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We investigate level density for several ensembles of positive random matrices of a Wishart–like
structure, W = XX†, where X stands for a nonhermitian random matrix. In particular, making
use of the Cauchy transform we study free multiplicative powers of the Marchenko-Pastur (MP)

distribution, MP�s, which for an integer s yield Fuss-Catalan distributions corresponding to a
product of s independent square random matrices, X = X1 · · ·Xs. Known formulae for the level
densities are rederived in the case s = 2 and s = 1/2 and explicit distributions are obtained for
s = 3 and s = 1/3. Moreover, the level density generated by a product of two rectangular random
matrices X = X1X2 is obtained and the generalized Bures distribution given by the free convolution
of arcsine and MP distributions is derived. The technique proposed here allows us to obtain level
densities for several related cases.

I. INTRODUCTION

Ensembles of nonhermitian random matrices are of
considerable scientific interest [1] in view of their numer-
ous applications in several fields of statistical and quan-
tum physics [2]. On the other hand, any ensemble of
nonhermitian matrices X allows us to write a positive,
hermitian matrix of the Wishart form,

X →W =
XX†

TrXX†
. (1)

Normalization implies that the random matrix satisfies a
fixed trace condition, TrW = 1, so it can be interpreted
as a density matrix.

Ensembles of such random density matrices analyzed
in [3] can be obtained by taking a random pure state on a
bipartite system and performing partial trace over a sin-
gle subsystem. In such a case of an isotropic, structure-
less ensemble of random pure states generated according
to the unique, unitarily invariant measure, the asymp-
totic level density of the corresponding quantum states
is described by the the Marchenko–Pastur (MP) distri-
bution P1,c [4], with its parameter c determined by the
ratio of the dimensions of the auxiliary and the principal
quantum systems.

If the global unitary symmetry of the measure defining
the ensemble of pure random states is broken, the partial
trace yields structured ensembles of random density ma-
trices. They can be constructed combining products of
non-hermitian random Ginibre matrices and sums of ran-
dom unitary matrices distributed according to the Haar
measure. Investigation of these ensembles initiated in [5]
was further developed by Jarosz [6, 7].

Random matrices described by the Wishart ensem-
ble corresponding to the product of s Ginibre matri-
ces, X = G1G2 · · ·Gs, were found useful to describe

level density of mixed quantum states associated to a
graph [8] and states obtained by projection onto the
maximally entangled states of a multi–partite system [5].
Hence these distributions describe asymptotic statistics
of the Schmidt coefficients characterizing entanglement
of a random pure state [3].

As the moments of the level density Ps(x) for such
ensembles are known to be asymptotically described by
the Fuss–Catalan numbers [9, 10],

Cs(n) =
1

sn+ 1

(
sn+ n

n

)
, (2)

these distributions are called Fuss-Catalan. These dis-
tributions describe singular values of products of inde-
pendent Ginibre matrices – see [12–14], but they are also
known [15] to describe asymptotic distribution of singular
values of the s–power of a single random Ginibre matrix
Gs.

These distributions may be considered as a general-
ization of the Marchenko-Pastur distribution for square
random matrices, P1(x), which corresponds to the case
s = 1. The Fuss–Catalan distributions can be inter-
preted as the free multiplicative convolution product [9]
of s copies of the MP distribution P1(x), written as
Ps(x) = [P1(x)]�s. Spectral distribution of Ps(x) for
a product of an arbitrary number of s random Ginibre
matrices was analyzed by Burda et al. [11] also in the
general case of rectangular matrices, see also [13, 16].
This distribution was expressed as a solution of a poly-
nomial equation and it was conjectured that the finite
size effects can be described by a simple multiplicative
correction.

An explicit form of P2(x) was derived in [17] in context
of construction of generalized coherent states from com-
binatorial sequences. An exact form of the Fuss-Catalan

ar
X

iv
:1

40
7.

12
82

v2
  [

m
at

h-
ph

] 
 1

9 
Ju

l 2
01

4



2

distributions for any integer s was derived in [18] in terms
of hypergeometric functions sFs−1. These results were
extended in [19] in which the Mellin transform was used
to derive analogous distributions for a rational values of
the exponent s = p/q in terms of special functions. Free
multiplicative powers of the MP distributions were re-
cently investigated by Haagerup and Möller [20], while
generalized Fuss–Catalan distributions were also studied
in [12, 21].

