
SOME MODEL THEORY OF THE HEISENBERG GROUP

MACIEJ FR�CEK♣ AND PIOTR KOWALSKI♢

Abstract. We show that a �eld K is model complete (in the language of
rings) if and only if the Heisenberg group HpKq is model complete (in the
language of groups). To show that, we extend Levchuk's result about auto-
morphisms of HpKq to the case of monomorphisms HpKq Ñ HpMq. We also
show that HpKq does not have quanti�er elimination and discuss its (non-)bi-
interpretability with K.

1. Introduction

In this paper, we study model completeness of groups of rational points of the
Heisenberg group. Model completeness is a weaker variant of quanti�er elimination,
where the formulas can be reduced to ones having only existential quanti�ers. There
are many classical structures which are model complete but do not enjoy quanti�er
elimination. Examples include the �eld R of real numbers [10, Theorem 2.7.3], the
�eld Qp of p-adic numbers [17], perfect PAC �elds satisfying some additional Galois-
theoretic conditions [12], and the exponential �eld pR, expq of real numbers [22].

If K is a �eld, then the Heisenberg group HpKq is the group of upper unitrian-
gular 3 by 3 matrices with coe�cients from K. The main result of this paper is as
follows.

Main Theorem. Let K be a �eld. Then the group HpKq is model complete if and
only if K is a model complete �eld.

In general, the model completeness of an algebraic group is not guaranteed, even
if the underlying �eld is model complete. For example, the multiplicative group
Q�

p is not model complete for p ¡ 2, since the map

Q�
p Q x ÞÑ xp P Q�

p

is a monomorphisms which is not onto. The converse statement also does not hold.
For instance, the group pFppXq,�q is model complete even though the �eld FppXq
is not.

Similar results were recently obtained in [11] in the case of semisimple split alge-
braic groups replacing the Heisenberg group. Clearly, our results in this note should
generalize to all unitriangular matrix groups and possibly to many other types of
unipotent algebraic groups. However, we prefer to have a clear account regarding
the basic case of the Heisenberg group �rst, hence we leave further generalizations
to subsequent work.

2020 Mathematics Subject Classi�cation. Primary 03C10; Secondary 03C60, 14L35.
Key words and phrases. Heisenberg group, unipotent algebraic groups, model completeness.
♢ Supported by the Narodowe Centrum Nauki grant no. 2021/43/B/ST1/00405 and by the

Tübitak grant no. 1001-124F359.

1
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Model theory of the Heisenberg group has been extensively studied starting
from Maltsev's interpretation of K in HpKq (using two extra constants) in [18].
The authors of [1] considered an interpretation of K in HpKq without any extra
constants. However, the questions of model completeness have not been addressed
yet. There is also work of Belegradek [2] on model theory of general unitriangular
groups over arbitrary rings. Finally, it is shown in [13] and [19] that the ring Z is
not bi-interpretable with the group HpZq, see also a very recent work of Danyarova
and Myasnikov [7] on general theory of (bi-)interpretations.

This paper is organised as follows. In Section 2, we analyse monomorphisms
between the rational points of the Heisenberg group and put them into a more gen-
eral context of central group extensions. The proof of the main result of Section 2
follows the steps of the argument of Levchuk from [16], where the case of automor-
phisms was considered. In Section 3, we recall �rst some basic de�nitions and facts
from model theory regarding interpretability and model completeness. Then, we
recall the Maltsev's interpretation of a �eld in its Heisenberg group from [18] and
afterwards prove the main theorem. In Section 4, we show (using results of Cherlin
and Felgner from [6]) that HpKq does not have quanti�er elimination and discuss
some questions from Section 5 of [1] concerning the model theory of Heisenberg
groups.

The research from this paper originates from the Bachelor Thesis of the �rst
author which was written under the supervision of the second author.

We would like to thank the members of the model theory group in Wrocªaw for
their constructive remarks during the talk of the �rst author at the model theory
seminar at Wrocªaw University.

2. Monomorphisms

In this section, we analyse monomorphisms between Heisenberg groups (over
di�erent �elds). The material here mostly comes from [9] and [16], however we
simplify and clarify a little the account from [16] regarding the Heisenberg group
by putting it in a more general context of central group extensions and (more
importantly) generalize some of the results appearing in [16] from automorphisms
of HpKq to monomorphisms HpKq Ñ HpMq.

