SOME MODEL THEORY OF THE HEISENBERG GROUP

MACIEJ FRACEK® AND PIOTR KOWALSKI®

ABsTrACT. We show that a field K is model complete (in the language of
rings) if and only if the Heisenberg group H(K) is model complete (in the
language of groups). To show that, we extend Levchuk’s result about auto-
morphisms of H(K) to the case of monomorphisms H(K) — H(M). We also
show that H(K) does not have quantifier elimination and discuss its (non-)bi-
interpretability with K.

1. INTRODUCTION

In this paper, we study model completeness of groups of rational points of the
Heisenberg group. Model completeness is a weaker variant of quantifier elimination,
where the formulas can be reduced to ones having only existential quantifiers. There
are many classical structures which are model complete but do not enjoy quantifier
elimination. Examples include the field R of real numbers [10, Theorem 2.7.3], the
field Q, of p-adic numbers [I7], perfect PAC fields satisfying some additional Galois-
theoretic conditions [12], and the exponential field (R, exp) of real numbers [22].

If K is a field, then the Heisenberg group H(K) is the group of upper unitrian-
gular 3 by 3 matrices with coefficients from K. The main result of this paper is as
follows.

Main Theorem. Let K be a field. Then the group H(K) is model complete if and
only if K is a model complete field.

In general, the model completeness of an algebraic group is not guaranteed, even
if the underlying field is model complete. For example, the multiplicative group
Q, is not model complete for p > 2, since the map

Q) 3z~ 2PeQ,

is a monomorphisms which is not onto. The converse statement also does not hold.
For instance, the group (F,(X), +) is model complete even though the field F,(X)
is not.

Similar results were recently obtained in [11]] in the case of semisimple split alge-
braic groups replacing the Heisenberg group. Clearly, our results in this note should
generalize to all unitriangular matrix groups and possibly to many other types of
unipotent algebraic groups. However, we prefer to have a clear account regarding
the basic case of the Heisenberg group first, hence we leave further generalizations
to subsequent work.
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Model theory of the Heisenberg group has been extensively studied starting
from Maltsev’s interpretation of K in H(K) (using two extra constants) in [I§].
The authors of [1] considered an interpretation of K in H(K) without any extra
constants. However, the questions of model completeness have not been addressed
yet. There is also work of Belegradek [2] on model theory of general unitriangular
groups over arbitrary rings. Finally, it is shown in [13] and [19] that the ring Z is
not bi-interpretable with the group H(Z), see also a very recent work of Danyarova
and Myasnikov [7] on general theory of (bi-)interpretations.

This paper is organised as follows. In Section [2] we analyse monomorphisms
between the rational points of the Heisenberg group and put them into a more gen-
eral context of central group extensions. The proof of the main result of Section
follows the steps of the argument of Levchuk from [16], where the case of automor-
phisms was considered. In Section [3] we recall first some basic definitions and facts
from model theory regarding interpretability and model completeness. Then, we
recall the Maltsev’s interpretation of a field in its Heisenberg group from [18] and
afterwards prove the main theorem. In Section {4} we show (using results of Cherlin
and Felgner from [6]) that H(K) does not have quantifier elimination and discuss
some questions from Section 5 of [I] concerning the model theory of Heisenberg
groups.

The research from this paper originates from the Bachelor Thesis of the first
author which was written under the supervision of the second author.

We would like to thank the members of the model theory group in Wroctaw for
their constructive remarks during the talk of the first author at the model theory
seminar at Wroctaw University.

2. MONOMORPHISMS

In this section, we analyse monomorphisms between Heisenberg groups (over
different fields). The material here mostly comes from [9] and [16], however we
simplify and clarify a little the account from [I6] regarding the Heisenberg group
by putting it in a more general context of central group extensions and (more
importantly) generalize some of the results appearing in [I6] from automorphisms
of H(K) to monomorphisms H(K) — H(M).

2.1. Automorphisms of central group extensions. We start with some general

observations about automorphisms of central group extensions. This material is a

special case of the results from [21], where arbitrary group extensions were analysed.
Let us consider the following short exact sequence of groups

1—B—>G— A—1,

where (A, +) and (B, +) are commutative and B is mapped into Z(G). Then, there
is a cocycle ¢ € Z2?(A, B) such that G is isomorphic to a group with the universe
A x B and with the following group operation

(a,b) - (a',b") = (a+d',b+ b +c(a,d)).