In this work we obtain some complementary results
basing on the resolvent method, Cauchy transform and
Green functions defined on the complex plane. Writ-
ing down the Voiculescu S–transform [22] for the multi-
plicative free convolution of the Marchenko-Pastur dis-
tribution [P1(x)]�s with integer s, we arrive at a Green
function in terms of a polynomial of order s + 1. The
inverse S transform can be analytically performed e.g.
for s = 1/2, 2, and s = 1/3, 3. In the latter case we
obtain an expression for the higher order Fuss–Catalan
(FC) distribution P3(x) in terms of elementary functions.
The power series expansions for the FC distributions were
recently obtained in [16].

The same technique works also for other ensembles of
random matrices defined by free convolution of the Arc-
sine distribution (AS) and the Fuss-Catalan distributions
Ps(x). In the case s = 1 one obtains the Bures distribu-
tion [23, 24], while higher values of s lead to its gener-
alization referred as s–Bures distribution. It is worth to
mention that these distributions belong to the broader
class of Raney distributions studied in [18, 19].

This paper is organized as follows. In section II we
review basic properties of the Cauchy transform and re-
call how the level density can be derived from the Green
functions. As an exemplary application we discuss the
Marchenko-Pastur distribution P1,c with an arbitrary
rectangularity parameter c and the arcsine distributions,
for which the Green function is given as a solution of a
quadratic equation. Furthermore we discuss the gener-
alized Fuss-Catalan distribution P2,c and the generalized
Bures distribution, for which the Green function is given
by a Cardano solution of a cubic equation. The third
order generalized Fuss-Catalan distribution P3,c and the
2-Bures distribution is studied in subsequent subsection.
In these cases the Green function is given by a Ferrari
solutions of a quartic equation, which allows us to ex-
press corresponding level density in terms of elementary
functions. Some technical details of the derivations are
relegated to the Appendix.

II. CAUCHY FUNCTIONS AND LEVEL
DENSITIES

To derive the level density corresponding to certain
ensembles of random matrices, and more generally, to
some free convolutions of the Marchenko-Pastur (MP)
distribution, we will use the Voiculescu S-transform and
the Cauchy functions.

Consider a square random matrix X of size N per-
taining to the Ginibre ensemble of non-hermitian random
matrices. The Wishart matrix W = XX† is positive, and
its level density is asymptotically, N →∞, described by
the Marchenko–Pastur distributions [4], with the rectan-
gularity parameter c set to unity,

P1(x) =
1

2π

√
4− x
x

, x ∈ [0, 4]. (3)

Variable x denotes a suitably rescaled eigenvalue λ of W .
If a random Wishart matrix is normalized according to
the trace condition TrW = 1, the rescaled variable reads
x = λN , which implies that the mean value 〈x〉 is set
to unity. Thus the MP distribution describes asymptot-
ically the level density of random quantum states gener-
ated with the measure induced by the Hilbert-Schmidt
metric [5].

In order to analyze convolutions of the MP distribution
it is convenient to use its Voiculescu S–transform [22]
defined as a function of a complex variable w,

SMP (w) =
1

1 + w
. (4)

We are looking for the free multiplicative case for which
the S–transform of the convolution is given by the prod-
uct of the S–transforms. For instance, the Fuss–Catalan
distribution Ps of an integer order s [9, 18], which cor-
responds to a product of s independent non-hermitian
random matrices, X = X1 · · ·Xs, can be written as a
multiplicative free convolution of the Marchenko–Pastur
distribution, Ps(X) = [P1(x)]�s. Hence the correspond-
ing S transform reads SCs

(w) = [SMP (w)]s.
Assume now we are given an S–transform S(w), which

corresponds to an unknown probability measure at the
real axis. To infer this measure and the spectral den-
sity ρ(λ) we write the S–transform as S(w) = 1+w

w χ(w),
where

1

χ(w)
G
( 1

χ(w)

)
− 1 = w. (5)