2.1. Automorphisms of central group extensions. We start with some general
observations about automorphisms of central group extensions. This material is a
special case of the results from [21], where arbitrary group extensions were analysed.

Let us consider the following short exact sequence of groups

1 ÝÑ B ÝÑ G ÝÑ A ÝÑ 1,

where pA,�q and pB,�q are commutative and B is mapped into ZpGq. Then, there
is a cocycle c P Z2pA,Bq such that G is isomorphic to a group with the universe
A�B and with the following group operation

pa, bq � pa1, b1q � pa� a1, b� b1 � cpa, a1qq.

We are interested in automorphisms of G. Let us �x α P AutpAq, β P AutpBq and
γ : AÑ B. We de�ne the following map

Ψ : GÑ G, Ψpa, bq � pαpaq, βpbq � γpaqq.
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In such a way, we get an action of the group of 2 by 2 �lower triangular matrices�
having α, β on the diagonal and γ down the diagonal. In particular, all such maps
Ψ are bijections.

Remark 2.1. We were a little puzzled about this group of �matrices� above (see
also the structure appearing at the formulation of Lemma in [21, Section 3]). The
only general explanation we could �gure out is coming from bi-actions by group
automorphisms. Suppose than L,R,N are groups, L acts on N by automorphisms
on the left, R acts on N by automorphisms on the right and for all l P L, r P R and
n P N we have

l � pn � rq � pl � nq � r.

Then, there is a group structure on the set L�N �R given by

pl, n, rq � pl1, n1, r1q :� pll1, pl � n1qpn � r1q, rr1q.

In our case, we have

L :� AutpAq, R :� AutpBq, N :� FunctionspA,Bq

and the bi-action is given by the pre-composition and the post-composition of func-
tions.

By straightforward computations, we obtain the following, which is also a special
case of Lemma in [21, Section 3].

Lemma 2.2. The map Ψ above is an automorphism of G if and only if for all
a, a1 P A, we have

βpcpa, a1qq � γpa� a1q � γpaq � γpa1q � cpαpaq, αpa1qq.

2.2. Monomorphisms between Heisenberg groups. Let K be a �eld. The
Heisenberg group

HpKq � UT3pKq

is the group of upper unitriangular 3 by 3 matrices, that is matrices of the form:

pa, b, cqK :�

�
�1 a c
0 1 b
0 0 1

�



for a, b, c P K. We will often just write �pa, b, cq� instead of �pa, b, cqK�. We regard
H as a functor from the category of �elds to the category of groups.

We have the following short exact sequence of groups:

0 pK,�q HpKq pK2,�q 0

where the second map takes c P K to p0, 0, cq P HpKq, and the third one maps
pa, b, cq P HpKq to pa, bq P K2. Thus, HpKq is an extension of pK2,�q by pK,�q.
Furthermore, the image of the second map is precisely the center of HpKq, so this is
a central extension. The center of HpKq coincides with its commutator subgroup,
and it is the subgroup of matrices with only the upper right corner possibly non
zero, that is we have the following

Z pHpKqq � rHpKq, HpKqs � tp0, 0, cq | c P Ku .

Therefore, this situation �ts perfectly to the set-up of Section 2.1. It is easy to
check that the corresponding cocycle is

c P Z2
�
pK,�q2, pK,�q

�
, cppx, yq, px1, y1qq � xy1.
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We also note the following formula for commutators in HpKq, which will be used
in the sequel: �

pa, b, cq, pa1, b1, c1q
�
� p0, 0, ab1 � ba1q.

Following [16], we consider a special type of automorphisms of the Heisenberg
group which we interpret using the terminology from Section 2.1. It will turn out
(as in [16]) that there are no others. Let us �x

A �

�
a b
c d



P GL2pKq.

We take as α the following K-linear map

α : K2 Ñ K2, αpx, yq � pax� by, cx� dyq

and as β a K-linear map as well

β : K Ñ K, βpzq � detpAqz.