We are interested in automorphisms of G. Let us fix o € Aut(A4), 8 € Aut(B) and
~v: A — B. We define the following map

VGG, U(ad) = (ala), B0) +1(a)).
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In such a way, we get an action of the group of 2 by 2 “lower triangular matrices”
having «, 8 on the diagonal and « down the diagonal. In particular, all such maps
U are bijections.

Remark 2.1. We were a little puzzled about this group of “matrices” above (see
also the structure appearing at the formulation of Lemma in [2I] Section 3]). The
only general explanation we could figure out is coming from bi-actions by group
automorphisms. Suppose than L, R, N are groups, L acts on N by automorphisms
on the left, R acts on N by automorphisms on the right and for all / € L,r € R and
n € N we have
l-(n-r)y=(U-n)-r.

Then, there is a group structure on the set L x N x R given by

(Lynyr) = (U,n 0" =, (L-n")(n-r"),rr').
In our case, we have

L:= Aut(4), R:=Aut(B), N :=Functions(4, B)

and the bi-action is given by the pre-composition and the post-composition of func-
tions.

By straightforward computations, we obtain the following, which is also a special
case of Lemma in [21], Section 3].

Lemma 2.2. The map ¥ above is an automorphism of G if and only if for all
a,a’ € A, we have
Ble(a,a’)) +~(a +a') = v(a) +~(d’) + c(ala), a(a)).

2.2. Monomorphisms between Heisenberg groups. Let K be a field. The
Heisenberg group

H(K) = UT4(K)
is the group of upper unitriangular 3 by 3 matrices, that is matrices of the form:

1 a c
(a,b,c)gk =10 1 b
0 0 1

for a,b,c € K. We will often just write “(a, b, ¢)” instead of “(a, b, ¢)x”. We regard
H as a functor from the category of fields to the category of groups.
We have the following short exact sequence of groups:

0 — (K,+) — H(K) —— (K?,4+) —— 0
where the second map takes ¢ € K to (0,0,¢) € H(K), and the third one maps
(a,b,c) € H(K) to (a,b) € K%. Thus, H(K) is an extension of (K?,+) by (K, +).
Furthermore, the image of the second map is precisely the center of H(K), so this is
a central extension. The center of H(K) coincides with its commutator subgroup,
and it is the subgroup of matrices with only the upper right corner possibly non
zero, that is we have the following
Z(H(K)) = [H(K),H(K)] = {(0,0,¢) | ce K}.

Therefore, this situation fits perfectly to the set-up of Section 23] It is easy to
check that the corresponding cocycle is

ce 2% (K, +)%, (K,+)), cl(z,y),(@y)) = zy.
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We also note the following formula for commutators in H(K), which will be used
in the sequel:

[(a,b,¢), (a', b, c")] = (0,0,ab —ba').

Following [16], we consider a special type of automorphisms of the Heisenberg
group which we interpret using the terminology from Section 2:I] It will turn out
(as in [I6]) that there are no others. Let us fix

A= (‘CI Z) € GLy(K).

We take as a the following K-linear map
a:K? - K2  or,y) = (ax + by, cx + dy)
and as 8 a K-linear map as well
B: K — K, p((z)=det(4):z.
Finally, we take 7 of the following form
v K= K, y(z,y) = Ui(z) + Ua(y) + bexy
for some ¥y, ¥y : K — K. Using Lemma[2.2] we obtain the following.
Lemma 2.3. The corresponding map
U(z,y,z) = (A(z,y),det(A)z + Uy (z) + Ua(y) + bezy)
is an automorphism if and only if for all x1,x2,y1,y2 € K we have
Uy (21 +22) + Ua(yr +y2) = Ui(a1) + Ui (x2) + Va(yr) + Ua(yo) + acziza + by ys.
Proof. Let us take arbitrary
= (z1,22) € K2, §=(y1,10) € K2
Then, using Lemma ¥ is an automorphism if and only if
(%) V(T +7) — (7)) =7(y) = (AT, Ay) — det(A)c(z, 7).
Since ¢(Z,§) = x1ya2, the right-hand side in (*) coincides with
acz1yy + bdzays + be (z1y2 + x2y1) -

It is easy to check that for ¥(Z) = U1 (x1) + Ua(z2) + bexyza, the left-hand side in
(#) coincides with