To recover the resolvent, we put

1

χ(w)
= z, (6)

what allows us to write an implicit solution of the Green
function G(z), known also as the Cauchy function in the
mathematical literature,

G(z) ≡ 1

N

〈
tr

1

z1N −M

〉
=

1 + w(z)

z
. (7)

Here M represents a random matrix from the ensemble
investigated. In other words, for any given S–transform
S(w) the corresponding Green function G(z) defined on
the complex plane is given as a solution of the following
algebraic equation

zw(z) S
(
w(z)

)
= 1 + w(z). (8)
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Note that Green’s function (7) acts as a generating
function for the spectral moments mk = 1

N

〈
TrMk

〉
=∫

dλλkρ(λ), i.e. G(z) =
∑∞
k=0mk/z

k+1, as seen by
expanding the Green’s function at z = ∞. Another
useful function is the Voiculescu R-transform, defined
as a generating function for the free cumulants κk, i.e.
R(z) =

∑∞
k=1 κkz

k−1. Both functions G and R are re-
lated by functional relations R(G(z)) + 1/G(z) = z (or
equivalently G(R(z) + 1/z) = z). Finally, R and S trans-
forms can be also related. They form a pair of mutu-
ally invertible maps z = yS(y) and y = zR(z), provided
R(0) 6= 0 [25].

In several cases equation (8) can be solved analytically
with respect to w. For instance, this is the case for the
Fuss–Catalan distribution, as S(w) reads (1 + w)−s and
Eq.(8) yields a polynomial equation of order s+1. It can
be solved analytically for s = 2 and s = 3.

Thus to obtain the spectral density we apply the Stielt-
jes inversion formula. One needs to analyze all solu-
tions of Eq.(8) to extract the desired information. In the
case s = 2 the corresponding polynomial has three solu-
tions, one of which is real, the remaining pair is mutually
complex-conjugated. On the basis of Sochocki-Plemelj
formula, 1

λ±iε = P.V. 1λ ∓ iπδ(λ), the negative imaginary
part of the Green’s function yields the spectral function

ρ(λ) = − 1

π
lim
ε→0
=G(z)|z=λ+iε. (9)

As analytical solutions of equations of order three and
four contain square roots raised to power 1/3 and −1/3,
so a care has to be taken by evaluation of the imaginary
part of a complex solution along the real axis - for more
details see Appendix A.

We would like to mention, that the relevant spectral
function can be as well recovered from the real part of
the resolvent. In this case one uses the maximal entropy
argument, yielding

lim
ε→0

[G(λ+ iε) +G(λ− iε)] =
∂V (λ)

∂λ
, (10)

where V is the random matrix potential defining the mea-
sure, i.e. dµ(M) = dM exp(−NtrV (M)) – see Eynard
[26].

On the basis of aforementioned Sochocki-Plemelj for-
mula, resulting equation is a singular integral-differential
equation. In the case of the spectral support localized
on a single, finite interval, one can solve the equation
e.g. by methods developed by Tricomi [27]. Interest-
ingly, one can also view (10) as an equation for potential
V , provided spectral density ρ(λ) is known. Then the
calculation of the Hilbert transform of the spectral den-
sity according to eq. (10) yields the derivative of the
potential, which after integrating the derivative and us-
ing the rotational invariance allows to infer the form of
V (M). Above procedure, although well-defined, is com-
plicated at the technical level. In particular, in the case
of the spectral functions resulting from the solution of
cubic or quartic algebraic equations, integration yields

complicated expressions for V (M), which in general are
non-polynomial.

III. GENERALIZED WISHART MATRICES
AND THEIR SPECTRAL DENSITIES

A. Quadratic equation

As a warm-up exercise we start recalling simple prob-
lems which correspond to a quadratic equation. Con-
sider first the Green’s function corresponding to the free
binomial distribution, where ρ(λ) = 1

2 (δ(λ) + δ(λ − 1)).