Finally, we take γ of the following form

γ : K2 Ñ K, γpx, yq � Ψ1pxq �Ψ2pyq � bcxy

for some Ψ1,Ψ2 : K Ñ K. Using Lemma 2.2, we obtain the following.

Lemma 2.3. The corresponding map

Ψpx, y, zq � pApx, yq,detpAqz �Ψ1pxq �Ψ2pyq � bcxyq

is an automorphism if and only if for all x1, x2, y1, y2 P K we have

Ψ1px1�x2q�Ψ2py1� y2q � Ψ1px1q�Ψ1px2q�Ψ2py1q�Ψ2py2q�acx1x2� bdy1y2.

Proof. Let us take arbitrary

x̄ � px1, x2q P K
2, ȳ � py1, y2q P K

2.

Then, using Lemma 2.2, Ψ is an automorphism if and only if

(�) γpx̄� ȳq � γpx̄q � γpȳq � cpAx̄,Aȳq � detpAqcpx̄, ȳq.

Since cpx̄, ȳq � x1y2, the right-hand side in p�q coincides with

acx1y1 � bdx2y2 � bc px1y2 � x2y1q .

It is easy to check that for γpx̄q � Ψ1px1q �Ψ2px2q � bcx1x2, the left-hand side in
p�q coincides with

Ψ1px1�x2q�Ψ2py1� y2q�Ψ1px1q�Ψ1px2q�Ψ2py1q�Ψ2py2q� bc px1y2 � x2y1q ,

which gives the result. □

Therefore, we �x A as above and Ψ1,Ψ2 satisfying for all x, x1 P K

Ψ1px� x1q � Ψ1pxq �Ψ1px
1q � acxx1, Ψ2px� x1q � Ψ2pxq �Ψ2px

1q � bdxx1,

which is exactly the set-up of Levchuk from [16]. Levchuk shows then that all
automorphisms of HpKq are of this form modulo the ones induced by �eld au-
tomorphisms of K. We will extend this result to monomorphisms of the form
HpKq Ñ HpMq. To this end, we need the following result.
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Lemma 2.4. Let K �M be a �eld extension, c P K, and ψ : K Ñ K be such that
for all x, y P K, we have

ψpx� yq � ψpxq � ψpyq � cxy.

Then, we can extend ψ to Ψ :M ÑM such that for all x, y PM , we have

Ψpx� yq � Ψpxq �Ψpyq � cxy.

Proof. Let L be a K-linear subspace of M such that M � K ` L. We notice that

ψp0q � ψp0� 0q � ψp0q � ψp0q � 0.

Therefore, we obtain ψp0q � 0.
If charpKq � 2, then we have:

0 � ψp0q � ψp1� 1q � ψp1q � ψp1q � c � 12 � c.

Therefore, we get that c � 0. Thus, for all k P K and l P L, we can simply de�ne

Ψpk � lq :� ψpkq.

If charpKq � 2, then for all k P K and l P L we set

Ψpk � lq :� ψpkq �
c

2
l2 � ckl.

We check below that Ψ satis�es the desired equality. For any k, k1 P K and l, l1 P L,
we have the following

Ψppk � lq � pk1 � l1qq � Ψppk � k1q � pl � l1qq

� ψpk � k1q �
c

2
pl � l1q2 � cpk � k1qpl � l1q

� ψpkq � ψpk1q � ckk1 �
c

2
l2 �

c

2
l12 � cll1 � ckl � ck1l1 � ckl1 � ck1l

� Ψpk � lq �Ψpk1 � l1q � ckk1 � cll1 � ckl1 � clk1

� Ψpk � lq �Ψpk1 � l1q � cpk � lqpk1 � l1q.

Therefore, we see that Ψ satis�es the necessary condition. □

We are ready now to show the main result of this section.

Theorem 2.5. Let K and M be in�nite �elds, and Ψ : HpKq Ñ HpMq be a group
monomorphism. Then there is a group automorphism Φ : HpMq Ñ HpMq, and a
�eld homomorphism θ : K ÑM such that Ψ � Φ �Hpθq.

Proof. Let M 1 be the algebraic closure of M . We consider the following centralizer
(in HpM 1q)

C :� CHpM 1qpΨpZpHpKqqqq

of the image by Ψ of the center of HpKq.