Uy (21 +22) + Wa(yr +y2) — Vi(z1) — Wi(w2) — Va(yr) — Wa(y2) +be (z1y2 + 2291)

which gives the result. (]

Therefore, we fix A as above and ¥y, Uy satisfying for all z,2' € K
Uy(x+2') =V (z) + Ui (2') + aczx’, Vy(z +2') = Ua(z) + Va(2') + bdza’,

which is exactly the set-up of Levchuk from [16]. Levchuk shows then that all
automorphisms of H(K) are of this form modulo the ones induced by field au-
tomorphisms of K. We will extend this result to monomorphisms of the form
H(K) — H(M). To this end, we need the following result.
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Lemma 2.4. Let K € M be a field extension, ce K, and ¢ : K — K be such that
for all x,y € K, we have

Yz +y) = (@) +(y) + cay.
Then, we can extend v to ¥ : M — M such that for all x,y € M, we have

U(z+y) =VY(z)+ Y(y) + cxy.
Proof. Let L be a K-linear subspace of M such that M = K @ L. We notice that

¥(0) = ¢(0+0) = ¥(0) +4(0) +0.

Therefore, we obtain (0) = 0.
If char(K) = 2, then we have:

0=290)=v1+1)=v¢1) +v(1)+c-12=c.
Therefore, we get that ¢ = 0. Thus, for all k € K and [ € L, we can simply define
Uk +1) :=y(k).
If char(K) # 2, then for all k € K and [ € L we set
Uk +1) == v(k) + 512 + ckl.

We check below that W satisfies the desired equality. For any k, k' € K and [,1' € L,
we have the following

(

E4+k)+ g(l + U2 ek +E)I+1)

k) + () + ckk' + gﬂ + 51'2 + el + ckl + k'l + ekl + ck'l
k+1)+ Wk +1') + ckk + cll’ + ckl’ + clk'

(k+0)+U(E +1U)+cek+ 1)K +1).

Therefore, we see that U satisfies the necessary condition. O

4
=Y
v
=V

We are ready now to show the main result of this section.

Theorem 2.5. Let K and M be infinite fields, and ¥ : H(K) — H(M) be a group
monomorphism. Then there is a group automorphism ® : H(M) — H(M), and a
field homomorphism 0 : K — M such that ¥ = ® o H(6).

Proof. Let M’ be the algebraic closure of M. We consider the following centralizer
(in H(M"))

C = Crriam (W(Z(H(K))))
of the image by ¥ of the center of H(K).

Claim

C = H(M").

Proof of Claim. Assume not and we will reach a contradiction. Let us notice first
that C is a Zariski closed subgroup of H(M’) (as any centralizer in any algebraic
group). Since C' is proper in the connected algebraic group H(M’) of dimension 3,
we obtain that dim(C) < 2. Let C° be the connected component of C. We will
argue first that C° is commutative. Since C° is connected, it is enough to show
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that the Lie algebra Lie(C?) is commutative. However, Lie(C?) is nilpotent and of
dimension at most two, therefore (by e.g. |8, Section 3.1]) Lie(C?) is commutative.

Since [C : C] is finite, C° is commutative and H(K) embeds into C, we obtain
that H(K) has a commutative subgroup of finite index. It should be well-known
that such subgroups do not exist for infinite fields K. To see that, one can e.g. take
the Zariski closure in the algebraic group H(K’), where K’ is the algebraic closure
of K, and obtain a Zariski closed commutative subgroup of H(K") of finite index.
Since H(K') is connected, it is then commutative, a contradiction. O

Since C' = H(M’), we obtain that U(Z(H(K))) € Z(H(M)). Using this inclu-
sion, let us introduce the following notation for z,y,z € K:
U((2,0,0)k) = har(f1(x), g1(x),41(x)),
U((0,9,0)k) = har(f2(y), 92(), i2(y)),
U((0,0,2)k) = har(0,0,i(2)).