The Green’s function reads therefore G(z) = 1
2 ( 1
z + 1

z−1 ).
Straightforward manipulations yield the R-transform and
S-transform, given respectively by R(z) = (z − 1 +√
z2 + 1)/(2z) and S(z) = 2(1+y)/(1+2y). Anticipating

the results needed for the further part of this work, we
consider not the free sum of two binomial distributions.
Since R-transform is additive, we get RAS(z) = 2R(z) =

(z−1+
√
z2 + 1)/z. Then the corresponding S-transform

reads SAS(z) = (z+ 2)/(2 + 2z). Substituting it into Eq.
(8) we get

wz(w + 2) = 2(1 + w)2. (11)

Solving it with respect to w we obtain two conjugated so-
lutions. Selecting the one with negative imaginary part
and plugging it into Eq. (9) yields the arcsine distribu-
tion,

AS(x) =
1

π

1√
x(2− x)

, x ∈ [0, 2]. (12)

This distribution gives us the level density of the suit-
ably normalized sum of a random unitary matrix U and
its adjoint U†. It describes the ensemble of quantum
states obtained by reduction of a coherent combination
of maximally entangled states [5] and will be used here
to construct other distributions.

Before passing to the cubic equation and more compli-
cated cases, let us recall how to obtain in this way the
general form of the Marchenko–Pastur distribution. It
describes the asymptotic level density of random states
ρ = XX†/TrXX†, where X is a rectangular complex
Ginibre matrix of size N ×M . We choose the rectangu-
larity parameter c = M/N ≤ 1. The case c > 1 yields
the same nonzero eigenvalues and additional N −M zero
eigenvalues. Let us then start with the corresponding
S–transform, Sc(w) = 1/(1 + cw), which reduces to (4)
for c = 1. Plugging this expression into (8) leads to a
quadratic equation

zw = (1 + w)(1 + cw). (13)

Its solution with respect to w with a negative imaginary
part together with Eq. (9) allows one to obtain

P1,c(x) =
1

2πxc

√
(x− x−)(x+ − x), (14)
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where x ∈ [x−, x+], with the edges of the support
x± = 1 + c± 2

√
c. In the case c→ 0, Marchenko-Pastur

distribution reduces to ρ(λ) = δ(λ− 1).

B. Cubic equation and Cardano solutions

We are going to present here solutions of problems mo-
tivated by ensembles of random matrices, for which equa-
tion (8) becomes a cubic polynomial in w = w(z).

1. Fuss–Catalan distribution of order two

To show the presented method in action we rederive
the Fuss-Catalan distribution P2(x) = [P1(x)]�2, which
describes ensemble (1) with X being a product of two in-
dependent square Ginibre matrices. As a starting point
we thus take the square of the S transform of MP distri-
bution, SFC2

(w) = [SMP (w)]2 = (1 +w)−2. Putting this
form into (8) we get a cubic equation

wz = (1 + w)3. (15)

Calculating the Green function (7) and making use of (9)
one obtains the Fuss–Catalan distribution of order two,

P2(x) =
3
√

2
√

3

12π

[
3
√

2
(
27 + 3

√
81− 12x

) 2
3 − 6 3

√
x
]

x
2
3

(
27 + 3

√
81− 12x

) 1
3

,

(16)
where x ∈ [0, 27/4]. This result was first obtained in
[17] in context of construction of generalized coherent
states from combinatorial sequences, and later used in
[8] to describe asymptotic level density of mixed quantum
states related to certain graphs.

2. Generalized Fuss–Catalan distribution P2,c

In a an analogous way we can treat the case of a
product of two independent rectangular Ginibre matrices
characterized by an rectangularity parameter c = M/N .
The corresponding S–transform S2,c = 1/(1 + cw)2 leads
to a modified equation of the third order,

wz = (1 + w)(1 + cw)2. (17)

Solving it with respect to w and computing the corre-
sponding Green function (7) and its imaginary part one
obtains a level density. A particular case of the general-
ized Fuss-Catalan distribution of order two obtained for
c = 1/2 is shown in Fig. 1. This very case was very
recently studied in [16], where an explicit density was
provided.

FIG. 1: Generalized Fuss-Catalan distribution of order two
P2,c(x) plotted for rectangularity parameter c = 1/2.