Claim

C � HpM 1q.

Proof of Claim. Assume not and we will reach a contradiction. Let us notice �rst
that C is a Zariski closed subgroup of HpM 1q (as any centralizer in any algebraic
group). Since C is proper in the connected algebraic group HpM 1q of dimension 3,
we obtain that dimpCq ¤ 2. Let C0 be the connected component of C. We will
argue �rst that C0 is commutative. Since C0 is connected, it is enough to show
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that the Lie algebra LiepC0q is commutative. However, LiepC0q is nilpotent and of
dimension at most two, therefore (by e.g. [8, Section 3.1]) LiepC0q is commutative.

Since rC : C0s is �nite, C0 is commutative and HpKq embeds into C, we obtain
that HpKq has a commutative subgroup of �nite index. It should be well-known
that such subgroups do not exist for in�nite �elds K. To see that, one can e.g. take
the Zariski closure in the algebraic group HpK 1q, where K 1 is the algebraic closure
of K, and obtain a Zariski closed commutative subgroup of HpK 1q of �nite index.
Since HpK 1q is connected, it is then commutative, a contradiction. □

Since C � HpM 1q, we obtain that ΨpZpHpKqqq � ZpHpMqq. Using this inclu-
sion, let us introduce the following notation for x, y, z P K:

Ψppx, 0, 0qKq � hM pf1pxq, g1pxq, i1pxqq,

Ψpp0, y, 0qKq � hM pf2pyq, g2pyq, i2pyqq,

Ψpp0, 0, zqKq � hM p0, 0, ipzqq.

For x, y P K, we consider the following commutator:

p0, 0, ipxyqq � Ψpp0, 0, xyqq � Ψprpx, 0, 0q, p0, y, 0qsq

� rΨppx, 0, 0qq,Ψpp0, y, 0qqs

� rpf1pxq, g1pxq, i1pxqq, pf2pyq, g2pyq, i2pyqqs

� p0, 0, f1pxqg2pyq � f2pyqg1pxqq.

Therefore, we have

(1) ipxyq � f1pxqg2pyq � f2pyqg1pxq.

Moreover, since px, 0, 0q and py, 0, 0q commute, we obtain

p0, 0, 0q � Ψpp0, 0, 0qq � Ψprpx, 0, 0q, py, 0, 0qs

� rΨppx, 0, 0qq,Ψppy, 0, 0qqs

� rpf1pxq, g1pxq, i1pxqq, pf1pyq, g1pyq, i1pyqqs

� p0, 0, f1pxqg1pyq � f1pyqg1pxqq.

Hence, we have

(2) f1pxqg1pyq � f1pyqg1pxq.

By a similar computation on the commutator of p0, x, 0q and p0, y, 0q, we obtain

(3) f2pxqg2pyq � f2pyqg2pxq.

Let us de�ne

d :� ip1q � f1p1qg2p1q � f2p1qg1p1q.

Since Ψ is a monomorphism, we get that d � 0. Using p1q�p3q, we obtain

ipxyqd � ipxqipyq.

Let us de�ne

θ :� d�1i.

Then, we have the following

θp1q � d�1ip1q � d�1d � 1,

θpxyq � d�2dipxyq � d�2ipxqipyq � θpxqθpyq.

Therefore, θ is a �eld homomorphism.
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Moreover, we have

dg1pxq � pf1p1qg2p1q � f2p1qg1p1qqg1pxq

� f1p1qg1pxqg2p1q � f2p1qg1p1qg1pxq

� g1p1qf1pxqg2p1q � g1p1qg1pxqf2p1q

� g1p1qipxq.

Similarly, we obtain

df1pxq � f1p1qipxq, df2pxq � f2p1qipxq, dg2pxq � g2p1qipxq.

Thus, we see that

f1 � f1p1qθ, g1 � g1p1qθ, f2 � f2p1qθ, g2 � g2p1qθ.

Let η :M Ñ K be a K-linear map such that η � θ � idK . We clearly have:

i1 � pi1 � ηq � θ, i2 � pi2 � ηq � θ.

Let us �nally de�ne

ψ1 :� i1 � η, ψ2 :� i2 � η.