For z,y € K, we consider the following commutator:

(0,0,i(zy)) = ¥((0,0,zy)) = ¥([(x,0,0),(0,y,0)])
= [¥((«,0,0)), ¥((0,y,0))]

= [(f1(#), 91(2), 11(x)), (f2(), 92(), i2(y))]
= (0,0, f1(®)g2(y) — f2(y)g1(2)).
Therefore, we have
(1) i(zy) = fi(@)g2(y) — f2(y)g1 ().
Moreover, since (z,0,0) and (y,0,0) commute, we obtain
(0,0,0) = ¥((0,0,0)) = ¥([(x,0,0), (y,0,0)]
= [¥((2,0,0)), ¥((y,0,0))]

= [(f1(2), 91(2),i1(2)), (f1(), 91(y), i1 (y))]
= (0,0, fi(z)g1(y) — fr(y)gi(z)).

Hence, we have

(2) fi@)g1(y) = fr(y)gi ().
By a similar computation on the commutator of (0,x,0) and (0,y,0), we obtain
(3) f2(2)g2(y) = fa(y)ga().

Let us define
d:=i(1) = fi(1)g2(1) — f2(1)g1(1).
Since ¥ is a monomorphism, we get that d # 0. Using (1)-(3), we obtain
i(zy)d = i(2)i(y)-
Let us define
0:=d Y.
Then, we have the following
(1) =d ti(l)=d 'd =1,
O(xy) = d~*di(zy) = d"*i(x)i(y) = 6(z)0(y).

Therefore, 6 is a field homomorphism.



MODEL THEORY OF HEISENBERG GROUP 7

Moreover, we have

dgi(z) = (f1(1)g2(1) — f2(1)g1(1)) g1 (z)
= f1i(1)g1(2)g2(1) — f2(1)g1(1)g1(z)
=g1(1) f1(2)g92(1) — g1(1)g1 () f2(1)
= g1(1)i(z)

Similarly, we obtain
dfi(z) = fi(D)i(z), dfz2(x) = f2(1)i(z), dga(z) = g2(1)i(x).
Thus, we see that
fi=f1)08, g1=09:(1)0, fa=[ (1), g2 =g2(1)6.
Let n: M — K be a K-linear map such that 5o 6 =idg. We clearly have:
i1=(i10m) 00, iy =_(igon)ob.
Let us finally define
Yri=id10m, tPr:=igon.
We see that

U((x,0,0)(y,0,0))

(A1) +y), 91 (1)0(z +y), 91 (0(x) +0(y)))
= ¥((,0,0))¥((y,0,0))

= (f1(1)0(x), g1 (1)6(x), 1 (6())) (f1(1)0(y), 91 (1)6(y), Y1 (6(y)))

= (M0 +y), 91 (1)0(z + y), Y1 (0(2)) + ¥1(0(y)) + f1(1)g1(1)0(x)0(y))-
Therefore, for any a,b € 0(K) we have

Y1(a +b) = i(a) +¢P1(b) + f1(1)g1(1)ab.

By a similar computation on (0, z,0) and (0,y,0), we see that

1/)2(@ + b) = ’lﬁg(a) + ’l/JQ(b) + fg(l)gg(l)ab.
Let us take
U, Ug: M > M
extending 11, Y9 respectively which are given by Lemma 2.4 and let ® be the au-
)
1)

H(@) - fo(l

and the maps Uy, Ws.
g1(1) g2 pe T T

tomorphism associated with the matrix A = <
Therefore, we obtain

det(A) =d and ¥ = o H(H),
which we needed to show. (]

2.3. Description. In this subsection, we provide some additional information on
the group of automorphisms of H(K). We need the following.

Theorem 2.6 (Levchuk). Let K be a field.
(1) If char(K) # 2, then
Aut(H(K)) = (End(K, +)* x GLy(K)) x Aut(K).
(2) If char(K) = 2, then

Aut(H(K)) = (End(K,+)2 x ((K*)2 x Z/QZ)) s Aut(K).
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Proof. The first part is included in [I6, Corollary 5] and we also provide a more
explicit argument in Remark [2.7] below.

