakter odpowiadajacy idealowi I, tzn. ker p = I. Wtedy ¢(a) = 0.
(=)

Jesli a jest odwracalny, to dla dowolnego charakteru ¢ mamy

1=(e) = plaa™") = p(a)p(a™")
Zatem p(a) # 0. =

Uwaga. Algebra nieprzemienna moze nie mie¢ charakteréw. Np. niech

A = M, (C) tworzy algebre z naturalnymi dzialaniami i norma operatorowa

|Al| = [max ||Az||2. Wtedy ||I|| = 1. Nich e;; oznacza macierz z wyrazem
z|o=

rownym 1 na przecieciu i-tego wiersza i j-tej kolumnie, i zerowymi wyrazami
w pozostatych miejscach. Wtedy

ejeij =0, eyeji =€y, 1F#]
Dla charakteru ¢ otrzymujemy

0= p(esje) = pley)” = pley) =0, i



Teoria Gelfanda 13

Zatem
plein) = pleji)plei) =0, i#j=0
Otrzymujemy

Ll=p()=pler1+ex+...+em) =plerr) + @len) + ...+ vlenm) =0

co prowadzi do sprzecznosci.
Przyktad

Rozwazmy A = (*(Z) ze splotem. Chcemy wyznaczy¢ wszystkie charak-
tery dla A. Dla 6, (k) = 0, mamy 0, * 0, = Opm, 1, M € Z. Rzeczywiscie

(30,00 = 32 0,3l — ) =

k=—o0

{0 n;«él—m:{o l#£n+m

1 n=0l—-m 1 I=n+m

W szczego6lnosei 67" = 6,, dla n € N. Element ¢y jest jednoscia, bo

e}

(axdo)(l) = D alk)do(l— k) =q

k=—00

czyli a * 09 = a. Wzér wynika tez z o, *x o9 = d,,. Poniewaz &1 *x d_; = dg, to
((51)_1 = (571. St@d (51)71 = 571 dlan e Z \ {O}
Rozwazmy charakter o na ¢*(Z). Wtedy

@(0n) = ©((61)™") = [p(01)]", n#0

Oznaczmy A = ¢(01). Wtedy ¢(0,) = A" dla n # 0. Wiemy, ze ||¢| = 1.
Zatem

(X' < llelll|onlls =1, n#0
W szczegblnosci dla n = +1 otrzymujemy |[A| < 1 oraz |A|7! < 1, czyli [\ =
1. To oznacza, ze A = €'t dla pewnej liczby 0 < t < 27. Inne wyjasnienie: dla

|A| # 1 element 0; — Ady. Rzeczywiscie dla A = 0 mamy 07 * 6_; = d. Dalej,
dla A # 0 mamy

51 — >\(50 = —)\((50 — /\_1(51) = (51 * ((50 — /\(5_1)

Zatem dla |A| > 1 z pierwszej réwnosci wynika odwracalnosé. Z kolei druga
réwnosé pociaga odwracalnosé dla |A| < 1. Reasumujac p(d,) = €™ dla
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n € Z.Dlaa € (*(Z) mamy a = Y _ a,0,, przy czy szereg jest zbiezny w

przestrzeni ¢'(Z). Poniewaz kazdy charakter jest ciagly, to

[e.9]

pla) = Y anp(d Z ane’

n=-—oo n=—oo
Mozna sprawdzi¢, ze dla kazdej wartosci 0 <t < 27
o0
Z a eint
n
n=—00

jest charakterem. Rzeczywiscie ¢, jest ciaglym funkcjonatem liniowym, bo
|ee(a)] < llafy. Mamy

n=—oo \k=—o0

axb= Z (Z akbnk)(Sn

Zatem

wi(a*b) = Z ( Z akbn_k) et = Z ( Z akeiktbn_kei("_k)t)
n=—oco \k=—o0 n=—00 \k=-o00

Poniewaz podwdjny szereg jest bezwzglednie zbiezny, to mozna zmieni¢ ko-

lejno$¢ sumowania. Otrzymamy

(@ D) Z ae' ( Z by e’ > = ¢i(a)pe(b)

k=—0o0 n=-—00

Z twierdzenia Stone’a-Weierstrassa przestrzen kombinacji liniowych funk-
cji {e"} ez tworzy gesta podalgebre A w Cpe,[0, 2] w normie jednostajne;.
W szczegdlnosel ta przestrzen jest gesta w Cper[0, 27 w normie L?(0, 27), bo
I fll2 < |If]l2 dla f € Cphe[0, 27]. Poniewaz Cpe,[0, 27] jest gesta w L*(0, 2m),
to przez przechodnio$¢ przestrzen kombinacji liniowych funkcji {€™},cz jest
gesta w L2(0,27). Uklad {e™™},cz jest ortonormalny w L?(0,27), bo

27 27
. . 1 . . 1 ,
<€znt’ ezmt> _ 27 /eznte—zmt dt = 27‘/61(71—771)15 dt
T 0 T 0
1 n=m 1 n=m
— 21 =
o7 gln—m)t n#m 0 n#m
0

Zatem uktad ten jest bazg ortonormalna w L?(0, 27).
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Twierdzenie 2.9 (Wiener). Niech [ bedzie funkcjq ciggle o okresie 2w,

dla ktorej szereg Fouriera, czyli Z f (n)e™ jest bezwzglednie zbieiny. Jesli

n=—oo

ft) # 0 dla wszystkich wartosci t, to szereg Fouriera funkcji 1/f jest tez
bezwglednie zbiezny.

~

Dowdd. Dla funkcji f wspotezynniki f(n) sa okreslone wzorem

1

. 2T . .
f(n) = %/0 f@)e ™ dt = (f, ™) 120,2n)

o0
7 zalozenia liczby a, = f(n) spelniaja Z la,| < co. Tzn. a = {an}tnez

lezy w (1(Z). Zatem szereg

0 .

Z anemt
jest jednostajnie zbiezny i jego suma jest funkcja ciagta o okresie 27. Otrzy-
mujemy

f(t) — Z aneint

przy czym réwno$é jest punktowa (nie tylko w L?(0,27)), bo szereg jest
jednostajnie zbiezny a funkcja f jest ciagla o okresie 2. Zalozenie f(t) # 0,
dla 0 < t < 27, oznacza, ze ¢(a) # 0 dla kazdego charakteru algebry ¢!(Z).

Zatem element a jest odwracalny w ((Z). Czyli istnieje ciag b € ¢(Z) taki,
ze ax b= 9y. Wtedy

1= ¢y(ab) = gyla)p(b) = ( i anemt> ( i bne““> = f(t)g(t)

n=—oo n=—oo

gdzie g(t) = Z b,e™. 7 jednostajnej zbieznosci szeregu wnioskujemy, ze

n=—oo

g(n) =by,. O

Twierdzenie Banacha-Alaoglu moéwi, ze kula jednostkowa przestrzeni A*
(sprzezonej do A) jest zwarta w x-stabej topologii. Jesli przestrzen A jest
o$rodkowa, to x-staba topologia na kuli jednostkowej jest metryzowalna. Wte-
dy zwartos¢ oznacza, ze kazdy ciag zawiera podciag x-stabo zbiezny.
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Definicja 2.10. Spektrum algebry Banacha A nazywamy zbior wszystkich
charakterow algebry A i oznaczamy symbolem Sp(A).

Twierdzenie 2.11. Dia algebry Banacha z jednoscig Sp(A) jest domknie-
tym podzbiorem kuli jednostkowej w *-stabej topologii (sfery jednostkowej jesli
lle|| = 1). W szczegdlnosci spektrum Sp(A) jest zwarte w *-stabej topologii.

Dowdd. Charaktery sa funkcjonatami liniowymi o normie nie przekraczaja-
cej 1. Stad Sp(A) C Aj. Sprawdzamy domknietosé. Uzyjemy ciagéw uogdl-
nionych. Niech ¢, € Sp(A) bedzie ciagiem uogélnionym zbieznym x-stabo
do . To oznacza z definicji, ze dla dowolnego elementu z € A mamy
©Ya(T) — o(x). Wiemy, ze wtedy ¢ € Af. Trzeba sprawdzié, ze ¢ jest
charakterem. Dla z,y € A mamy

p(ry) = Palry) = pa(r)paly) — w()e(y)

czyli o(xy) = @(x)p(y). SkorzystaliSmy z faktu, ze jesli ciggi uogdlnione
liczb t, oraz s, sa zbiezne do t i s, to ciagg uogdlniony t,s, jest zbiezny do
ts (zadanie). Ponadto ¢(e) = lim, @, (e) = 1. Zatem ¢ # 0.

Nastepujacy dowdd nie korzysta z ciggdédw uogoédlnionych . Niech ¢ €
A\ Sp(A). Tzn. ¢ = 0 lub ¢ nie jest funkcjonalem multiplikatywnym.
Rozwazmy drugi przypadek. Wtedy istnieja elementy a,b € A takie, ze
p(ab) # (a)p(b). Dla liczby € > 0 zbiér

Ue={¢ € A" : [¢(a) —p(a)] <&, |(b) = p(b)] <&, [¢(ab) — p(ab)| < e}

jest otoczeniem funkcjonatu ¢ w A* w x-stabej topologii. Wtedy U. N A7 jest
otoczeniem ¢ w Aj. Jesli € > 0 jest dostatecznie mate, to ¢ (ab) # ¥ (a)y(b).
Zatem [U. N (A*)1] N Sp(A) = 0.

Dla ¢ = 0 rozwazamy

v={ve4: el <)

Zbiér V jest otoczeniem ¢ = 0. Otrzymujemy v(e) # 1, zatem V N Sp(A) =
0. O

Uwaga. Zbior Sp(A) jest przestrzenia Hausdorffa w x-stabej topologii na
A3, bo A7 jest przestrzenia Hausdorffa w tej topologii.
Niech C'(Sp(A)) oznacza algebre ciagtych zespolonych funkcji na Sp(A).



Teoria Gelfanda 17

Twierdzenie 2.12. Niech A bedzie przemienng algebrg Banacha z jednosciq.
Dla elementu x € A okreslamy funkcje T : Sp(A) — C wzorem Z(p) = ¢(x).
Wtedy Z(Sp(A)) = o(x). Ponadto funkcja T jest ciggla oraz odwzorowanie
~: A — C(Sp(A)) jest homomorfizmem algebr Banacha oraz %] < ||z
Odwzorowanie ~ nazywamy transformatqe Gelfanda.