We see that

Ψppx, 0, 0qpy, 0, 0qq � pf1p1qθpx� yq, g1p1qθpx� yq, ψ1pθpxq � θpyqqq

� Ψppx, 0, 0qqΨppy, 0, 0qq

� pf1p1qθpxq, g1p1qθpxq, ψ1pθpxqqqpf1p1qθpyq, g1p1qθpyq, ψ1pθpyqqq

� pf1p1qθpx� yq, g1p1qθpx� yq, ψ1pθpxqq � ψ1pθpyqq � f1p1qg1p1qθpxqθpyqq.

Therefore, for any a, b P θpKq we have

ψ1pa� bq � ψ1paq � ψ1pbq � f1p1qg1p1qab.

By a similar computation on p0, x, 0q and p0, y, 0q, we see that

ψ2pa� bq � ψ2paq � ψ2pbq � f2p1qg2p1qab.

Let us take

Ψ1,Ψ2 :M ÑM

extending ψ1, ψ2 respectively which are given by Lemma 2.4, and let Φ be the au-

tomorphism associated with the matrix A �

�
f1p1q f2p1q
g1p1q g2p1q



and the maps Ψ1,Ψ2.

Therefore, we obtain

detpAq � d and Ψ � Φ �Hpθq,

which we needed to show. □

2.3. Description. In this subsection, we provide some additional information on
the group of automorphisms of HpKq. We need the following.

Theorem 2.6 (Levchuk). Let K be a �eld.

(1) If charpKq � 2, then

AutpHpKqq �
�
EndpK,�q2 �GL2pKq

�
�AutpKq.

(2) If charpKq � 2, then

AutpHpKqq �
�
EndpK,�q2 �

�
pK�q

2
�Z{2Z

		
�AutpKq.
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Proof. The �rst part is included in [16, Corollary 5] and we also provide a more
explicit argument in Remark 2.7 below.

The second part should follow from the sentence just below the statement of
[16, Lemma 16]), however, we also provide a quick argument here. As in the proof
of Lemma 2.4, we see that the corresponding maps Ψ1,Ψ2 : K Ñ K need to be
additive in the case of characteristic 2. In general, a straightforward computation
shows that for additive maps Ψ1,Ψ2, the map

Ψpx, y, zq � pApx, yq,detpAqz �Ψ1pxq �Ψ2pyq � bcxyq

is a an automorphism of HpKq if and only if for all x, x1, y, y1 P K we have

detpAqxy1 � bcpx� x1qpy � y1q � bcpxy � x1y1q � pax� byqpcx1 � dy1q,

where A �

�
a b
c d



P GL2pKq. Since detpAq � 0, another easy computation shows

that the above holds if and only if A is diagonal or anti-diagonal. Such matrices
form a subgroup of GL2pKq which is isomorphic to pK�q2 � Z{2Z, where Z{2Z
acts on pK�q2 coordinate-wise. □

Remark 2.7. Gibbs gave in [9] another description of automorphisms of groups
of rational points of unipotent groups. The class of unipotent groups from [9] is
much larger than the one considered by Levchuk in [16], however, only �elds are
considered in [9] and there are also some restrictions regarding the characteristic. In
our case of the Heisenberg group, the case of characteristic two is excluded, which
corresponds to two di�erent cases in the statement of Theorem 2.6. We list below
some types of automorphisms from [9] (in the special case of the Heisenberg group)
and we use them to give a more direct proof of Theorem 2.6(1).

(1) Central automorphisms are of the form

px, y, zq ÞÑ px, y, z �Ψ1pxq �Ψ2pyqq,

where each Ψi is additive. Such automorphisms correspond to the case of
A � I.

(2) The graph automorphism is given as follows

px, y, zq ÞÑ py, x,�z � xyq.

This automorphism corresponds to the case A �

�
0 1
1 0



and Ψ1 � 0 � Ψ2.

(3) Diagonal automorphisms are of the form

px, y, zq ÞÑ pax, by, zq

for a, b P K�. They correspond to diagonal matrices A �

�
a 0
0 b



and

Ψ1 � 0 � Ψ2.
(4) Suppose that charpKq � 2. Then, extremal automorphisms are of the form

px, y, zq ÞÑ
�
x� ay, y, z �

a

2
y2
	

for a P K. These automorphisms correspond to the case of A �

�
1 a
0 1



,

Ψ1 � 0 and Ψ2pyq �
a
2y

2.