The second part should follow from the sentence just below the statement of
[16l, Lemma 16]), however, we also provide a quick argument here. As in the proof
of Lemma [2.4] we see that the corresponding maps ¥, Vs : K — K need to be
additive in the case of characteristic 2. In general, a straightforward computation
shows that for additive maps ¥y, U5, the map

U(z,y,2) = (A(x,y),det(A)z + Uy (z) + To(y) + bexy)
is a an automorphism of H(K) if and only if for all ,2’,y,y" € K we have
det(A)zy’ + be(x + ') (y + ') = be(zy + 2'y') + (az + by) (e’ + dy'),

where A = (Z Z) € GLy(K). Since det(A) # 0, another easy computation shows

that the above holds if and only if A is diagonal or anti-diagonal. Such matrices
form a subgroup of GLy(K) which is isomorphic to (K*)? x Z/27Z, where Z/27Z
acts on (K*)? coordinate-wise. O

Remark 2.7. Gibbs gave in [9] another description of automorphisms of groups
of rational points of unipotent groups. The class of unipotent groups from [9] is
much larger than the one considered by Levchuk in [I6], however, only fields are
considered in [9] and there are also some restrictions regarding the characteristic. In
our case of the Heisenberg group, the case of characteristic two is excluded, which
corresponds to two different cases in the statement of Theorem We list below
some types of automorphisms from [9] (in the special case of the Heisenberg group)
and we use them to give a more direct proof of Theorem [2.6{1).

(1) Central automorphisms are of the form
(xvyv Z) = (x’ya z+ \Ill(x) + \IIQ(y))7

where each ¥; is additive. Such automorphisms correspond to the case of
A=1.
(2) The graph automorphism is given as follows

(’l,’,y,Z) = (yvxa —z+ xy)

This automorphism corresponds to the case A = ((1) é) and Uy =0 = U,.

(3) Diagonal automorphisms are of the form
(2,y,2) = (ax,by, 2)

for a,b € K*. They correspond to diagonal matrices A = (8 2) and
U, = 0=,
(4) Suppose that char(K) # 2. Then, extremal automorphisms are of the form

a
(fE,y,Z) = (iC + ay,y,z + 51/2)

for a € K. These automorphisms correspond to the case of A = (é ?),
¥y =0and Uy(y) = Sy°.
It is easy to see that the matrices A appearing in Items (2)—(4) above generate
GL2(K) which gives another argument for Theorem [2.6(1).
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3. MODEL COMPLETENESS

3.1. Interpretations. For precise definitions regarding interpretations, we refer
to [I0]. A structure A is interpretable in a structure M, if every set definable in
N (including its universe) is also interpretable in M. Such an interpretation yields
the following functor

I' : Models(Th(M)) — Models(Th(N)),

where for a theory T', Models (T') is the category in which the objects are models of
T and the morphisms are elementary embeddings between them. For more details,
see [10, Theorem 5.3.3].

Let K be a field. We have the obvious interpretation of the field H(K) in the
group K and the functor induced by this interpretation is H. We consider the lan-
guage L, which is the language of groups with two additional constant symbols. We
recall Maltsev’s interpretation of the field K in H(K) (regarded as an L-structure)
following [I] and [7] below, since we need its specific form for an application later

(see Remark [3.2)2) and Remark [3.7).

Fact 3.1 (Maltsev [18]). The field K is interpretable in the L-structure
(H(K); - (1,0,0)x,(0,1,0)x)

in the following way.

(1) The universe is Z(H(K)) which is a definable subset of H(K).
(2) The formula defining the field addition is just the group multiplication

®(x,y,2) ==y = 2.
(8) The formula for the graph of the field multiplication ®(x,y, z) is given below:
(323 ([:L",u] =y, v]=1 A [Z/,v]=2 A [u,y]=y A [2/,¢]= z) ,
where I = (0,0,0) denotes the identity element of the Heisenberg group and
w:=(1,0,0), v:=(0,1,0).

Moreover, this is an “If -interpretation” in the terminology from [10], that is it is
given by positive ezistential formulas.

Remark 3.2. We comment here on the interpretation from Lemma 3.1
(1) We get the following interpretation functor
© : Models (Th (H(K);-, (1,0,0),(0,1,0))) — Models (Th(K)) .
(2) By the moreover claim from Lemma and [10, Theorem 5.3.4(b)], the
functor from Item (1) extends to a functor
©;1-1 : Models; _; (Th(H(K);-,(1,0,0),(0,1,0))) » Models; _; (Th(K)),

where for any theory T', we denote by Models;_; (T the category of mod-
els of T' with embeddings ([10, Theorem 5.3.4(b)] even allows to replace
embeddings with arbitrary homomorphisms, but in our case they are em-
beddings anyway).

(3) The map

t (K +,) = (Z(H(K));@,®), tx(r)=(0,0,2)k

is a natural and K-definable isomorphism of fields, that is for any field
homomorphism « : K — M the following diagram is commutative.
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o(H(K) Mo (H (1))

S

K——— M

Thus, we have an isomorphism (given by a definable map) between the
identity functor on Models;_1(Th(K)) and the composition functor ©;_;10
H.