Dowdd. Niech ¢ € Sp(A). Wtedy ¢(z) € o(x), bo p(x — p(z)e) = 0, czyli
element © — ¢(x)e = © — Z(p)e nie jest odwracalny. Zatem Z(p) € o(x) co
pociaga Z(Sp(A)) C o(z). Dla dowodu odwrotnego zawierania, niech A €
o(x), tzn. element x — Ae nie jest odwracalny. Wtedy istnieje charakter ¢ €
Sp(A), dla ktorego p(z—Ae) = 0. Tzn. A = p(z) = Z(p), czyli A € Z(Sp(A)).
Otrzymujemy wiec o(z) C Z(Sp(A4)).

Odwzorowanie ~: x +— Z jest liniowe z okreslenia ~. Ponadto

zy(p) = p(ry) = p(x)p(y) = 2()7(p)

czyli = jest homomorfizmem.
Pozostaje uzasadni¢ cigglos¢ funkeji

z:Sp(A) —C
Wtasno$¢ wynika z okreslenia topologii na Sp(A). Niech ¢, — x-stabo,

gdzie @q, ¢ € Sp(A). Zatem

Z(pa) = Pa(r) — p(x) =Z(p), z€A

«

To oznacza cigglo$é funkeji  na Sp(A).
Bez uzycia ciagéw uogoélnionych: ustalmy x € A. Sprawdzamy ciaglto$¢
w punkcie ¢ € Sp(A). Dla € > 0 okreslamy

Ue = { € Sp(A) : [(z) — ¢(z)] < e}

Wtedy U. jest otoczeniem punktu ¢ w *-stabej topologii na Sp(A). Dla
¥ € U, mamy
2(¢) = Z(p)| = [¥(z) — p(z)| <€

Przyklad Rozwazmy A = (!(Z). Charaktery maja postac

oo
{an}el _sor— Y. ane™, 0<t<2m

n=—oo
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Oznaczmy \ = e, Tzn.

e}

{an}s o™ Y aX', N =1
Zatem Sp(A) = T jako zbiory. Pokazemy, ze Sp(A) = T jako przestrzenie
topologiczne. Rozwazmy d1. Wtedy 6, : Sp(A) == T, bo d1(px) = r(d1) =
A. Funkcja d; jest ciagtym réznowartosciowym odwzorowaniem z Sp(A) na

T. Zatem §; jest homeomorfizmem. Dla ustalonego ciagu a = {a,}>2
odwzorowanie a(A) = Y a,\" jest transformaty Gelfanda elementu a.

3 Rachunek symboliczny w algebrze Banacha

Twierdzenie Wienera mozna zinterpretowa¢ w nastepujacy sposob: w prze-
miennej algebrze Banacha jesli dla z € A funkcja T nie zeruje sie, to element
x jest odwracalny. Tzn. na element x mozemy nalozy¢ funkcje z — 27 1. Na-
szym celem jest okreslenie dziatania na elementach algebry wigkszej klasy
funkcji ciaglych

Rozwazmy funkcje ciaglta a : [a,0] — A tzn. dlaa < tp < bie > 0
istnieje liczba 0 > 0 taka, ze jesli |t — to] < 0, to ||a(t) — a(to)|| < €. Mozna
udowodnié, ze kazda funkcja ciagla jest jednostajnie ciggta (zadanie). Dla
podziatu P = {to,11,...,t,} przedzialu [a,b] wybieramy punkty posrednie
tj—1 < s; < t; 1 okreslamy sumy

S(P.f)= 30 At £(s)

b
gdzie f : [a,b] — A. Celem jest okreslenie catki [ f(t)dt. Symbolem d(P) =
max <<, At; oznaczamy srednice podziatu. ’

Lemat 3.1. Dla dwu podziatow Py i Py spetniajacych d(Pr) < 6 oraz d(Ps) <

0 mamy

1S(Py, f) = S(P2, f)I <2(b—a) sup [|f(t) = f(s)l

[t—s|<d

Dowdd. Niech P3 = Py U Py, z punktami posrednimi typu prawy koniec.
Wtedy

[S(P1) = S(P)I < IS(P1) = S(Ps)|| + 15 (Ps — S(P2|l
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Pokazemy, ze

[1S(P1) = S(Ps)| < (b—a) sup [If(t) = f(s)]l

[t—s|<d

Punkty {t] k}Z o 0znaczaja punkty podziatu Ps stanowiace podzial przedzia-
tu [t;_1,t;]. Mamy

n kj
S(Pl) ZAthJ ZZA]kf jk
j=1k=1
n kj
=D Atulf(ss) = ftin)]
Jj=1k=1
k;
bo At;), = At;. Poniewaz s;, tjx € [tj_1,;], to
k=1

1f(s5) = F(tiu)ll < sup [[f(t) = F(s)]

[t—s|<d

Stad wynika oszacowanie. Podobnie otrzymujemy

1S(Ps) = S(Po)|| < (b—a) sup [[f(t) = f(s)]

[t—s|<d
[

Whiosek 3.2. Zaléimy, ze funkcja f : [a,b] — A jest ciggla. Niech P,
oznacza cigg podziatow takich, ze d(P,) — 0. Wtedy cigg S(P,) jest zbieiny.

Dowdd. 7 lematu ciag S(P,) spelnia warunek Cauchy’ego, bo

1S(Pr, f) = S (P Il < 2(b—a) sup (&) = ()]

[t—s|<max{d(Prn),d(Pm)}

Definicja 3.3. Dla funkcji cigglej f : [a,b] — A okreslamy

b

[ 1ty dt=timS(P,, f), d(P.) =0

a
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Catka spehia:
() [1F@)+g@ldt= [ fyde+ [gityar

b
() [Nfe)de = [ f(e)de

a

(c) /bf(t)dt:jf(t)dt+/bf(t)dt, a<c<b
(@ iﬂwm <fwumw

Lemat 3.4. Dia ¢ € A* mamy

b b
w(/ﬂﬂﬁ)=/¢ﬁwﬁ#

Dowdéd. Dla ciagu podziatéw P, takich, ze d(P,) — 0 otrzymujemy

b

b
@ (/f(t) dt) = lim o(S(Pr, f)) = lim S(Py, 0 0 f) = /so(f(t))dt

a

]

Dla krzywej zorientowanej C' klasy C! w plaszczyznie C i funkcji cigglej
f: C — A okreslamy

[1e)dz = [sa@ymd, v:lat—Ccc

Calka nie zalezy od wyboru parametryzacji v(t), bo po natozeniu funkcjonatu
p € A* tak jest (zadanie). Ponadto (zadanie)

w(/ﬂaw)z/puw»w

Catke wzdhuz krzywej C' mozemy okresli¢, gdy krzywa C' jest ciagta, kawat-
kami klasy C', poprzez sume catek wzdtuz fragmentéw krzywej.
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Definicja 3.5. Niech f(z) bedzie funkcjg o wartoSciach w algebrze Banacha
A, okreslong na otwartym obszarze U C C. Mowimy, zZe funkcja f jest holo-
morficzna jesli f(z) posiada pochodng zespolong w kazdym punkcie obszaru
U, tzn. istniejg granice

o) i i TEER G o ) = £2)

h—0 h wW—2z w— z

, zeU

Przyklad Rozwazmy algebre Banacha A z jednoscig. Ustalmy a € A.
wtedy funkcja z — (ze —a)~! dla z € o(a) jest holomorficzna. Rzeczywiscie,
gdy w — z, to (we —a)™! — (ze — a)™! oraz

(we —a)™" = (ze — @)~ = —(w — =) (we — a) " (ze — a)”!
Stad
(we = “)_ul} - i’ze "0 e —a) Mo —a) !
zatem d
T(re—a) = —(ze—a)?

Skorzystaliémy z ciggtosci funkcji w — (we — e)~!. Ta wlasno$é¢ wynika ze
ztozenia funkcji cigglych

w— we — a — (we —a)

Twierdzenie 3.6. Niech C' bedzie prostqg krzywq zamknietq w C. Zatozmy,
ze funkcja f(z) o wartoSciach w A jest okreslona i holomorficzna w obszarze

otwartym U zawierajgcym krzywqg C' oraz obszar ograniczony przez te krzywg.
Wtedy

/f(z)dz:()
c

Dowaéd. Dla ¢ € A* mamy

@(/f(Z)dz) z/go(f(z))dz:()

Poniewaz ¢ jest dowolnym funkcjonalem na A, to / f(z)dz=0. O
c
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Whniosek 3.7. Niech U C C bedzie spéjnym obszarem ograniczonym, ktore-
go brzeg sklada si¢ ze skonczonej liczby prostych krzywych zamknigtych. Dia
funkcji f(2) holomorficznej w obszarze V- zawierajacym U mamy

/f(z) dz=0
oU

Dowdd. Obszar U mozemy podzieli¢ na skonczong liczbe obszarow jedno-
spojnych Uy, Us, ..., U,. Wtedy

/f(z)dz:/f(z)dz+/f(z)dz+...—|—/f(z)dzzo
ou

oy oU3 OUn

[]

Dla algebry Banacha z jednoscia mozemy okresli¢ p(a), gdzie p(z) jest wie-
lomianem. Wtedy (p1p2)(a) = p1(a)p2(a). Mozna rozwazy¢ funkcje catkowita

f(z) =Y 2" izdefiniowaé f(a) = > c,a”. Szereg jest absolutnie zbiezny,
n=0 n=0

bo lim, |c,[Y™ = 0. Zatem ||c,a®|| < |eal|lall™. Wiec 2% |en| |la]|” < oc.
Wystarczy, aby

lim sup | ¢, |/ < —
ol
Jesli f(2) 1 g(z) sa holomorficzne w obszarza otwartym U zawierajacym koto
{z : |z| < |la||} to (fg)(a) = f(a)g(a) w oparciu o mnozenie Cauchy’ego
szeregOw potegowych.

Przyktad. Niech A € M, (C). Zal6zmy, ze A sprowadza sie do postaci
diagonalnej, tzn. A = CDC™!, gdzie D jest macierzg diagonalng z wyrazami
{di}7_, na przekatnej. Dla f : C — C mozemy okresli¢ f(D) jako macierz
diagonalng z wyrazami { f(dy)}?_; na przekatnej. Niech f(A) = Cf(D)C~".
Wtedy (fg)(A) = f(A)g(A), bo

f(A)g(A) = Cf(D)C'Cg(D)C™" = Cf(D)g(D)C™' = C(fg)(D)C™' = (fg)(A)

Dla f = 1 mamy f(A) = Cf(D)C™! = CC™' = I. Z kolei dla f(z) = 2
zachodzi f(A) = CDC™! = A. Funkcja f nie musi by¢ okreslona na C.
Wystarczy, ze znamy jej wartosci na {dy}}_,, czyli na o(A).

Twierdzenie 3.8. Niech C bedzie prostg krzywq zamknietq, kawatkami C1,
obiegajgcq w kierunku dodatnim o(a) dla elementu a € A, lub skoriczong sumg
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takich krzywych, przy czym obszary otoczone przez te krzywe sq roztgczne.