3. Free–square root of the Marchenko–Pastur distribution

To derive this distribution we consider the square root
of the S transform of the MP distribution, S1/2(w) =

[SMP (w)]1/2, which used in (8) yields a Cardano cubic
equation,

w3 + (3− z2)w2 + 3w + 1 = 0. (18)

Writing down the Green function (7) we use eq. (9)
to get an explicit form of the free multiplicative square
root of the Marchenko–Pastur distribution, P1/2(x) :=

[P1(x)]�1/2,

P1/2(x) = x−1/3 (9+Y )1/3−(9−Y )1/3

24/331/6π
+

+x1/3 (9+Y )2/3−(9−Y )2/3

24/335/6π
, (19)

where Y (x) =
√

81− 12x2 and x belongs to [0,
√

27/4].
This distribution was derived in [19] using the inverse

Mellin transform and the Meijer G functions. We are not
aware of any method to generate an ensemble of random
matrices characterized asymptotically by the above level
density.

4. Bures distribution

The Bures distribution describes the asymptotic level
density of random mixed states distributed according to
the measure [23] induced by the Bures metric [28]. To
generate random states with respect to this measure it
is sufficient [24] to take X = (1 + U)G, where U is a
Haar random unitary matrix and G is a square random
Ginibre matrix of the same size and substitute it into
(1). This procedure follows from the fact that the Bures
distribution can be represented as the multiplicative free
product of the positive arcsine law and the Marchenko-
Pastur law: B1 = AS �MP . The free S-transform of
B1 reads

SB1(w) =
w + 2

2(w + 1)2
=

w + 2

2w + 2
· 1

1 + w
. (20)
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Observe that the first factor is the S-transform of AS
while the second one, 1/(1 + w), is the S-transform of
MP , which implies the above law of free multiplication.
The S transform (20) together with eq. (8) leads to an
equation of order three, wz(w+2) = 2(1+w)3, which can
be explicitly solved with respect to the complex variable
w. Making use of (7) and (9) one arrives at the Bures
density

B1(x) = C

(a
x

+

√(a
x

)2
− 1

)2/3

−

(
a

x
−
√(a

x

)2
− 1

)2/3


(21)

where C = 1/4π
√

3 and a = 3
√

3. This distribution, first
obtained in [23], is defined on a support larger than the
standard MP distribution, x ∈ [0, a] and it diverges for
x→ 0 as x−2/3.

5. Generalized Bures distributions

Generalized Bures distribution can be defined by a
convolution of arcsine and the Marchenko–Pastur distri-
bution with rectangularity parameter c, namely B1,c =
AS�P1,c. The corresponding ensemble of random matri-
ces can be obtained writingX = (1+U)G where U stands
for a random unitary matrix of size N generated accord-
ing to the Haar measure on U(N), while G denotes a
rectangular non-hermitian random Ginibre matrix of or-
der N ×K with c = K/N . Similar ensembles of random
matrices were recently studied by Jarosz [7], while to get
the corresponding ensemble of density matrices one may
use superpositions of pure states of a four-party systems
followed by projection on maximally entangled states and
partial trace [5].

Multiplying the corresponding S–transforms we get
SB1,c

(w) = (w+2)/(2(1+w)(1+ cw)) which leads to the

following cubic equation wz(w+ 2) = 2(1 + cw)(1 +w)2.
In the special case c = 1/2 the above equation simpli-
fies to the quadratic one, wz = (1 + w)2, corresponding
to the Marchenko–Pastur distribution. The generalized
Bures distribution B1,c(x) for c ∈ [1/2, 1] can be thus
interpreted as an interpolation between MP and Bures
distributions. In the case c ≤ 1 this distribution is abso-
lutely continuous. In the case c > 1, presented in Figs.
2 and 3, the distribution consists of a Dirac delta, δ(x)
with weight (1−1/c) and a continuous part – see Th. 4.1
in [29].

We shall conclude this section emphasizing that the
method discussed here is not limited to the cases pre-
sented. For instance, analyzing the free multiplicative
square root of the arcsine distribution, AS�1/2, or its
free square, AS�2, one arrives at similar cubic equations,
(w+2)w2z2 = 2(w+1)3, and (w+2)2wz = 4(w+1)3, re-
spectively, which allow one to derive corresponding level
densities.

FIG. 2: Continuous part of the generalized Bures distribu-
tion B1,c(x) plotted for rectangularity parameter c = 2, so
the shaded area equals 1/2.