3.2. Test for model completeness and main result. We follow here briefly
the presentation from [I1].

Definition 3.3. Let £ be a language and M be an L-structure. We say that M is
model complete if Th(M) is model complete.

Remark 3.4. To test model completeness of a theory T, it is enough to consider
embeddings between special models (as in [10, Section 10.4]) of T

We will need the following result which was suggested by Will Johnson.
Theorem 3.5 (Theorem 2.17 in [I1]). Suppose
I' : Models(T;) — Models(T3)
is an interpretability functor and My = Ty is special. If there is My |= Ty such that
My =T (M), then there is M, =T, such that My =~ T'(M7).
We are ready now to show the main result of this paper.

Theorem 3.6. Let K be a field. Then the group H(K) is model complete if and
only if K is a model complete field.

Proof. Assume that K is model complete. Let G = H(K) = N and f: G - N
be a group monomorphism. We need to show that f is elementary. By Remark
3.4l we can assume that H and N are special. By applying Theorem to the
interpretability functor

H : Models (Th(K)) — Models (Th(H(K))),
there are fields F', M such that
Gz H(F), NxH(M), F=K=M.

Since any isomorphism is elementary and the composition of elementary maps is
elementary, we can also assume that f : H(F) — H(M). By Theorem [2.5, we can
finally assume that f = H(«) for some field monomorphism « : F — M. Since K
is model complete and F' = K = M, we get that the map « is elementary. Because
interpretability functors take elementary embeddings to elementary embeddings,
we conclude that f is elementary.

We assume now that the group H(K) is model complete and let

T := Th ((H(K),-, (1,0,0),(0,1,0))).

The L-theory T is still model complete, since we only added constant symbols to
the language. Let F' and M be fields such that

F=K=M
and « : F — M a field monomorphism. Then, we have
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By our assumption, the map
H(a): H(F) — H(M)

is elementary. By interpreting the extra constant symbols from the language £ as
(1,0,0) and (0,1,0) in both structures, we can treat H(F') and H (M) as models
of T. Moreover, H(«) sends (1,0,0)r and (0,1,0)r to (1,0,0)a; and (0,1,0),
respectively, thus it is also an elementary embedding of models of 7. By Remark
3:2(1), we have that 3 := ©(H(«)) is elementary. By Remark [3.2)2), we get that
a = Vo fod for some isomorphisms ¥, ®. Therefore, we conclude that « is
elementary. 0

Remark 3.7. We comment here on some natural generalizations of the arguments
from the last proof.

(1) Let us assume we are in the set-up from Remark that is we have an
interpretability functor I which extends to a functor

' : Models; 1 (T) —» Models; (T’)

having a right quasi-inverse as in Remark 3) In such a case, if T is
model complete then T is model complete as well, which was observed in
the case of existential bi-interpretations in [14], Corollary 2.16].

(2) There is a natural generalization of the first implication from the above
proof as well. Let us assume we have an interpretability functor I' which
extends to a functor

T': Models; ; (T) —» Models; ; (T’)

satisfying a “weak Borel-Tits property”, that is for all M, My | T and
for all

f:T(M1) = T'(Mz)
there are o : My — My and ¢ € Aut(My) such that

f=tol(a).
In such a case, if T is model complete then 7" is model complete as well.
This property was used to show model completeness of some groups in

[11], and it was applied there in the form of the actual Borel-Tits theorem
(see [4, (A)] and [20, Theorem 1.3]).

4. OTHER MODEL-THEORETIC PROPERTIES OF H(K)

In this section, we focus on other model-theoretic properties of the Heisenberg
group and our results are mostly negative. We consider first the question of quan-
tifier elimination, which can be settled easily using the work of Cherlin and Felgner
from [6].

Theorem 4.1. If K is an infinite field, then the group H(K) does not have quan-
tifier elimination.

Proof. If char(K) = 0, then H(K) is torsion-free. Therefore, we can use e.g. [0,
Theorem 3.4] which says that locally solvable torsion-free groups with quantifier
elimination are necessarily commutative (and divisible).