Wiedy
1

e = /(ze—a)_l dz

2w
c
Uwaga Wzor jest podobny do wzoru Cauchy’ego

1—1/dzdz

o) z— 2z
C

gdzie liczba 2 lezy wewnatrz C.

Dowdd. Rozwazmy przypadek C' = C; U Cy. Tzn. o(a) jest zawarte w dwu
obszarach otwartych otoczonych przez te krzywe. Niech Cr oznacza okrag
o $rodku w 0 i promieniu tak duzym, ze krzywa C' lezy wewnatrz kota o
promieniu R. W obszarze otwartym U zawartym pomiedzy C' i Cr funkcja
2+ (ze —a)~! jest holomorficzna, bo obszar jest oddzielony od o (a). Zatem

1 / 1
— [(ze—a)""dz=0
27r26U
Stad
o [Ge—a)y iz = o [(ze—a)
5 | (e —a 2=5 - [(ee—a z
C Cr

Mozna przyjaé, ze R > ||a|. Wtedy

1 1 0
3 /(ze —a) tdz = o / nzzoz_"_la” dz
R Cr

Szereg jest zbiezny jednostajnie na C'r zatem w drugiej calce mozna zmienié¢
kolejnoé¢ catki z sumowaniem. Otrzymamy

0 1
Z —,/z‘”_l dz| a" = ¢
| 2mi

R

Skorzystalismy z faktu, ze jesli f,(z)=f(z) dla z € C, to
/fn(z) dz — /f(z) dz
c 8!

dla funkcji ciagtych f,, f: C' — A. ]
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Whiosek 3.9. Przy zatozeniach poprzedniego twierdzenia, dla funkcji catko-

witej f(z) =Y e,2" spelniony jest wzor
n=0

f0) = 5= [ S e —a) e
C

gdzie f(a) = c,a”.
n=0

N
Dowdd. Wystarczy udowodnié¢ wzér dla wielomianu py(z) = Z cp 2" 1 teze
n=0

uzyskac¢ przez przejécie graniczne, gdy N — oo. Mamy

;Tic/pN(z)(ze —a) tdz = ;mc[[pN(z)e —pn(a)](ze —a) ' dz
—|—pN(a)21_ /(ze —a) tdz

™

Funkcja [py(2)e—pn(a)](ze—a) ™! jest wielomianem zmiennej z ze wspotczyn-
pn(2) — pv(w)

Z—w
uproszczeniu, pierwsza catka jest réwna 0. O

nikami z algebry A, zwigzang z wielomianem z —

. Zatem po

Definicja 3.10. Niech f(z) bedzie funkcjg holomorficzng w obszarze otwar-
tym U, zloZonym ze skonczonej liczby obszarow jednospdinych, zawierajgcym
o(a). Dla C prostej krzywej zamknietej, kawatkami Ct (lub skoticzonej sumy
takich krzywych) obiegajgcej w kierunku dodatnim zbidér o(a) i dla elementu
a € A okreslmy

fla) = 5 [ F)ze —a)dz
C

Uwaga. Definicja f(a) nie zalezy od wyboru krzywej C. Rzeczywiscie
niech Cg bedzie okregiem o promieniu R takim, ze krzywa C' lezy w otwartym
kole o promieniu R. Wtedy funkcja f(z)(ze — a)™' jest holomorficzna w
obszarze pomiedzy C' i Cg. Zatem catka wzdtuz brzegu obszaru wynosi 0,
czyli catki wzdtuz C' i Cg sa réwne.
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Uwaga. Mozna okresli¢ f(a), gdy U sklada sie ze skoniczonej liczby ob-
szaréw spojnych, ale niekoniecznie jednospdjnych. Np. wzor

1/(ze—a)_1dz:e

271

jest spelniony. Rzeczywiscie jedli krzywa C' nie zawiera wewnatrz punktow
z o(a), to calka wzdluz C jest réwna 0, bo funkcja z +— (ze — a)™' jest
holomorficzna w obszarze otwartym ograniczonym przez C.

Twierdzenie 3.11. Jesli funkcje f(2) i g(z) sq holomorficzne w otoczeniu
o(a), to
fla)g(a) = (fg)(a)

Dowdd. Dowdd przeprowadzimy dla przypadku, gdy f i ¢ sa holomorficzne
w otwartym obszarze jednosp6jnym zawierajacym o(a).

Wybierzmy krzywe (byé moze skonczone sumy krzywych) C; i Cy ota-
czajace o(a) takie, ze C lezy w obszarze otwartym ograniczonym przez Cs.
Wtedy

fla)g(a) = — g [ 1) e —a) " dz - [ glw)we —a)™ du
C1 ) Co
= —417r2/f(z) /g(w)(ze—a)_ (we —a) Y dw| dz
1 1C2

= —1/f(z) g(w) [(we —a)™! — (ze —a) ' dw| dz

47r20 zZ—w
_ _1/f(z)(ze—a)_1 /g(w) dw| dz
N 47r20 oWz
1 - f
—Wc/g(w)(we a)™? ) ZEZSU dz| d
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bo /f(z)(z —w) ' dz = 0. Zmiane kolejnosci catkowania mozna uzasadnié
(&5

poprzez natozenie funkcjonatu ¢ € A*. Otrzymujemy wtedy catki z funkcji o
wartosciach w C. O

Niech H(a) oznacza rodzine funkcji holomorficznych w otoczeniu o(a).
Wtedy H(a) tworzy algebre. Odwzorowanie H(a) > f — f(a) € A jest
homomorfizmem algebr. Ponadto 1 +— e oraz z +— a.

Twierdzenie 3.12. Dla elementu a € B algebry Banacha oraz f € H(a)
mamy o(f(@)) = f(o(a).
Dowdd. Zatézmy, ze X € o(a). Dla f € H(a) funkcja

fz) = f(N)
an(z) = { z—A 27 A
1O 2=\

nalezy do H(a) oraz (z — A gx(z) = f(2) — f(N). Zatem

(@ = Ae)ga(a) = fla) — f(N)e

Stad element f(a) — f(\)e nie jest odwracalny, czyli f(\) € o(f(a)).
Zalozmy teraz, ze p ¢ f(o(a)). Wtedy g(z) := (u — f(2))' € H(a). Ze
wzoru g(z)(n — f(2)) = 1 otrzymujemy

g(a)(ue — f(a)) =€
Zatem p ¢ o(f(a)). O

Fakt 3.13. Niech A bedzie przemienng algebrg Banacha z jednoscig. Dla
a€ A, peSp(A) oraz f € H(a) mamy ¢(f(a)) = f(e(a)). To oznacza, ze

Dowéd. Mamy

21
1 g, 1 f(z) _
= [ F@el(e —a) de = )
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bo ¢(ze — a) = z — p(a) oraz z multiplikatywnosci otrzymujemy
o((ze—a) )= —~ 2€C

]

Twierdzenie 3.14 (Wiener-Lévy). Zaiozmy, ze funkcja o okresze 27 ma

absolutnie zbiezny szereq Fouriera, tzn. f(x Z cne™ oraz Z len| < oc.
—00

Niech h(z) bedzie funkcjg holomorficzng w otwartym otoczniu zbtoru wartosci

funkcji f. Wtedy szereg Fouriera funkcji h(f(z)) jest absolutnie zbiezny.

Dowéd. Dla ciagu ¢ = {c,}°°__ € (Y(Z) zbadamy o(c) w algebrze (*(Z).
Funkcjonaty multiplikatywne majg postac

Z Cneinx — f(x)
Zatem o(c) = f([0,27)) = f(R). Z zaloZenia h € H(c), skad wynika, ze
d := h(c) € (*(z). To oznacza, ze h(x Z dne™ oraz Y |d,| < oo.
Dalej T -
2 de™ = puld) = pu(h(€)) = hlpa(e)) = h(f ()

]

Twierdzenie 3.15. Niech f(z) bedzie funkcjg holomorficzng w obszarze otwar-
tym zawierajgcym o(a). Wtedy dla dowolnej funkcji catkowitej g(w) mamy

g(f(a)) = (go f)(a)

Dowdd. Niech g(z Z gn2". Wtedy

Zgnf Zgn ") (a (thf”) )= (g0 f)(a)
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4 Cr-algebry

Definicja 4.1. Operacje * : A — A w algebrze Banacha nazywamy sprzeze-
niem jesli

(a) (a+b)* =a"+b*
(b) (Aa)*
(c) (ab)*
(d) (a*)"

Uwaga Jesli A ma jednosc e, to e* = e (zadanie).

= \a*
= b*a*
=a

Definicja 4.2. Algebre Banacha nazywamy *-algebrg, jesli ||a*|| = ||a]|.
Przyktady
(a) A=/(YZ). Dla a € (*(Z) okres§lamy a*(n) = a(—n). Np. 6§ = 0_,,.

(b) A=C0,1] lub A = C(K), gdzie K jest zwarta przestrzenia Hausdorf-

fa. Wtedy f*(t) = f(t).
(¢c) A= B(H) ze sprzezeniem operatorow.

Definicja 4.3. Algebre Banacha z sprzezniem nazywamy C*-algebrg, jesh
la*all = [|al>.

Uwaga Z warunku wynika ||z*]] = ||z||. Rzeczywiscie ||z|? = [Jz*z| <
([ ll=]]. Stad [lz*| > l[zf|. Zatem ||z = [l™[| > [l2*||. Przyktady Al-
gebra ('(Z) nie jest C*-algebra (dlaczego ?). Z kolei C(K) oraz B(H) sa
C*-algebrami, bo [|ffllee = IlfPlle = [IfI5% oraz [ T*T|| = ||IT|*. Druga
rownos$¢ wynika z

IT°T|| > sup (T"Tz,x) = sup |[Tz]* = |7

Jall=1 Jall=1
oraz || T*T|| < ||| T = IT°||*.