FIG. 3: As in Fig. 2 for c = 4 so the area under the curve is
1/4.

C. Quartic equation and Ferrari solutions

The list of cases for which equation (8) forms a quar-
tic equation contains for instance, the third order Fuss-
Catalan distribution P3, the third root of the Marchenko
Pastur distribution, P1/3, and the higher order Bures dis-
tribution.

1. Fuss–Catalan distribution of order three

To find an analytical expression for the Fuss–Catalan
distribution, P3 = [P1(x)]�3, describing the asymptotic
level density of normalized Wishart matrix XX†, where
X is a product of three independent Ginibre matrices,
we start with the third power of the S–transform corre-
sponding to the Marchenko Pastur distribution, S3(w) =
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S3
MP = 1/(1 + w)3. Equation (8) leads then to the fol-

lowing quartic equation

w4 + 4w3 + 6w2 + w(4− z) + 1 = 0. (22)

Making use of the standard Ferrari formulae we obtain
four explicit solutions of this equation given as square
roots of expressions which contain polynomials of z in
power 1/3 and −1/3. Analyzing the imaginary part of
the corresponding Green function (7), as discussed in the
Appendix A, we arrive at an explicit expression for the
Fuss-Catalan distribution of order three,

P3(x) =
x−3/4

2 · 31/4π

√
4Y − 33/4x1/4√

Y
, (23)

where Y (x) = cos
[
1
3 arccos

(
3
√
3

16

√
x
)]

and x belongs to

[0, 256/27]. Interestingly, the same distribution, shown in
Fig. 4 was derived earlier in [18] and expressed in terms of
combinations of hypergeometric functions 3F2(x), which
in this specific case admits an elementary representation.

FIG. 4: Fuss-Catalan distribution P3(x) = [P1(x)]�3 given
in Eq. (23).

Note that in an analogous way it is also possible to
obtain expressions for the generalized Fuss-Catalan dis-
tributions of order three, P3,c which correspond to the
S–transform S2,c = 1/(1 + cw)3. This distribution,
representing asymptotic level density of Wishart matri-
ces obtained from a product of three independent rect-
angular Ginibre matrices with rectangularity parameter
c = N/K, may in principle be further generalized for
three different rectangularity parameters, so that the S–
transform reads S2,c = 1/(1 + c1w)(1 + c2w)(1 + c3w) –
see also [16].

2. Free–third root of Marchenko–Pastur

Consider third root of the S transform corresponding
to the MP distribution, S1/3(w) = [SMP (w)]1/3. This

choice applied to (8) leads again to a quartic equation in
terms of w,

w4 + (4− z3)w3 + 6w2 + 4w + 1 = 0. (24)

Solving analytically this equation for w, evaluating the
Green function (7) and applying (9) we arrive at the fol-
lowing form of the third free multiplicative root of the
Marchenko–Pastur distribution, P1/3(x) := [P1(x)]�1/3,

P1/3(x) =
1

2πx

[
Y+4x3−1

2
x6+

∣∣∣x3(24− 12x3 + x6)

4
√
Y − 2x3 + 1

4x
6

∣∣∣]1/2,
(25)

where Y (x) = (4/
√

3)x3/2 cos
[
1
3 arccos

(
3
√
3

16 x
3/2
)]

and x

belongs to [0, (256/27)1/3].

3. 2-Bures distributions

The higher order s-Bures distribution can be defined
as a free convolution of arcsine and the s–Fuss–Catalan
distribution, Bs = AS � Ps. It describes asymptotic
level density of Wishart matrices XX† where X =
(1 + U)G1 · · ·Gs. Here U denotes a random unitary
matrix distributed according to the Haar measure while
G1, . . . Gs are independent square complex Ginibre ma-
trices. In the case s = 1 one obtains back the standard
Bures ensemble [24]. Note that these distributions coin-
cide with µ((s+ 2)/2, 1/2) from [10], up to dilation by 2.
Indeed, the free S-transform of s-Bures is

S(w) =
w + 2

2(w + 1)s+1
, (26)

which can be compared with (4.11) in [10] for p = (s +
2)/2 and r = 1/2.