It is easy to see that the matrices A appearing in Items p2q�p4q above generate
GL2pKq which gives another argument for Theorem 2.6(1).
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3. Model completeness

3.1. Interpretations. For precise de�nitions regarding interpretations, we refer
to [10]. A structure N is interpretable in a structure M, if every set de�nable in
N (including its universe) is also interpretable in M. Such an interpretation yields
the following functor

Γ :ModelspThpMqq ÑModelspThpN qq,

where for a theory T ,Models pT q is the category in which the objects are models of
T and the morphisms are elementary embeddings between them. For more details,
see [10, Theorem 5.3.3].

Let K be a �eld. We have the obvious interpretation of the �eld HpKq in the
group K and the functor induced by this interpretation is H. We consider the lan-
guage L, which is the language of groups with two additional constant symbols. We
recall Maltsev's interpretation of the �eld K in HpKq (regarded as an L-structure)
following [1] and [7] below, since we need its speci�c form for an application later
(see Remark 3.2(2) and Remark 3.7).

Fact 3.1 (Maltsev [18]). The �eld K is interpretable in the L-structure
pHpKq; �, p1, 0, 0qK , p0, 1, 0qKq

in the following way.

(1) The universe is ZpHpKqq which is a de�nable subset of HpKq.
(2) The formula de�ning the �eld addition is just the group multiplication

`px, y, zq :� xy � z.

(3) The formula for the graph of the �eld multiplication bpx, y, zq is given below:

pDx1Dy1q
�
rx1, us � ry1, vs � I ^ rx1, vs � x ^ ru, y1s � y ^ rx1, y1s � z

�
,

where I � p0, 0, 0q denotes the identity element of the Heisenberg group and

u :� p1, 0, 0q, v :� p0, 1, 0q.

Moreover, this is an �D�1 -interpretation� in the terminology from [10], that is it is
given by positive existential formulas.

Remark 3.2. We comment here on the interpretation from Lemma 3.1.

(1) We get the following interpretation functor

Θ :Models pTh pHpKq; �, p1, 0, 0q, p0, 1, 0qqq ÑModels pThpKqq .

(2) By the moreover claim from Lemma 3.1 and [10, Theorem 5.3.4(b)], the
functor from Item p1q extends to a functor

Θ1�1 :Models1�1 pTh pHpKq; �, p1, 0, 0q, p0, 1, 0qqq ÑModels1�1 pThpKqq ,

where for any theory T , we denote by Models1�1pT q the category of mod-
els of T with embeddings ([10, Theorem 5.3.4(b)] even allows to replace
embeddings with arbitrary homomorphisms, but in our case they are em-
beddings anyway).

(3) The map

tK : pK;�, �q Ñ pZpHpKqq;`,bq, tKpxq � p0, 0, xqK

is a natural and K-de�nable isomorphism of �elds, that is for any �eld
homomorphism α : K ÑM the following diagram is commutative.
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ΘpHpKqq ΘpHpMqq

K M

ΘpHpαqq

α

tK tM

Thus, we have an isomorphism (given by a de�nable map) between the
identity functor onModels1�1pThpKqq and the composition functor Θ1�1�
H.

3.2. Test for model completeness and main result. We follow here brie�y
the presentation from [11].

De�nition 3.3. Let L be a language and M be an L-structure. We say that M is
model complete if ThpMq is model complete.

Remark 3.4. To test model completeness of a theory T , it is enough to consider
embeddings between special models (as in [10, Section 10.4]) of T .

We will need the following result which was suggested by Will Johnson.

Theorem 3.5 (Theorem 2.17 in [11]). Suppose

Γ :ModelspT1q ÑModelspT2q

is an interpretability functor and M2 |ù T2 is special. If there is M1 |ù T1 such that
M2 � ΓpM1q, then there is M 1

1 |ù T1 such that M2 � ΓpM 1
1q.

We are ready now to show the main result of this paper.

Theorem 3.6. Let K be a �eld. Then the group HpKq is model complete if and
only if K is a model complete �eld.