Twierdzenie 4.4 (Gelfand-Naimark). Niech A bedzie przemienng C*-algebrq
z jednoscig. Wtedy transformata Gelfanda jest izometrycznym x-izomorfizmem
pomiedzy A oraz C(Sp(A)) z normg || - ||se-
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Uwaga Ogoélnie homomorfizm h pomiedzy *-algebrami nazywamy *-homomorfizmem
jesli h(z*) = h(x)*. Izometria oznacza, ze ||Z||c = |||/, a *-izomorfizm, ze

Tt =17

Dowdd. Transformata Gelfanda jest liniowym homomorfizmem. Operacja *

jest ciagta, bo ||z*|| = ||z|. Niech ¢ € Sp(A) oraz a* = a. Pokazemy, ze

¢(a) € R. Dla t € R rozwazmy elementy

(ita)™

n!

o0
u, = exp(ita) =Y

n=0
Wtedy uj = exp(—ita) oraz
uju; = exp(—ita) exp(ita) = 1(a) = e
bo exp(—itz) exp(itz) = 1. Dalej
1= lell = [lufuell = [|ul?
stad ||u]| = 1. Dla ¢ € Sp(A) otrzymujemy

i (itp(a))"

1> fow) =Y 2

= |exp(it p(a))| = exp(—t Ran p(a))

n=0

Poniewaz t jest dowolna liczba rzeczywista, to Ran ¢(a) = 0. To oznacza, ze
p(a) € R.
Inny dowdd Niech X = z + iy € o(a). Zatem dla t € R mamy A\ + it €
o(a + ite). Otrzymujemy
A +it|? < |la+ite|® = ||(a +ite)*(a +ite)|| = ||(a — ite)(a + ite)||
= |la® + || < [la* + ¢

7, drugiej strony
N+t =z +ily+ )P =2+ (y+ 1) =2® + >+ 2yt + 17

Zatem
2+t 42yt < la|?, tER

7, dowolnosci t otrzymujemy y = 0.
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Dla a € A niech a; = (a+ a*)/2 oraz ay = (a — a*)/(2i). Wtedy a} = ay,
ay = ag oraz a = aj + iag. Zatem

p(a”) = p(ar —iag) = p(a1) —ip(az) = p(ar) + ipaz) = p(a)

Otrzymali$my a* = @, bo dla ¢ € Sp(A) zachodzi

a*(p) = p(a*) = pla) = a(p)

Czyli transformata Gelfanda jest x-homomorfizmem.
Chcemy pokazaé, ze ||| = ||al|. Mamy

[alloc = max{[A] : X € o(a)} = r(a) = lim||a"[|""

Dla ¢* = a otrzymujemy ||a?|| = |la*al]| = ||a||*. Poniewaz elementy a* sa
samosprzezone, to przez indukcje otrzymujemy ||a®"|| = ||a||*", czyli r(a) =
lla]|. Zatem ||@||s = ||a||. Rozwazmy dowolny element a € A. Wtedy

lall* = lla*all = lla*alle = @]l = lllal*[l = l[all%

Pozostaje do pokazania, ze A = C'(Sp(A)). Skorzystamy z twierdzenia
Stone’a-Weierstrassa. Algebra A jest podalgebra funkcji w C(Sp(A)) za-
mknieta na sprzezenie. Algebra A zawiera € = 1 oraz rozdziela punkty, bo
jesli o1 # o dla 1, o € Sp(A), to pi(a) # wa(a) dla pewnego elementu
a € A T a(p1) # a(ps). Zatem A jest gesta podalgebra w C(Sp(A)). Z
drugiej strony A jest domknieta jako izometryczny obraz algebry Banacha

A. Stad A = C(Sp(A)). O

Definicja 4.5. Element a w C*-algebrze B z jednoscig (niekoniecznie prze-
miennej) nazywamy normalnym jesli a*a = aa*.

Niech A oznacza C*-algebre generowana przez a oraz e. Tzn. rozwazamy
Ay ={p(a,a”) : p(z,y) wielomian dwu zmiennych o wspoétczynnikach z C}

Symbolem A oznaczmy domkniecie podalgebry Ay w C*-algebrze B. Wtedy
A jest przemienng C*-algebra z jednoscia.

Whniosek 4.6. Przy powyzszych oznaczeniach otrzymujemy A = C(o(a)),
gdzie o(a) oznacza spektrum elementu a w C*-algebrze B.
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Dowdd. 7 zadania 11 listy 5 wynika, ze op(a) = o4(a). Rozwazmy a :
Sp(A) — o(a). Funkcja a jest ciagla oraz a(Sp(A)) = o(a). Ponadto funkcja
a jest roznowartosciowa, bo jesli a(¢1) = a(pq), to p1(a) = go(a). Zatem

p1(a”) = p1(a) = pa(a) = p2(a’)
Multiplikatywnos¢ pociaga ¢1 = o na Ay. Z kolei z ciggtosci charakterow ¢ i
w2 wynika ¢ = 9 na A. Reasumujac odwzorowanie a jest homeomorfizmem
pomiedzy Sp(A) i o(a). Izomorfizm pomiedzy A oraz C(o(a)) zadany jest
poprzez

A — C(Sp(A)) = C(o(a))

Odwzorowanie h zadane jest wzorem

h(f)N) = f@'(N), [ € C(Sp(A)), A€ a(a)

Przykltad A = (*(N) = C(Sp(A)). Mamy N C Sp(A), bo ¢,(a) = a,
jest charakterem. Zawieranie jest wtasciwe v(dlaczego 7). Mozna pokazaé, ze
Sp(A) =2 C(K), gdzie K jest uzwarceniem Cecha-Stone’a zbioru N. O

Twierdzenie Gelfanda-Naimarka-Segala moéwi, ze C*-algebra z jednoscia
jest izometrycznie izomorficzna z domknietg podalgebra operatoréw, zawiera-
jaca I w B('H), dla pewnej przestrzeni, Hilberta. Np. C[0, 1] mozna utozsamié
z algebra operatorow Mg = fg dla g € L*(0,1).

5 Operatory nieograniczone na przestrzeni Hil-
berta

Wiele operatorow okreslonych na podprzestrzeni przestrzeni Hilberta jest nie-
ograniczonych. Podprzestrzen, na ktorej operator jest okreslony nazywamy
jego dziedzing.

Przyktady
(a) Operator (T'f)(x) = zf(x) jest okreslony na D(T) = {f € L*(R) :
rf(x) € L*(R)}, czyli T : D(T) — L?*(R). Operator T jest nieograni-
czony, bo
ITL gty ll2 = 2L @m0l 2 2l Lwnin2
Przestrzett D(T) jest gesta w L%*(R), bo zawiera wszystkie funkcje o
ograniczonym nosniku.
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(b) Dla H = L?*(0,1) okre§lamy T : C*[0,1] — H wzorem Tf = [’
D(T) jest gesta podprzestrzenia w H. Dla f,(x) = sin(mnz) mamy
(T fn)(x) = mncos(mnz). Otrzymujemy ||Tf,|l2 = mn|| fr]|2-

(c) H = ¢*(N), (Ta), = na, oraz

D(T) = {a € *(N) : in2]anl2 < oo}

n=1

Podprzestrzen D(T) jest gesta, bo 6, € D(T') dla wszystkich n. Ponad-
t0 |02 = nl|dn]2-

Bedziemy rozwazaé operatory A : D(A) — H o gestej dziedzinie.
Definicja 5.1. Operator A : D(A) — H nazywamy symetrycznym jesli
(Az,y) = (z,Ay), x,y € D(A)

Uwaga 7 tozsamosci polaryzacyjnej wynika, ze symetria jest rGwnowaz-
na warunkowi (Az,x) = (x, Az) dla wszystkich z € D(A), co z kolei jest
réwnowazne (Az,z) € R, dla = € D(A).

Operatory symetryczne o pelnej dziedzinie, tzn. D(A) = H, sa ograni-
czone z twierdzenia Hellingera-Toeplitza.

Dla dwu operatorow A i B zawieranie A C B oznacza, ze D(A) C D(B)
oraz Ar = Bz dla x € D(A). Méwimy wtedy, ze B jest rozszerzeniem ope-
ratora A. Dla operatora A wykresem nazywamy podzbior H x H

Ly ={(z,Az) : x € D(A)}
Zauwazmy, ze A C B wtedy i tylko wtedy, gdy 'y C I'g.

Definicja 5.2. Dla operatora A : D(A) — H operatorem sprzezonym A*
nazywamy operator o dziedzinie

D(AY) ={reH : (3zeH) (Vy € D(A)) (Ay,z) = (y,2)}
Dla x € D(A*) okreslamy A*x = z.

Uwaga Element z, o ile istnieje, jest jedyny. Istotnie jesli (y, z) = (y, /)
dla wszystkich y € D(A), to z gestosci dziedziny wynika z = 2/.
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Uwaga Moze sie zdarzyé¢, ze D(A*) = {0}. Naturalnym pytaniem jest
kiedy D(A*) jest gesta podprzestrzenia w H 7 Dla operatora symetrycznego
A mamy D(A) C D(A*). Rzeczywiscie, dla z,y € D(A) otrzymujemy

(Ay,z) = (y, Ar)

zatem D(A) C D(A*) oraz A*x = Ax. Rolg elementu z pelni Az. Ponadto
warunek A C A* jest rGwnowazny symetrii operatora A.

Uwaga Z twierdzenia Riesza o postaci funkcjonaléw ograniczonych na ‘H
wynika, ze warunek = € D(A*) jest réwnowazny temu, ze funkcjonat liniowy

D(A)>y+— (Ay,z) € C

jest ograniczony, tzn. |(Ay, z)| < c||y|| dla pewnej statej ¢ > 0 i wszystkich
y € D(A).
W przestrzeni H x H okreslamy iloczyn skalarny wzorem

((u,v), (ul7 Ul)) = (u, u/> + (v, U/>
Niech J(u,v) = (v, —u). Wtedy J jest izometria na H x H oraz J* = —1.

Lemat 5.3. Dla operatora A : D(A) — H o gestej dziedzinie mamy (x, z) €
[a- wtedy i tylko wtedy, gdy (x,2z) L J(T4). Ten. Tas = J(Ta)L, w prze-
strzent H x H. W szczegolnosci wykres operatora A* jest domkniety.

Dowdd. Teza wynika z okreslenia (z,z) € I' 4« wtedy i tylko wtedy, gdy

(x,Ay) — (z,y) =0, ye€ D(A)
tzn.
(z,2) L J(y, Ay), y€ D(A)
]

Definicja 5.4. Operator A : D(A) — H nazywamy domykalnym jesli
[y jest wykresem operatora, oznaczanego symbolem A. Operator : D(A) —
H nazywamy domknietym, jesli wykres 1"y jest domknietq podprzestrzenig
H x H.

Uwaga Kazdy operator symetryczny jest domykalny, bo wykres A* jest
domkniety oraz A C A*.
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Twierdzenie 5.5. Dziedzina operatora A* jest gesta wtedy i tylko wtedy, gdy
A jest operatorem domykalnym.

Dowdd. Zatbzmy, ze v 1. D(A*). Réwnowaznie (v,0) L ['4» = J(T'4)*. Czyli
(v,0) € J(Da)™ = J(Ta) = J(Ta)

To z kolei jest réwnowazne z warunkiem (0,v) € T4, czyli v = 0. O
Whiosek 5.6. Dla operatora domykalnego A zachodzi réwnosé A = A.