Consider the case s = 2 for which the Cauchy func-
tion SB2

(w) = (w + 2)/(2(1 + w)3) leads to the quartic
equation

wz(w + 2) = 2(1 + w)4.

Out of four analytical Ferrari solutions select the one,
w(z) = −1 + (z + i

√
(z − 8)z)1/2/2 which can be

rewritten as w = −1 +
√

8z exp[i arccos(
√
z/8)]. Plug-

ging this into (7) we get the Green function, which
used in (9) yields the desired density, B2,1(x) =

sin[ 12 arccos(
√

2x/4)]/(21/4πx3/4). Making use of the
known formula of the sine of the half angle, sin(x/2) =√

(1− cos(x))/2 we can get rid of arc cosine and arrive
at the result

B2(x) =
1

π 25/4x3/4

√
2−

√
x/2, (27)

for x ∈ [0, 8], see [19]. It is worth to add, that other re-
cent representations of Fuss-Catalan, Raney and related
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distributions [20, 30, 31], also contain sine functions, the
argument of which is an inverse trigonometric function
of the rescaled argument.

In a similar way one obtains results for the gener-
alized 2–Bures distribution B2,c(x), corresponding to
the product X = (1 + U)G1G2 with rectangular ma-
trices G1 and G2. For any rectangularity parameter
c = N/M the corresponding quartic equation reads now
wz(w + 2) = 2(1 + cw)(1 + w)3 and can be solved an-
alytically. Corresponding level densities are too lengthy
to reproduce them here. However, in the special case
c = 1/2 this equation reduces to the case (15), so the
generalized 2–Bures distribution with rectangularity pa-
rameter c = 1/2 coincides with the Fuss–Catalan distri-
bution (16), B2,1/2(x) = P2(x).

The list of other interesting cases, which lead to quartic
equations includes, for instance, the free multiplicative
convolution of arc-sine and Bures, AS�B = AS�2�MP ,
or the free multiplicative square root of the Bures distri-
bution, B�1/2 = AS�1/2 �MP�1/2. The corresponding
level densities can be obtained by solving quartic equa-
tions (w+2)2wz = 4(w+1)4 and (w+2)w2z2 = 2(w+1)4,
respectively.

IV. CONCLUDING REMARKS

Making use of the S–transform and the Cauchy
(Green) function it is possible to write down an ex-
plicit form of probability measures defined by free mul-
tiplicative convolution of Marchenko-Pastur (MP) distri-
bution P1 and other probability measures with known
S-transform. For instance, multiplicative convolution of
the Arcsine distribution and P1 raised in the free multi-
plicative sense to an integer power leads to an algebraic
equation for the argument of the S–transform. We stud-
ied some relevant cases for which this algebraic equation
is of the third or fourth order, so basing on the known
Cardano and Ferrari solutions one can derive analyti-
cally an explicit form of the required probability mea-
sures. This is the case, for instance, for free multiplica-
tive powers of Marchenko-Pastur distribution, [P1(x)]�s,
with exponent s equal to 2, 3 and also 1/2 and 1/3 and
for the convolution of P1 and P2(x) = [P1(x)]�2 with the
Arcsine distribution (AS).

Several distributions derived in this paper are of a di-
rect use for the theory of random matrices and their
numerous applications in physics. Integer multiplica-
tive powers of MP, called Fuss–Catalan distributions, de-
scribe asymptotic level density of generalized Wishart
random matrices, W = XX†, where X represents a
product of s independent nonhermitian random square
Ginibre matrices, X = X1 · · ·Xs. We obtained here an
explicit expression for P3 = [P1(x)]�3 in terms of el-
ementary functions and analyzed also the extension of
the problem for the case of rectangular Ginibre matrices.
Furthermore, the case of the multiplicative convolution of
AS with P1 and P2 corresponds to the Bures distribution

B1, generalized Bures distribution B1,c and higher order
Bures distribution B2 which describe level distributions
of generalized Wishart matrices, for which X is a prod-
uct of a sum of two random Haar unitary matrices and a
product of s random Ginibre matrices. These results are
applicable to describe asymptotic level density of certain
ensembles o random quantum states [5].