If char(K) = p > 0, then H(K) is a p-group, that is the order of each element
of H(K) is a power of p (here, at most p?). Then, we can use e.g. [6, Theorem
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4.2] which says that hipercentral (in particular, nilpotent) p-groups with quantifier
elimination are commutative. ([

There are several questions in Section 5 of [I] concerning the model theory of
Heisenberg groups. One of them regards the (effective) bi-interpretability of K and
H(K). Regarding this question, we point out the following negative result.

Proposition 4.2. If K is an infinite field, then the interpretation K — H(K)
cannot be “inverted to a bi-interpretation” even using extra parameters.

Proof. Let us suppose there is an interpretation of K in H(K) “inverting” the
interpretation K — H(K) for an uncountable field K using parameters contained
in a countable subfield Ky ¢ K. Then, by e.g. [10, Section 5.4, Exercise 8(b)], we
get the induced isomorphism:

Hic + Autgers(K/Ko) = At groups(H (K)/H(Ky)).

However, there many automorphisms of H(K) fixing pointwise any countable sub-
group Hy < H(K) which are not coming from the field automorphisms, e.g. the
central automorphisms from Remark [2.7/(1). O

Remark 4.3. One can also argue above by showing that the interpretation of
H(K) in K is not full (see [0, Def. 2.1(3)]), since, for example, the projection map

pH(K)_)Z(H(K))’ p((a,b,C)K)Z(O,O,C)K

is not definable in the pure group H(K) (even using parameters) which can be seen
by an automorphism argument similarly as in the proof of Proposition {2}

Regarding the “real” question about any possible bi-interpretability between K
and H(K), the situation is more complicated. It is suggested in [1] to show that the
groups Aut(K) and Aut(H(K)) are not isomorphic and this is the route we take.
We could success in some particular cases only and these cases are listed below.

Theorem 4.4. A field K is not bi-interpretable with the group H(K), if K comes
from the following list.

(1) Finitely generated fields.
(2) Real closed fields.

(8) p-adically closed fields.
(4) Algebraically closed fields.

Proof. By Theorem [2.6] we get the following
Aut(H(K))| > [End(K, +)|
for any field K. Since for finitely generated fields we have
|[End(K, +)| > |Aut(K)],

Item (1) follows.

Assume that K is bi-interpretable with H(K) for a real closed field K. Then,
we also get that R is bi-interpretable with H(R), since the theory of real closed
fields is complete. Thus, we can conclude as above, since Aut(R) is trivial. The
argument for p-adically closed fields is analogous using that the group Aut(Q,) is
trivial as well.
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Regarding the last case, assume that K is an algebraically closed field and let F’
be the prime subfield of K. We have the following exact sequence of groups

1 — Aut (K/F*8) — Aut (K) — Gal(F) — 1,

where Gal(F') is the absolute Galois group of F, so |Gal(F)| = 2%0. Lascar showed
that the group Aut (K/F#) is simple (it was proved for K = C in [I5] and the
general case was shown in [3]). In particular, if H is a normal subgroup of Aut(K),
then we have
|H| < 2% or |Aut(K): H| < 2%,

Assume now that K is bi-interpretable with H(K') and we will reach a contradiction.
Without loss of generality, K is uncountable. By Theorem[2.6] there is N < GLy(K)
such that

Aut(K) =~ Aut(H(K)) = (End(K, +)* x N) x Aut(K).

Let us take the normal subgroup H of Aut(K) corresponding to End(K, +)? under
the isomorphism above. We obtain that

|H| > 2% and |Aut(K): H| > 2%,
which gives a contradiction. O

Remark 4.5. If K is an infinite field coming from the list given in the statement
of Theorem then a similar proof also shows that K and H(K) are not bi-
interpretable even using extra parameters. We have tried to show the same for any
infinite field, but we could not. The existence of a field K such that for all M = K
we have a topological isomorphism

Aut(M) = (End(M, +)* x GLy(M)) x Aut(M)

(see Section should lead to a contradiction, but we were unable to obtain it.

It is shown in [I3] and [19] that Z and H(Z) are not bi-interpretable (even using
extra parameters) by finding a “large” (here: recursively saturated) ring R = Z
such that

|[Aut(H(R))| > [Aut(R)|.

A corresponding property does not hold for arbitrary fields (in place of the ring Z).
For example, it does not hold for algebraically closed fields K, since for such fields
we always have

[Aut(H(K))| = [Aut(K).
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