Dowdd. Mamy

[pee = J(Dpe )t = J(JT )N = J(J(T2)H)

Przyktady
(a) H = L2(0,1)
Af=iff D(A)=1{feC'0,1] : f(0) = f(1) = 0}
Operator A jest symetryczny, bo dla f, g € D(A)

1 1 1
(Af.g) =i [ fade=ifg| ~i [ fg'dr=(f.Ag)
0 0

(b) (Af)(z) = zf(x), D(A) = {f € L*(R) : 2f(z) € L*(R)}

[e.o]

(Af.g) = (af.9) = [ 2f@g()da = (f.29) = ([, Ag)

—00

Definicja 5.7. Operator symetryczny A nazywamy samosprzezonym jesli
A* = A, tzn. D(A*) = D(A).

Przyktady
(a) Jak wyzej. Wtedy D(A) € C[0,1] € D(A*). Mozna pokazad, ze
D(A*) = {f € L*(0,1) : f absolutnie ciagta, f' € L*(0,1)}
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(b) Jak wyzej. Pokazemy, ze A* = A. Wystarczy udowodnié¢, ze D(A*) C
D(A). Niech f € D(A*). Mamy

D(A") = {f € L*(R) : [(Ag. f)| <cllgll2, dla pewnej stalejcig € D(A)}

Niech g, (z) = 2 f(2)1(—pn)(z). Wtedy g, € D(A), bo 2g,(x) jest ogra-
niczona. Zalézmy, ze f € D(A*). Wtedy

(g, )] = [{(Agn, 1) < cllgnll2

Zatem

n n 1/2
J2l@)Pdr < ( / m2|f(:c)|2dx)

—n —"

czyli

/x2|f(x)|2 dr <, neN

—-n

Poniewaz n jest dowolne, to xf € L*(R).
Lemat 5.8. Jesli A C B, to B* C A*.

Dowod. Mamy

D(A*) = {xeH : (FzeH) (Vy € D(A))

Ay,x) = (y,2)}
D(B*) = {zxe€eH:(3z€eH) (Vy € D(B)) =

By, x) = (y, 2)}
Dla y € D(A) mamy Ay = By. Zatem D(B*) C D(A*). Ponadto dla x €

D(B*) odpowiadajacy element z = B*z jest réwny A*x.
Inne wyjasnienie:

(
{

I = J(p)" D J([a)" =Tu-

Uwaga Zalézmy, ze A C B oraz A i B sg symetryczne. Wtedy
ACBCB"CA”

Zatem jesli A jest samosprzezony, to A = B = B* = A*. Tzn. operator
samosprzezony nie posiada nietrywialnych symetrycznych rozszerzen.
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Lemat 5.9. Dla operatora symetrycznego A operator A jest réwniei syme-
tryczny.

Dowdd. Jedli x € D(A), to istnieje ciag x, € D(A) taki, ze z, — x oraz
Az, — Az. Wtedy
(Az,z) = lim(Az,, z,) € R

O
Lemat 5.10. Jesli A jest domykalny, to (A)* = A*.
Dowdéd. Wiemy, ze podprzestrzen D(A*) jest gesta. Dalej
7J_ -
D= J(Ca)t = J(Ta) = J(Ta)" = J([5)" =Tz
O

Lemat 5.11. Wartosci wlasne operatora symetrycznego sq liczbami rzeczy-
wistyms.

Dowéd. Niech A C A* oraz Av = \v, v # 0. Wtedy R > (Av,v) = )|v||?,
czyli A € R. O]

Definicja 5.12. Operator symetryczny nazywamy tstotnie samosprzezo-
nym jesli jego domkniecie jest operatorem samosprzezonym.

Uwaga Dla operatora symetrycznego, jesli A* jest symetryczny, to A jest
istotnie samosprzezony. Rzeczywiscie

ACA* cA*=A
Stad A = A* = A",

Twierdzenie 5.13. Operator symetryczny A jest istotnie samosprzeiony
wtedy 1 tylko wtedy, gdy dla dowolnej (réwnowaznie pewnej) liczby z € C\ R
przestrzenie Ran (A — zI) oraz Ran (A — ZI) sq geste w 'H.

Uwaga Gdy A jest ograniczony (niekoniecznie symetryczny), to D(A) =
H (zadanie). Wtedy A jest operatorem ograniczonym okreslonym na H. Jesli
A jest symetryczny, to A jest samosprzezony. Zatem A — 21 jest odwracalny.

Stad Ran (A— zI) = H. To oznacza, ze Ran (A — zI) jest gesta podprzestrze-
nig w H.
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Lemat 5.14. Dla operatora symetrycznego przestrzen Ran (A—zI) jest gesta
wtedy 1 tylko wtedy, gdy liczba Z nie jest warto$cig wltasng operatora A*.

Dowdd. Warunek Ran (A — zI) nie jest gesta jest rbwnowazny istnieniu 0 #
v L Ran (A — 2I), tzn. (Aw — zw,v) = 0 dla w € D(A). Réwnowaznie

(Aw,v) = z(w,v) = (w,zv), w € D(A)
Ostatnia réwnos$¢ oznacza, ze v € D(A*) oraz A*v = Zv. O
Przechodzimy do dowodu twierdzenia.

Dowdd. ( = ) Niech A bedzie istotnie samosprzezony. Zatézmy, ze v L
Ran (A—zI). Z dowodu lematu otrzymujemy A*v = zv. Z zalozenia operator
A* jest symetryczny, bo A* = (A)* = A. Zatem v = 0.

( <) Zalézmy, ze przestrzenie Ran (A — zI) oraz Ran (A — ZI) sa geste

w H dla pewnej liczby z ¢ R. Pokazemy, ze Ran (A — zI) = H. Mamy

Ran (A —z2I) CRan(A—2I) CH

Wystarczy udowodnié, ze przestrzen Ran (A — zI) jest domknieta. Dla v €
D(A) mamy
<(Z - ZI)U7 U> = <ZU7 U> - Z<’U, U>

Zatem B
Im (A — 21w, v)| = [Tm 2| [[o]* (%)

Zalozmy, ze cigg w, = (A — zI)v,, v, € D(A) jest zbiezny. Oznaczmy w =
lim,, w,,. Pokazemy, ze w € Ran(A—zI). Ciag v, spelnia warunek Cauchy’ego
na podstawie réwnosci () zastosowanej do v := v, — v,,,. Rzeczywiscie

[tm 2] [Jv, — v |* = [Tm (A = 20) (vn = Vi), U — V)

= [Im (wy, — Wi, Uy — V)| < |[wn — W] [[Un — V3|

Otrzymujemy ||v, — vy || < |Im z|7!|w, — wp,||. Oznaczmy v = lim, v,. Ze
zbieznosci w, wynika zbiezno$é¢ Av, = w, + 2v, — w + zv. Z domknietodci
wykresu dostajemy v € D(A) oraz Av = w + zv, czyli (A — z[)v = w. To

koniczy dowdd rownosci Ran(A — 21) = H.
Pokazemy, ze A* = A. Wystarczy udowodnié¢, ze A* C A. Niech v €

D(A*). Z wtlasnoséci Ran(A — zI) = 'H istnieje wektor w € D(A) C D(A*)
taki, ze

(A" —2Dv=(A—zlw= (A" — 2w
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Zatem (A* — zI)(v —w) = 0. Tzn. v — w jest wektorem wlasnym operatora
A* 7z wartoscia wlasna z. Jesli v # w to z lematu podprzestrzen Ran(A —zI)

nie jest gesta. Zatem v = w, czyli v € D(A). ]
Przyktady
(a) H = L*0,1).
Af =if', D(A)={feC'0,1] : f(0)=f(1) =0}

Zauwazmy, ze C1[0,1] C D(A*) oraz A*g = ig’ dla g € C'[0, 1]. Chcemy
sprawdzi¢, czy A jest istotnie samosprzezony. W tym celu rozwiazujemy
rownanie (A* — 2I)g = 0 dla g € D(A*). Zalézmy, ze g € C[0,1].
Otrzymujemy réwnanie ig’ = zg, ktérego rozwiazaniem jest g(z) =
e~ ¢ O'. Stad A nie jest istotnie samosprzezony.

(b) H = L*(0,1).
Af=if', D(A)={feC'0,1] : f(0)= f(1)}

Pokazemy, ze A jest istotnie samosprzezony. Wystarczy udowodnié, ze
podprzestrzenie Ran(A=+il) sa geste. Sprawdzimy gestos¢é Ran(A—iTl).
Zatézmy, ze f L Ran(A —il). Tzn.

Otrzymujemy warunek

(9./)={g".f), g€ D(A) ()

Funkcja F(z) = ff(t) dt jest ciggla. Zatem
0

(9. ) = [ 9@) [ (@) do = g(x)F@)|, ~ [ ¢ (@)F (&) dw = g(1)F(1)~{g', F)

Podstawiajac g = 1 do (xx) dostajemy F'(1) = 0. Czyli

(9, f) =19, f)=—(¢g", F)
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Zbiér {¢' : g € D(A)} sktada si¢ ze wszystkich funkeji ciagtych o catce
0. Ten zbidr jest gesty (zadanie) w

L3(0,1) := {h € L*(0,1) : /h(x) dr = 0} =1+

Zatem f + F L L%(0,1). Czyli f(z) + F(z) = C prawie wszedzie,
dla pewnej stalej C. Uzyskujemy f(x) = —F(z) + C prawie wszedzie.
Funkcja F(x) jest ciagta. Mozemy przyjaé, ze f(x) = —F(z) + C dla
0 < z < 1. Stad f jest ciagla, czyli F jest klasy C. Zatem f jest réwniez
klasy C'. Rozniczkujac otrzymujemy f' = —f. Zatem f(x) = de™®. Z
warunku [y f(x)dz = 0 uzyskujemy d = 0, czyli f = 0.

Dla operatora symetrycznego A oraz z ¢ R operator A — zI jest réznowarto-
Sciowy ze wzoru (). Jesli A jest samosprzezony, to podprzestrzeni Ran(A—z1)
jest gesta oraz domknieta, co wynika z dowodu Twierdzenia 5.13. Zatem
Ran(A — zI) = H. Reasumujac

A—2z2I, A—7ZI: D(A) = H

1-1

Definicja 5.15. Dia z ¢ R i operatora samosprzezonego A okreslamy trans-
formate Cayleya wzorem

U =—(A—2)(A-z)" H ™ H

Twierdzenie 5.16. Dla operatora samosprzezonego A transformata Cayleya
jest operatorem unitarnym.

Dowdd. Dla v € D(A) mamy
I(A = zDol* = [|Av]* + |2 [[o]|* — Z(Av, v) — 2(v, Av)
= [[Av]* + [2[*[lv]]* — 2Re(z) (Av, v)

Poniewaz wynik nie zalezy od Im z, to ||(A — zI)v|| = ||(A — zI)v||. Mamy
U, : (A—=zl)v — —(A — zI)v. Poniewaz kazdy wektor w € H ma postaé
w = (A —zI)v dla pewnego v € H, to U, jest izometria z H na siebie. [

Naszym celem jest wyrazenie operatora A za pomoca Us.
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Twierdzenie 5.17. Dla z ¢ R operator I + U, jest rézinowartoSciowy oraz
Ran(l +U,) = D(A).