As a by-product of our analysis we derived explicit re-
sults for the probability measure corresponding to the
free multiplicative square/cubic root of the Marchenko-
Pastur distribution, written P1/2 = [MP ]�1/2 and

P1/3 = [MP ]�1/3, respectively. Note that for p < 1 the

distribution [MP ]�p is not infinitely divisible with re-
spect to the additive free convolution �, so the method
of Cabanal–Duvillard [32] is not applicable. In fact, a
stronger statement is true: if p < 1 then the additive

free power
(
[MP ]�p

)�t
exists if and only if t ≥ 1, see the

recent result of Arizmendi and Hasebe [33]. It is thus un-
likely to expect that there exists a random matrix model
which corresponds to the level density described e.g. by
the multiplicative free square root of the Marchenko–
Pastur distribution.

Note added. After completing the paper, we became
aware of two recent works, where related issues of Raney-
type distributions have been addressed using either dif-
ferential equations [34] or combinatorial analysis [31].

Acknowledgements. It is a pleasure to thank
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Appendix A: On imaginary part of solution of a
quartic equation

To demonstrate the derivation of the spectral density
we treat in this appendix an exemplary case correspond-
ing to the Fuss–Catalan distribution of order three (23).
Writing down the Ferrari solutions of the quartic equa-
tion (22) we identify the one with an imaginary part,
denoted by w3, so that the imaginary part of the corre-
sponding Green function (7) yields the desired spectral
density(9).

The full expression for this solution consists of two
terms, w3(z) = a1 + a2. We may omit the real term a1,
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as it does not contribute to the imaginary part of the
Green function. The relevant term reads then

a2 = −62/3

12

√
−A−B +

12z√
A+B

where z–dependent symbols A =
(

8z
3z2+T/

√
3

)1/3
and

B = (18z2 +
√

12T )1/3 contain a square root

T =
√
z3(−256 + 27z). Its argument is negative

for z ∈ [0, 256/27], so T can be rewritten as T =

i
√
z3(256− 27z) = it, where t is a real number. Let

us now write the argument of the cubic root in B in po-
lar form, Z = reiφ, with radius r = 32

√
3z3/2 and phase

φ = arccos(3
√

3
√
z/16). Then the key term reads

a2 = −62/3

12

√√√√− 8z

(Z/6)1/3
− Z1/3 +

12z√
8z

(Z/6)1/3
+ Z1/3

.

We can take the third root of Z represented in polar
form, Z1/3 = r1/3 exp(iφ/3), group terms y exp(iφ/3)
and y exp(−iφ/3) and replace them by 2y cos(φ/3). Sim-
plifying this expression we arrive eventually at the final
form of the Green function (7) and by taking its imagi-
nary part (9) we arrive at the Fuss–Catalan distribution
of order three (23), defined for x ∈ [0, 256/27].
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A. Świech, Eigenvalues and singular values of products
of rectangular Gaussian random matrices, Phys. Rev. E
82, 061114 (2010).

[12] G. Akemann, M. Kieburg, L. Wei, Singular value correla-
tion functions for products of Wishart random matrices,
J. Phys. A 46, 275205 (2013).

[13] G. Akemann, J.R. Ipsen and M. Kieburg, Products of
rectangular random matrices: Singular values and pro-
gressive scattering, Phys. Rev. E88 052118 (2013).

[14] A. B. J. Kuijlaars and L. Zhang, Singular values of
products of Ginibre random matrices, multiple orthog-
onal polynomials and hard edge scaling limits, preprint
arXiv:1308.1003

[15] N. Alexeev, F. Götze and A. Tikhomirov, Asymptotic
distribution of singular values of powers of random ma-
trices, Lithuanian Math. J. 50, 121-132 (2010).

[16] T. Dupic and I. P. Castillo, Spectral density of products
of Wishart dilute random matrices. Part I: the dense case,

preprint arXiv:1401.7802.
[17] K. A. Penson and A.I. Solomon, Coherent states from

combinatorial sequences, pp. 527-530 in Quantum theory
and symmetries, Kraków 2001, (World Sci.Publ., River
Edge, NJ, 2002) and preprint arXiv:quant-ph/0111151,
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