Proof. Assume that K is model complete. Let G � HpKq � N and f : G Ñ N
be a group monomorphism. We need to show that f is elementary. By Remark
3.4, we can assume that H and N are special. By applying Theorem 3.5 to the
interpretability functor

H :Models pThpKqq ÑModels pThpHpKqqq ,

there are �elds F , M such that

G � HpF q, N � HpMq, F � K �M.

Since any isomorphism is elementary and the composition of elementary maps is
elementary, we can also assume that f : HpF q Ñ HpMq. By Theorem 2.5, we can
�nally assume that f � Hpαq for some �eld monomorphism α : F Ñ M . Since K
is model complete and F � K �M , we get that the map α is elementary. Because
interpretability functors take elementary embeddings to elementary embeddings,
we conclude that f is elementary.

We assume now that the group HpKq is model complete and let

T :� Th ppHpKq, �, p1, 0, 0q, p0, 1, 0qqq .

The L-theory T is still model complete, since we only added constant symbols to
the language. Let F and M be �elds such that

F � K �M

and α : F ÑM a �eld monomorphism. Then, we have

HpF q � HpKq � HpMq.
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By our assumption, the map

Hpαq : HpF q Ñ HpMq

is elementary. By interpreting the extra constant symbols from the language L as
p1, 0, 0q and p0, 1, 0q in both structures, we can treat HpF q and HpMq as models
of T . Moreover, Hpαq sends p1, 0, 0qF and p0, 1, 0qF to p1, 0, 0qM and p0, 1, 0qM
respectively, thus it is also an elementary embedding of models of T . By Remark
3.2(1), we have that β :� ΘpHpαqq is elementary. By Remark 3.2(2), we get that
α � Ψ � β � Φ for some isomorphisms Ψ,Φ. Therefore, we conclude that α is
elementary. □

Remark 3.7. We comment here on some natural generalizations of the arguments
from the last proof.

(1) Let us assume we are in the set-up from Remark 3.2, that is we have an
interpretability functor Γ which extends to a functor

Γ :Models1�1 pT q ÑModels1�1

�
T 1
�

having a right quasi-inverse as in Remark 3.2(3). In such a case, if T is
model complete then T 1 is model complete as well, which was observed in
the case of existential bi-interpretations in [14, Corollary 2.16].

(2) There is a natural generalization of the �rst implication from the above
proof as well. Let us assume we have an interpretability functor Γ which
extends to a functor

Γ :Models1�1 pT q ÑModels1�1

�
T 1
�

satisfying a �weak Borel-Tits property�, that is for all M1,M2 |ù T and
for all

f : ΓpM1q ãÑ ΓpM2q

there are α : M1 ãÑM2 and t P AutpM2q such that

f � t � Γpαq.

In such a case, if T is model complete then T 1 is model complete as well.
This property was used to show model completeness of some groups in

[11], and it was applied there in the form of the actual Borel-Tits theorem
(see [4, (A)] and [20, Theorem 1.3]).

4. Other model-theoretic properties of HpKq

In this section, we focus on other model-theoretic properties of the Heisenberg
group and our results are mostly negative. We consider �rst the question of quan-
ti�er elimination, which can be settled easily using the work of Cherlin and Felgner
from [6].

Theorem 4.1. If K is an in�nite �eld, then the group HpKq does not have quan-
ti�er elimination.

Proof. If charpKq � 0, then HpKq is torsion-free. Therefore, we can use e.g. [6,
Theorem 3.4] which says that locally solvable torsion-free groups with quanti�er
elimination are necessarily commutative (and divisible).

If charpKq � p ¡ 0, then HpKq is a p-group, that is the order of each element
of HpKq is a power of p (here, at most p2). Then, we can use e.g. [6, Theorem
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4.2] which says that hipercentral (in particular, nilpotent) p-groups with quanti�er
elimination are commutative. □

There are several questions in Section 5 of [1] concerning the model theory of
Heisenberg groups. One of them regards the (e�ective) bi-interpretability of K and
HpKq. Regarding this question, we point out the following negative result.

Proposition 4.2. If K is an in�nite �eld, then the interpretation K ÞÑ HpKq
cannot be �inverted to a bi-interpretation� even using extra parameters.