Dowdd. Dla v € D(A) mamy U,(A —Zl)v = —(A — zI)v. Oznaczmy w =
(A —zI)v. Wtedy

I+U)w=A-ZIlv—(A—z[)v=(z—Z)v#0, v#0

Zatem Ran(l + U,) 2 D(A). Z drugiej strony kazdy wektor w € H ma
posta¢ (A — zI)v dla pewnego v € D(A). Czyli Ran(I + U,) C D(A). Ze
wzoru wynika réoznowarto$ciowosé. O]

Okreslmy U :=U; = —(A — il )(A+ i)~

Twierdzenie 5.18.
A=i(Il-U)I+U)™*

Dowdéd. Obie strony sa okreslone na D(A), z poprzedniego twierdzenia. Ma-
my

I4+U=(A+i)(A+il) 7 —(A—i)(A+il) P =2i(A+il)™" (%)

Dowdd jest tatwy, gdy A jest ograniczonym operatorem samosprzezonym, bo
nie musimy dbaé¢ o dziedziny. Wtedy I + U jest odwracalnyf] Otrzymujemy

A=2(I+U)" ' =il =2i(I+U) ' —i(I+U)I+U) ' =i(I-U)I+U)!
W przypadku ogélnym mamy
A+l :D(A) —1"{1—»7-{, I—I—U:H%D(A)

Dalej
I—U=(A+i)(A+i) '+ (A—il)(A+il) ™ =2A(A +il)™*

Ponadto z (%) na przestrzeni D(A) zachodzi wzor (I +U)™" = —L(A+l).
Otrzymujemy
i1 = U)I+U)" = 2iA(A + i) (—;) (A+il)=A
[

aGdy I + U jest odwracalny, to —1 ¢ o(U). Zatem o(U) C {e : —m+6 <t <m— 4}
dla pewnej liczby 0 < § < .
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6 Rozklad spektralny operatora unitarnego

Dla operatora unitarnego U niech D oznacza rodzine nieujemnych funkeji
ciagtych bedacymi wstepujacymi granicami funkcji cigglych i nieujemnych
na o(U).

Dla liczb rzeczywistych 0 < A — p < 27 niech

1 p<t<A
0  poza tym

1(u,)\) (eit) = {

Wtedy 1,5 € D. Dla liczby —m < A < 7 okreslamy funkcje
f7r517 f)\:]l(—ﬂ',)\)u —T<ALT

Dla ustalonego operatora unitarnego niech E(A) = fy(U). Operatory
E()) sa nieujemne. Ponadto dla p < A mamy

EWER) = [u(U)AU) = ([ufN)U) = [u(U) = E(p)

W szezegblnosci E(N)? = E()), czyli E()\) jest rzutem ortogonalnym. Po-
nadto
E(A) — E(u) = EQN)[I — E(u)] >0

Nieréwno$¢ wynika réwniez z faktu, ze 0 < f,(e") < fi(e™), czyli

B = E(u) = (fu— £)(U) > 0
Lemat 6.1. Dia —m < p < A <7 mamy

> L)
E(/\) - E(:u) < ]l(ufé,)\)(U% B 0> -, AT
< Llysaie(U), p—=6>-mma+6, (m+0)—(n—10)<2m

Dowéd. Pierwsza nieréwno$¢ wynika z f, + 1, < fi. Z kolei dla A < 7
mamy f, + Lu—s) = fr. Ostatnia nierownos¢ wynika z 1 < f, + 1(,—57+6)-
O

Twierdzenie 6.2. Dl —m < A < 7 zachodzi lim,,_y- E(p)v = E(A)v dla
wszystkich v € H. Rownowaznie rodzina E(\) jest mocno lewostronnie ciggta
dla —m < A <.
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Dowdd. Niech u,, / A. Istnieje rosnacy ciag g, funkcji ciggtych na T, zbiezny
punktowo do fy spetiajacy 0 < g, < f,,,. Wtedy

0 < 9n(U) < [, (U) < /5(U)

Poniewaz f\(U) jest mocng granica operatoréw g,(U), to f, (U) — fr(U)
mocno, czyli E(u,) — E(X) mocno. W tym miejscu korzystamy z

Lemat 6.3. Niech 0 < A, < B, oraz B,, — 0 mocno. Wtedy B,, — 0 mocno.

Dowdd. Mamy
0 < (A,v,v) < (Bpo,v)

Zatem (A,v,v) — 0. Ciag norm ||A,]|| jest ograniczony. Z nieréwnosci
[Anv]* < 1| Anll{(Anv, v)
otrzymujemy teze.
Lemat stosujemy do B,, = fA(U) — ¢,(U) oraz A, = fA(U) — f,..(U). O

Twierdzenie 6.4. R lim_ EXNv =0 dlaveH.

Dowdd. Niech A, N\, —m. Wtedy ciag E(),) jest malejacym ciagiem ope-
ratorow nieujemnych, wiec jest mocno zbiezny do pewnego rzutu E. Dla
ustalonej liczby —m < A < 7 istnieje niemalejacy ciag funkcji ciagtych g,
zbiezny punktowo do fy taki, ze g(e”) = 0 dla —w < t < \,. Wtedy

gn(U)EAn) = gn(U) S, (U) = (gnfr,)(U) =0
7, drugiej strony
0=g,(U)E(\,) = EINE>E >0
Czyli E = 0. O
Okreslmy E(—m) = 0.

Lemat 6.5. Operatory B,C € B(H) sq przemienne oraz C > B > 0. Wtedy
|BA|| < ||CA]l dla dowolnego operatora A € B(H).
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Dowod. Mamy
0 < (BA)"(BA) = A*B?A < A*C%A = (CA)*(CA)

Zatem
IBA[]? = [[(BA)*(BA)|| < [[(CA)((CA)| = |CA|*
]
Twierdzenie 6.6. Niech f € C(T) oraz ¢ > 0. Istnieje liczba § > 0 taka,
Ze dla kaZdego podzialu P = {to,t1,...,t,} przedzialu [—m, 7| o $rednicy

mniejszej niz 0 1 dowolnego wyboru punktéw posrednich t;—; < s; < t; mamy

<eg, AE(t]) = E(t]) — E(tj_l

> 1) ABE) — )

Stosujemy wtedy zapis

W szczegolnosci

U:/ww@
Dowdd. Wystarczy rozwazac funkcje o wartosciach rzeczywistych. Rozwazmy
podzial P = {tg,t1,...,t,} o Srednicy mniejszej niz 6. Poniewaz >°7_; AE(t;) =
I, to

n

if ) AB(t) — f(U) = SSUFe™)] — F(U)] AB(t)

j=1
Otrzymujemy

I[f (™) — FAE()|l = |[f(e™)] = fF(U) AER)|
<A = FO) g5, (U] < max (F() = f(e)] = Ms

~s|<26

Z lematu kazdy sktadnik jest operatorem samosprzezonym i ma norme nie-
wieksza niz My, zatem miesci sie pomiedzy —Ms I i Ms I. Stad po pomnoze-
niu przez AE(t;) miedci sie pomiedzy —Ms AE(t;) a Ms AE(t;). Po zsumo-
waniu otrzymujemy

—M(;] = M(;ZAE Z f Sj AE f(U) < M5ZAE<tj) < M5]
k=1

j=1 j=1
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Stad

< M

f:lf(e“j) AE(t) - F(U)

]

Uwaga Spektrum operatora Y7, f(e™) AE(t;) jest skoficzone i sktada
sie z wartosci wasnych {f(e*7)}7_,, dla ktérych AE(t;) # 0. Ponadto

< max [f(e"™)]

f:lﬂe“j) AE(t))

Twierdzenie 6.7.

(a) Dia —m < pu < jesli E(u—0) = E(u+0), dla pewnej liczby 0 < 6 <
min{p, ™ — u}, to e ¢ o(U). Jesli E(—m +6) =0 oraz E(r —0) = I
dla pewnej liczby 0 < § < /2, to —1 ¢ o(U)

(b) Dla —7 < p <, jesli e* ¢ o(U), to E(u—06) = E(pu+6) dla pewnej
liczby 0 < § < min{p, 7 — p}. Jesli =1 ¢ o(U), to E(—m +6) = 0 oraz
E(r —9) =1 dla pewnej liczby 0 < 6 < /2.

Dowdd. (a) Zatézmy, ze —m < p < 7. Rozwazmy podzial P zawieracy p — 9§
oraz p1 + 6. Wtedy spektrum kazdej sumy cze$ciowej dla U, czyli f(z) = z,
nie zawiera liczb e dla p — § < t < p + 0. Zatem odlegtosé¢ liczby e od
spektrum sumy czesciowej jest wieksze niz £ dla pewnej liczby dodatniej €.
To samo dotyczy granicy, gdy $rednica P dazy do zera, czyli operatora U .
W szczegolnodei e ¢ o(U). Podobnie jesli E(r —4) =i E(—m+4) =0, to
—1¢ o(U). W tym wypadku rozwazamy podzial zawierajacy liczby —7m + ¢
imT—0.

(b) Zalézmy, ze e* ¢ o(U) dla —7 < p < 7. Rozwazmy podzial zawiera-
jacy p = t;, taki, ze s;, = sj,41 = p. Wtedy spektrum

Z €isj AE(t])

J=1

zawiera e jeSli AE(t;,) # 0 lub AE(tj,1+1) # 0. Poniewaz sumy czesciowe sa
zbiezne do U, to istnieje podziat P, ktérego spektrum nie zawiera e*. Zatem
AE(t;,) = 0 oraz AE(tj,4+1) = 0. Podobnie jesli —1 ¢ o(U), to wybieramy
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s1 = —m oraz s, = m. Podobne rozumowanie daje, ze dla pewnego podziatu
AE(t;) =0 oraz AE(t,) = 0.
O

Dla —m < A < 7 okre$lamy

Py = lim [E(\+6) — E(N)], Pr = lim [[ — E(r — 0)]

50+ 50+
Wtedy P, sa rzutami jako mocne granice przemiennych rzutow.

Twierdzenie 6.8. Operator Py jest rzutem na podprzestrzen wektorow wia-
snych operatora U odpowiadajgcych wartosci wlasnej .

Dowadd. Bedziemy korzystaé z
U:/ww@

—T

Rozwazmy —7m < A < w. Niech Pyv = v, dla v # 0. Poniewaz
Py<EAN+0)—EMN<EA+6), 6d>0

to E(A+9)v =v i E(A\)v = 0. Stad wynika, ze funkcja t — E(t)v jest stata
na przedziatach (—m, Al i (A, 7]. Rozwazmy podzial P, typu lewy koniec,
zawierajacy —m < X\ = t;, < m. Z wczesniejszej uwagi przyrosty AE(t;)v sa
zerowe dla j < jg oraz dla j > jg + 2. Zatem

et AE(t)v = €0 ABE(tjy11)v = eME(tjo11)v — E(\)v] = e

=1
Poniewaz sumy daza do U, to Uv = e™v.

Jesli Prv = v, to E(A)v = 0 dla =7 < A < 7. Rozwazmy podzial typu
prawy koniec. Wtedy AE(t;)v =0 dla j < n.

ieiti AE(tj)v =" AE(t,)v = —AE(t,)v = —[I — E(t,_1)]v

Po przejsciu do granicy uzyskujemy Uv = —wv.
Zatozmy, ze Uv = v dla —1 < XA < m. Wtedy dla w = E(u)v mamy

Uw =UE(p)v = E(p)Uv = e*E(p)v = e™w
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Zatézmy, ze —m < p < A\. Mamy AE(t;) E(p) =0 dla t;_; > p, zatem

n

B(p)= Y. e AR()

Jrti—1<p

lfj eI AE(t))

j=1

Zatem odlegloéé liczby e od spektrum kazdej sumy jest wicksza niz pewna
liczba 0 < € < 1. To samo dotyczy granicy UE(u). Zatem E(u)v = w = 0 dla
i < A. Ze wzgledu na lewostronna mocna ciagtosé otrzymujemy E(A)v = 0.
Podobnie dla g > X\ mamy U[l — E(u)]v = eI — E(u)]v. Odlegtosé liczby
e od spektrum kazdej sumy

n

I-E@W]= ) ¢YAB()

j?tj—l 2”

[zn: e AE(t;)

j=1

jest wieksza niz pewna liczba 0 < & < 1. To samo dotyczy granicy U[I—E(u)].
Zatem [I — E(p)]v =0, czyli E(p)v = v dla g > A Stad [E(A+0) — E(M\)]v =
v, czyli Pyv = v. Podobne rozumowanie daje, ze jesli Uv = e™v = —v, to
E(p)v=0dla u < m. Zatem [I — E(\)]v = v, czyli Pv = v. O

Twierdzenie 6.9. Dla —m < A\ < 7 oraz funkcji cigglej h na T mamy
A
(BUYEW,v) = [ hle") d(E(t)o,v)

Dowéd. Niech g, (e) bedzie rosnagcym ciggiem funkcji nieujemnych zbieznym
punktowo do fy(e™), zatem g, (U) — E(\) mocno. Otrzymujemy

(W(U)EN)v,v) = Tim(h(U)gn(U)v, v) = lim{(hgn)(U)v,v)

= liyl/h(eit)gn(eit) d{E(t)v,v)

— lim / h(e)gn(e™) dE(t)v, v) = / h(e) d{E(t)v, v)

Pierwsz réwno$¢ wynika z faktu, ze g,(e”) = 0 dla ¢ > A. Dla dowodu
przejscia graniczngo mozemy przyjaé, ze dla ustalonej liczby 0 < § < %(7?—)\)
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mamy g,(e”) =1dla -7+ 6 <t < X\ — 4. Wtedy

T —7m+48
[ hegnle dlER, ) = [ h(e)ga(e) dE(D,0)

—Tr

A—0
+ l 5 h(e") d(E(t)v, v) +A

h(e")gn(e™) d(E(t)v,v)

L~

Skrajne caltki mozna oszacowaé przez
[Plloc(E(=m +d)v,v), [Pl {E(N)v,v) = (E(X = d)v,0)]  (¥)
Ponadto

—m+

/ h(et) d(E(t)v, v) = / h(e) d{E(t)v,v)

—T

A—0
+ / (e d(E(t)o,v) + [ h(e®) d(E(t)v,v)

—7+0 A

L~

Znowu skrajne calki mozna oszacowaé tak jak w (x). Korzystajac z moc-
nej lewostronnej ciaglosci t — E(t) dla —m < t < 7 oraz z faktu, ze
lim; , .+ E(t)v = 0 otrzymujemy teze. O

Uwaga. Zatézmy, ze h = |g|* dla funkcji ciagtej g. Wzér oznacza, ze

(EAN)g(U)v, g(U)v) = (gU)"g(U)EN)v,v) = / lg(eM)? dE(t)v,v) -7 <A<

—T

czyli
dENg(U)v, g(U)v) = |g(e™)* d(E(N)v, v)

Zatem catki Riemanna-Stieltjesa funkcji ciagltych wzgledem obu stron sg ta-
kie same.

Definicja 6.10. Rodzing {E(N)}_r< <r nazywamy rozkladem spektralnym
operatora U.
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Uwaga Wzor

U= / ¢t dE(t)

przypomina rozkltad diagonalny macierzy. Symbol dFE(t) jest infinitezymal-
nym rzutem ortogonalnym na podprzestrzen zwigzang z wartodcig e'. Rzuty
dE(t) i dE(s) sa do siebie ortogonalne dla ¢ # s oraz

I= / dE(t)

—T

Przyktad
(a) H = L*(—m,m), (Uh)(e") = eh(e"). Wtedy [f(U)h](e") = f(e")h(e").

Jesli f,(e") jest rosngcym ciggiem funkcji ciggtych zbieznym punktowo
do T(_r ("), dla = < X <, to ciag operatoréw f,(U) jest zbiezny
mocno do operatora

[E)fI(e") = T—ap(e”) f(e")
Ponadto limy .- E(\) = I oraz E(—7) = 0.

(b) Niech H = C™ oraz (Udy) = €' dla —1 < t; <ty < ... < t, < 7.
Tzn. U jest macierza diagonalng o wartosciach wlasnych e‘*. Funkcje
L (") sa ciggte poza punktami {tx}}_ ;. Zatem

E()\)(Sk = ]1(,7“)\)(6“)5]“ A 7é tp, —m < AT

7 lewostronnej ciggtosci wzor jest spelniony dla —7m < A\ < 7. Za-
uwazmy, ze F(\) jest rzutem ortogonalnym na podprzestrzen wektorow
wlasnych o wartoéciach wlasnych e, dla —7 <t < \, dla —7 < A < 7.

7 Rozklad spektralny operatora samosprze-
zonego

Dla operatora samosprzezonego A rozwazamy transformate Cayleya A =
i(I-U)(I+U) . Niech { E(A\)} _r<)<r bedzie rozktadem jednosci zwiazanym
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z operatorem U. Poniewaz liczba —1 nie jest wartoscig wtasng operatora U,
to funkcja A +— E(\) jest lewostronnie ciagta réwniez w punkcie 7. Funkcje
i

1—
(—m,m) D A=

Ze wzoru h jest ciagta i Scile rosngca. Dla x € R okredlmy F'(x) = E(2arctan ).
Wtedy

F(tg(t/2)) = E(t), lim F(z)=0, lim F(z)=1

Tr——00 T—00

Ponadto F(x) jest niemalejaca lewostronnie mocno ciagla rodzina rzutéow
ortogonalnych.

Lemat 7.1. Zachodzi réownosé

™ 1

RaH<I+U):{UEH _Wm

d(E(t)v,v) < oo}

przy czym catka niewta$ciwa jest traktowana jako granica lub supremum wita-
Sciwych catek Riemanna-Stieltjesa

hm/w e enP d(E(t)v, v)

Dowdd. Catka niewtasciwa jest dobrze okreslona, bo miara d{E(t)v,v) nie
ma atomu w punkcie 7. Niech v = Ran (I + U). Wtedy v = (I + U)w dla
pewnego w € H. Zatem z uwagi na temat rownosci catek Riemanna-Stieltjesa
orzymujemy

/_7; |1+1€z‘t|2 d{E(t)v,v) z_/Tr 1+1€it|2d<(E(t)(I + Uw, (I + U)w)

_ / M|1+eit|2d(E(t)w,w>= / d(E(t),v) = (w, w)

To dowodzi zawierania ” C 7.
Zatézmy, ze

™ 1
Lﬂ md(E(t)U,U> < 00
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Niech a,, = —7 + % oraz b, = m — % Oznaczmy

1

Ial€") = T lemon (@) =Lieman (€] ga(€") = Liempn) (€)= Liman (")

oraz w, = f,(U)v. Pokazemy, ze ciag w, jest zbiezny. Dla n > m mamy
[wn = wi|* = (fu(U)0 = fr(U)v, fo(U)0 = frn(U)0) = (| fo = [l (U)v,0)
= / |fn lt fm( Zt)|2 Z |1 + 61t|2 gn ) gm(eit)] d<E(t)U,U>

_/\1+e”\29"( N d{E(t)v,v) /ng( Hd(E(t)v,v)

bn+l bmfl

B - [ )

—Qn41 —Qm-—1

Oba odejmowane sktadniki sg zbiezne do

A L B, v)

-7 |1 + 62t|2

gdy m — oo.
Niech w = lim,, w,,. Otrzymujemy

(I +U)w, = (I +U)fu(U)v
=1+ 2)(U)fulU)v = [(1 + 2) £ (U)v = g (U)v — v

Zatem (I + U)w = v, czyli v € Ran (I 4+ U).
O

Uwaga Dla —7m < a < b < 71ig(e") =1 (e") mamy

o(U) = E(5) = Jim E(a+ )

Rzeczywiscie
T rpy= lim 1,5+ 1
(=mp) = AL L(=mats) T L(ab)

Twierdzenie 7.2. Dla operatora samosprzezonego mamy

D(A) = {v €eH: 7x2d<F(x)v,v> < oo}
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Dowdéd. Niech v € D(A). Z lematu dostajemy

|

1— it
Zatem stosujac podstawienie x = tan(t/2) = il " e.t otrzymamy
e'L
[ o = [ 1208 wpe <4 [ L awo <
x ), vy = | v, _ v, V) < 00
. E |1+ eit|2 = E |1+ eit|2

Dla dowodu przeciwnego zawierania zatézmy, ze / 2* d(F(z)v,v) < oo.

Wtedy -
s 4 n |1 . eit|2 o0 )
Zatem v € D(A). O

Twierdzenie 7.3. Dla operatora samosprzezonego A mamy
A= / rdF(z),

ktory z definicji oznacza, ze dla v € D(A) zachodzi

[e.9]

(Av,v) = /xd(F(x)v,v)

Uwaga. Calka jest bezwzglednie zbiezna, bo |z| < (1 + z?)/2.