Proof. Let us suppose there is an interpretation of K in HpKq �inverting� the
interpretation K ÞÑ HpKq for an uncountable �eld K using parameters contained
in a countable sub�eld K0 � K. Then, by e.g. [10, Section 5.4, Exercise 8(b)], we
get the induced isomorphism:

HK : AutfieldspK{K0q Ñ AutgroupspHpKq{HpK0qq.

However, there many automorphisms of HpKq �xing pointwise any countable sub-
group H0   HpKq which are not coming from the �eld automorphisms, e.g. the
central automorphisms from Remark 2.7(1). □

Remark 4.3. One can also argue above by showing that the interpretation of
HpKq in K is not full (see [5, Def. 2.1(3)]), since, for example, the projection map

p : HpKq Ñ ZpHpKqq, pppa, b, cqKq � p0, 0, cqK

is not de�nable in the pure group HpKq (even using parameters) which can be seen
by an automorphism argument similarly as in the proof of Proposition 4.2.

Regarding the �real� question about any possible bi-interpretability between K
and HpKq, the situation is more complicated. It is suggested in [1] to show that the
groups AutpKq and AutpHpKqq are not isomorphic and this is the route we take.
We could success in some particular cases only and these cases are listed below.

Theorem 4.4. A �eld K is not bi-interpretable with the group HpKq, if K comes
from the following list.

(1) Finitely generated �elds.
(2) Real closed �elds.
(3) p-adically closed �elds.
(4) Algebraically closed �elds.

Proof. By Theorem 2.6, we get the following

|AutpHpKqq| ¥ |EndpK,�q|

for any �eld K. Since for �nitely generated �elds we have

|EndpK,�q| ¡ |AutpKq|,

Item p1q follows.
Assume that K is bi-interpretable with HpKq for a real closed �eld K. Then,

we also get that R is bi-interpretable with HpRq, since the theory of real closed
�elds is complete. Thus, we can conclude as above, since AutpRq is trivial. The
argument for p-adically closed �elds is analogous using that the group AutpQpq is
trivial as well.
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Regarding the last case, assume that K is an algebraically closed �eld and let F
be the prime sub�eld of K. We have the following exact sequence of groups

1 ÝÑ Aut
�
K{F alg

�
ÝÑ Aut pKq ÝÑ GalpF q ÝÑ 1,

where GalpF q is the absolute Galois group of F , so |GalpF q| � 2ℵ0 . Lascar showed
that the group Aut

�
K{F alg

�
is simple (it was proved for K � C in [15] and the

general case was shown in [3]). In particular, if H is a normal subgroup of AutpKq,
then we have

|H| ¤ 2ℵ0 or |AutpKq : H| ¤ 2ℵ0 .

Assume now thatK is bi-interpretable withHpKq and we will reach a contradiction.
Without loss of generality,K is uncountable. By Theorem 2.6, there isN ¤ GL2pKq
such that

AutpKq � AutpHpKqq �
�
EndpK,�q2 �N

�
�AutpKq.

Let us take the normal subgroup H of AutpKq corresponding to EndpK,�q2 under
the isomorphism above. We obtain that

|H| ¡ 2ℵ0 and |AutpKq : H| ¡ 2ℵ0 ,

which gives a contradiction. □

Remark 4.5. If K is an in�nite �eld coming from the list given in the statement
of Theorem 4.4, then a similar proof also shows that K and HpKq are not bi-
interpretable even using extra parameters. We have tried to show the same for any
in�nite �eld, but we could not. The existence of a �eld K such that for all M � K
we have a topological isomorphism

AutpMq �
�
EndpM,�q2 �GL2pMq

�
�AutpMq

(see Section 2.3) should lead to a contradiction, but we were unable to obtain it.
It is shown in [13] and [19] that Z and HpZq are not bi-interpretable (even using

extra parameters) by �nding a �large� (here: recursively saturated) ring R � Z

such that

|AutpHpRqq| ¡ |AutpRq|.

A corresponding property does not hold for arbitrary �elds (in place of the ring Z).
For example, it does not hold for algebraically closed �elds K, since for such �elds
we always have

|AutpHpKqq| � |AutpKq|.
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