Dowéd. Dla a,, = —m + %, b, = 7 —|—% okreslmy ¢, = tan(a,/2), d, =
tan(b,/2). Niech h,(z) = 1(—.4,)(%) — L(—oo,en) (). Wtedy
1 —ett

o d{E(t)v,v)

7hn(x) zd(F(z)v,v) = /ﬂgn(eit)z’
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Wiemy, ze v = (I + U)w dla pewnego w € ‘H oraz
BT + V), (I +U)w) = [1+ €2 d{E(t)w, w)

Zatem ostatnia caltka jest réwna (wg oznaczen z dowodu poprzedniego twier-
dzenia 7.1)

™

/ gn(€®)i (1 — €)(1 + ™) d(E(t)v, v)

—T

W granicy otrzymujemy ( lim; .- E(t)v = v = E(m)v)
/¢(1 e (14 e ) d (B, v) =i (I — U)I + U w,w) =i (I — U)w,v)

Ale
Av=AIl+V)w =il —U)w

Zatem w wyniku dostajemy (Av,v). O

Okreslmy H,, = [F'(n) — F(—n)|H, gdzie n € N. Wtedy H,, jest domknie-
ta podprzestrzenia w ‘H jako obraz H pod dziataniem rzutu ortogonalnego.
Ponadto H,, C H,,,1 oraz

U H,=H
n=1

bo
lim[F(n) — F(-n)lv=v

Lemat 7.4. Mamy H,, C D(A) oraz A(H,) C H,.

Dowdéd. Niech v € H,,. Okre$lmy P, = F(n) — F(—n). Wtedy

7 22 d{F(z)v,v) = 7 * d(P,F(z)P,v,v)

Przyrosty funkcji « +— (P, F(z)P,v, P,v) sa zerowe dla || > n, bo

F(z)P, = F(x)[F(n)—F(—n)] = F(n)— F(—n), r=n

F(2)P, = F(2)[F(n) - F(-n)] = F(x) - F(z) = 0,

N NV

—n
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Zatem calka jest ograniczona z gory przez n?||P,v||* = n?||v||?, bo dla |z] < n
mamy
0= P,F(—n)P, < P,F(n)P, = P,

Dla v € D(A) mamy v = (I + U)w dla pewnego w € H. Zatem
AP v=AP,(I +U)w=A(I+U)P,w =il = U)P,w =1iP,(I — U)w
Stad wynika, ze jesli v € H,,, to Av € H,,. m

Twierdzenie 7.5. Operator A : H,, — H.,, jest ograniczony oraz || Al|n, —n, <
n.

Dowdéd. Niech v € 'H,,. Wtedy

o0 o0

(Av,v) = /xd(F(m)v,v> = /xd(F(m)an,an>

—00 —0o0

Poniewaz przyrosty sa zerowe dla |z| > n, to

(4v,0) <n [ d(F(z)v,v) = nllol?

— 00

Ze wzoru polaryzacyjnego otrzymujemy

1
Re (v, 1) = 1 [{A(w+ 1), -+ w) — {A(v —w), 0 — )]
n n
< 2l -+l + o — wl?) = 21l + ]
Dla liczby s > 0 otrzymujemy zatem

Re (Av, w) = Re (A(sv), s~ w) < g[SQIIUII2 + 572 [lwl’]

Przyjmujac s = ||w]||/||v|| dostajemy
Re (Av, w) < nljo] {jw]]
Mamy (Av, w) = e?|(Av, w)|. Wtedy
[(Av, w)| = Re (A(v, e"w) < nlfv]| |e“w]] = nljv]| lw]

Zatem || Al < n na H,. O
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Zatézmy, ze A jest ograniczonym operatorem samosprzezonym. Ze wzoru

A=i(I-U)I+U)" wynika
(I+U)" = —%(A i)
Zatem operator I + U jest odwracalny, czyli —1 ¢ o(U). To oznacza, ze
o(U) C {e" : 2arctg (a) < t < 2arctg (b)}

dla pewnych liczb rzeczywistych a < b. Wiemy, ze F(a) = E(2arctg (a)) =0
oraz F'(b) = F(2arctg (b)) = I. Niech f bedzie funkcja ciagta na R. Oznaczmy
o(t) = i(1 — e®)(1 4 ")~ = tg(t/2). Funkcja ¢(t) jest ciagla na [a,b] oraz
A= ¢(U). Zatem

0(A) = o(p(U)) = ¢(a(U)) C (a,b)
Funkcja f o ¢ jest ciagta i ograniczona na o(U). Otrzymujemy wiec

2arctg (b) b

FA) = HeU) = (fop)U) = [ (Fop)®)dBW) = [ f(z)dF(2)

2arctg (a) a

W szczegdlnosci
b
A= [ f(x)dF ()

Wiemy, ze sumy catkowe pierwszej calki sa zbiezne w normie. To samo do-

tyczy wiec drugiej catki, ktora otrzymana jest przez ciggte podstawienie

x = arctg (t/2). Niech ¢ = mino(A) oraz d = maxo(A). Ze wzoru na A

otrzymujemy, ze F'(x) =0 dla z < c oraz F(x) = I dla z > d. Funkcja F(x)

jest mocno lewostronnie ciagla. Zatem F'(c) = 0 oraz lims o+ F(d+ ) = 1.
Okreslajac F(d) = I otrzymamy

1(4) = [ 1) dF(a)

bo sumy catkowe sa takie same jak dla calki po przedziale [a,b] jesli przyj-
miemy, ze podziat calki wzgledem [a, b] zawiera ¢ i nie zawiera d.

Ze wzoru wynika, ze jesli ciag funkcji ciagtych f, — f jest zbiezny jed-
nostajnie na [¢,d], to f,(A) — f(A) w normie.

Poprzez podstawienie x = tg(t/2) lub poprzez zastosowanie podobnego
dowodu do Twierdzenia 6.8 uzyskamy
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Twierdzenie 7.6.

(a) Dla ¢ < x < d jesli F(x — ) = F(x +0), dla pewnej liczby § > 0, to

x ¢ o(A).

(b) Diac<x<d,jesliz ¢ o(A), to F(r—0) = F(x+6) dla pewnej liczby
6> 0.

Dla ¢ < = < d okredlamy

Po= lim [F(z+0) = F(2)], Pu= Jim [l = F(d—0)]

d—0+
Wtedy P, sa rzutami jako mocne granice przemiennych rzutéw.

Twierdzenie 7.7. Operator P, jest rzutem na podprzestrzen wektorow wia-
snych operatora A odpowtadajgcych wartosci wiasnej x.

Dla wektora v rozwazamy lewostronnie ciggta funkcje niemalejaca
le,d] 5 x+— (F(x)v,v). Z teorii miary wiemy, ze ta funkcja wyznacza miare
borelowska na przedziale [c, d]. Z poprzedniego twierdzenia wynika, ze miara
miara zeruje sie na przedziatach otwartych roztacznych z o(A). Wtedy

(F(A),0) = [ f@)d(F),v)

a(A)

Dlatego stosuje sie zapis

= 1 [ F@ @+ ), v+ it

To oznacza, ze prawa strona jest ograniczona forma pottoraliniowa. Dla ogra-
niczonej funkcji borelowskiej g(x) na [a, b] istnieje ciag wspolnie ograniczo-
nych funkcji ciagltych f,(z) zbiezny prawie wszedzie do g(z). Wtedy prawa
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strona jest zbiezna, wiec lewa tez. Czyli ciag operatorow f,(A) jest x-stabo
zbiezny do pewnego operatora g(A). Wtedy

b
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Lemat 7.8.

(a) Dla operatora unitarnego U, ograniczonego operatora T oraz funkcji f €

C(T)) jesli TU =UT, to Tf(U) = f(U)T Ponadto TE(X) = E(A\)T.

(b) Dla ograniczonego operatora samosprzezonego A, o(T) C [c,d], funkcji
f € Cle,d] oraz ograniczonego operatora T, jesliTA = AT, to Tf(A) =
f(AT oraz TF(z) = F(x)T.

Rozwazmy ograniczony operator normalny 7. Wtedy T = A + ¢ B, gdzie
A= (T +T*) oraz B = (T — T*). Operatory A i B sa samosprzezone i
przemienne. Wiemy, ze jesli z = x + iy € o(T), to x € o(A) oraz y € o(B).
Zawieranie odwrotne nie musi by¢ spetnione.

Niech {Fa(x)}ia, oraz {Fg(y)}iE,, beda rodzinami rzutéw zwigzanych
z A1 B, odpowiednio. Poniewaz B jest przemienny z A, to réwniez z Fa(z).
Zatem Fp(y) jest przemienny z F4(z). Dla funkcji ciagltych f(z) i g(y) na
[ca,d 4] oraz [cp,dg], odpowiednio, otrzymujemy

f<A>=7f<x>dFA<x>= [ @ ara@) [ dFsly) = [ f@)dFa@) dFp(y)

CA cB [CA,dA}X[CB,dB]

przy czym catke podwojna traktujemy jako granice sum catkowych wzgledem
prostokatéw [zx_1, zx] X [yi—1, y1]. Sumy catkowe sa wtedy zbiezne w normie
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do f(A). Podobnie
9B) = [[ 1) dFa() dFs(y)
[ca,da]x[cp,dB]
Przez pomnozenie (rozwazajac zbiezno$é sum catkowych) otrzymujemy
fAgB) = [ F@)gly) dFa(x) dF5(y)
[CA,dA]X[CB,dB]
Dla funkeji h(z,y) = Y51 202 tnmx™y™ dostajemy
h(A, B) = / / h(z,y) dFa(z) dFs(y)
[CA,dA]X[CB,dB]

Z liniowosci uzyskujemy

T" = (A+iB)" = / / (x + iy)" dFu(z) dF5(y)
[ca,da]lX[cB,dB]
Ty =(A=iBr = [[ (= iy dFa@) dFs(y)

[CA,dA]X[CB,dB]
Jedli p(z, %) jest wielomianem zmiennej z, to
pI T = [ ez dFa@) dFs(y)
[CA,dA}X[CB,dB}
Z kolei jesli funkcja f(z) okreslona na [c,,da| X [cp,dp] jest granica jedno-
stajna wielomianéw postaci p(z,z) to
1ry= [ pz)aFa@) aFs()
[ca,da]x[cB,dB]
W szczegdlnosci
T= [ (+iy)dFat) dFs(y)
[CA,dA]X[CB,dB]

Rozwazajac sumy czesciowe mozna udowodnié¢
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Twierdzenie 7.9. Diacy < x < dy, cg <y <dp

(a) Jesli Fa(x—0) = Fa(x+0) lub Fp(y—0) = Fp(y+9) dla pewnej liczby
d>0, tox+iy ¢ o(T).

(b) Jesli x+iy & o(T), to Fa(x—09) = Fa(x+6) lub Fg(y—9) = Fp(y+9)
dla pewnej liczby 6 > 0.
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